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Abstract: Biodiesel constitutes an attractive source of energy because it is renewable, biodegradable,
and non-polluting. Up to 20% biodiesel can be blended with fossil diesel and is being produced and
used in many countries. Animal fat waste represents nearly 6% of total feedstock used to produce
biodiesel through alkaline catalysis transesterification after its pretreatment. Lipase transesterification
has some advantages such as the need of mild conditions, absence of pretreatment, no soap formation,
simple downstream purification process and generation of high quality biodiesel. A few companies
are using liquid lipase formulations and, in some cases, immobilized lipases for industrial biodiesel
production, but the efficiency of the process can be further improved. Recent developments
on immobilization support materials such as nanoparticles and magnetic nanomaterials have
demonstrated high efficiency and potential for industrial applications. This manuscript reviews the
latest advances on lipase transesterification and key operational variables for an efficient biodiesel
production from animal fat waste.

Keywords: biodiesel; fuel; energy generation; lipase; immobilized lipase; animal waste; lard; tallow;
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1. Introduction

Animal byproducts generated in the European Union slaughterhouses represent nearly 17 million
tons per year and, from them, 5 million tons inedible byproducts result from rendering and are mostly
used for energy generation like biofuels and biodiesel [1–3]. After rendering byproducts, fat is obtained
from beef tallow, mutton tallow, pork lard and chicken fat [4,5]. Such fat is majorly composed of
triacylglycerols with fatty acids of 16 to 18 carbons. The most abundant saturated fatty acids are
palmitic (16:0) and stearic (18:0) acids; the major monounsaturated fatty acid is oleic acid (18:1) and
the most abundant polyunsaturated fatty acids are linoleic (18:2) and arachidonic (20:4) acids [6,7].
Animal fat waste is also obtained from the meat processing industry and from recycled waste from the
cooking business [8,9] that are classified as yellow grease if the content of free fatty acids is lower than
15% by weight and brown grease when it is higher than 15% [10]. In 2019, more than 800 thousand
tons of animal fats, equivalent to 6% of total feedstock, were used to produce biodiesel in the European
Union [11,12], while 8.4% of total feedstock was used in the case of the US, consisting of mainly 74 tons
of poultry fat, 132 tons of tallow and 243 thousand tons of white grease [13].

Biodiesel produced from animal fats is cheaper than when made from vegetable oils. An additional
advantage is that fossil CO2 reduction is higher when using animal fat for biodiesel generation;
nearly 80% CO2 reduction may be reached for animal fat in comparison to 30% reduction when using
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vegetable oil [14,15]. The bioenergy demand is continuously increasing and in 2050 it is expected
to reach 30% of the fuel consumed in the world for road transport [15,16]. Research on biodiesel
production is trying to maximize the yield and minimize the costs by using better catalysts that can
be reused and improve the transesterification efficiency [17,18]. Furthermore, the feedstock used as
raw material for biodiesel production represents up to 80% of the total cost [19] and it explains its
variability in different geographic areas depending on the climate and agriculture [20].

Total biodiesel world production has been increasing progressively year by year, reaching nearly
45 million tons in 2019 [12]. The European Union has the largest biodiesel production through its
202 plants producing more than 14 million tons of biodiesel in 2019 [11,21]. More than 5.6 million tons
of biodiesel were produced in the US in 2019 through its 91 plants [13,22]. Nearly 80% of new diesel
vehicles are prepared for B20 use that consists of fossil diesel blended with 20% biodiesel [13].

Transesterification through alkaline catalysis is the preferred process at industrial biodiesel
production plants [23]. However, raw materials like animal fat that contain moisture and free fatty
acids are troublesome for alkaline transesterification due to soap formation. Acid catalysis does not have
such troubles, but the reaction is much slower than alkaline catalysis, needs a larger size reactor and
requires a higher alcohol to fat molar ratio [24]. Heterogeneous catalysts are not sensitive to the presence
of free fatty acids and moisture, can catalyze esterification and transesterification simultaneously,
and can be separated from the reaction media. However, such solid catalysts tend to form three
phases resulting in a reduced reaction rate and high energy consumption [25]. The simultaneous
esterification and transesterification also occur with supercritical technology where high temperature
and pressure conditions (i.e., >250 ◦C and 10 MPa) increase the solubility and reduce the mass transfer
limitation resulting in good efficiency but with high energy consumption [26–28]. Pseudo catalytic
transesterification using biochar as the porous material for the pseudo-catalytic reaction at more
than 300 ◦C has the same advantages as supercritical transesterification, but also has high energy
consumption [29,30]. Therefore, animal fats may be processed for biodiesel production through
enzymatically catalyzed transesterification even though some issues, like the cost of lipase and its
poor stability, can be improved through immobilization [31]. Lipases have the advantage to generate
biodiesel under mild reaction conditions through the conversion of free fatty acids and triacylglycerols
in the presence of an acyl acceptor [32]. This manuscript reviews and discusses the latest advances
in the use of free and immobilized lipases for an efficient transesterification of animal fat waste.

2. Mechanisms of Action of Lipases

Lipases, triacylglycerol ester hydrolases (EC 3.1.1.3), are serine hydrolases with an active site
containing an amino-acid triad of serine, histidine and aspartate [32]. Lipases are obtained from
a variety of sources such as animal and plant tissues and microorganisms. Lipases show a wide
range of pH and temperature for activity and vary from strain to strain regarding specificity and
hydrolysis rate [33] Lipases exhibit good stability in non-aqueous mediums and exhibit neutral pH
range; such stability is increased when the enzyme is immobilized.

Lipases can catalyze esterification, inter-esterification, and trans-esterification reactions
in non-aqueous environments. Lipases catalyze the hydrolysis of triacylglycerols at the aqueous-non
aqueous interface but these enzymes can also catalyze the synthesis of esters from alcohols and long
chain fatty acids in low moisture environment [33]. Lipases follow a two-step mechanism for the
generation of fatty acid methyl esters in transesterification reactions, usually through the Ping-Pong Bi
Bi mechanism [34].

Most triacylglycerol lipases are regiospecific because they can only hydrolyze primary ester
bonds at the sn-1 and sn-3 positions, external positions within the triacylglycerol, and can generate
either one free fatty acid and diacylglycerol, or two free fatty acids and 2-monoacylglycerol that
remain unhydrolyzed. The full process from triacylglycerols into biodiesel and glycerol as end
products is shown in Figure 1. Regiospecificity is characteristic of extracellular bacterial lipases from
Bacillus sp. [35,36].
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Monoacylglycerol lipases (EC 3.1.1.23) catalyze the hydrolysis at the specific sn-2 position of
2-monoacylglycerol into free fatty acid and glycerol. Such lipases may be present in the enzyme
extract and masked when measuring activity with standard activity methods like those based on
triolein hydrolysis measurement. Monoacylglycerol lipases have been the object of few studies [37],
although they might be present in some microbial enzyme preparations [38]. Other lipases are
nonspecific and can act on any of the ester bonds of the triacylglycerol and therefore break down
the triacylglycerol to release free fatty acids and glycerol as the final products. This is the case
of lipases from Staphylococcus aureus and hyicus [39], Geotrichum candidum, Corynebacterium acnes,
Penicillium cyclopium [24] and Chromobacterium viscosu [40]. Another alternative for the hydrolysis of
monoacylglycerols is the acyl migration in the glycerol backbone from the sn-2 position to sn-1 or sn-3
positions [41].

The specificity of lipases depends on the length of fatty acids, presence of double bonds, branched
groups and, consequently, reaction rates may have important variations depending on the composition
of triacylglycerols present in the fat waste. Lipases are especially active against medium to long chain
fatty acids, which are those more usual in animal fat waste [17].
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Figure 1. Transesterification of animal fat to biodiesel. TGL: triacylglycerol lipase; nsTGL: non specific
triacylglycerol lipase; MGL: monoacylglycerol lipase.

3. Sources of Lipases

Most lipases originated from microorganisms and are produced in fermenters under controlled
conditions (see Table 1). Lipases are produced by a variety of gram-positive and gram-negative
bacterial strains, especially from the genera of Pseudomonas [42,43], also by filamentous fungus that are
commercially important such as those belonging to the genera of Rhizopus sp. [44], Aspergillus sp. [45],
Penicillium sp. [46], Geotrichum sp. [33], Mucor sp. [47] and Thermomyces sp. [48]. Lipases produced
from yeasts are also relevant such as those from Candida sp. [49,50].

Extracellular lipases are secreted into the production medium and recovered from the
microorganism broth. Then, lipases are further separated and purified but downstream processing is
costly. Intracellular lipases imply the use of whole cell microorganisms and this fact reduces the costs
of enzyme extraction and purification but the efficiency and biodiesel yield is low when catalyzing
an oily substrate due to mass transfer limitations for substrate penetration and product release [28,51].
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Some whole cell biocatalysts used to produce biodiesel are filamentous fungi like Aspergillus and
Rhizopus [49].

Table 1. Bacteria, yeasts and filamentous fungi producing lipase and sources of isolation.

Lipase Origin Reference

Pseudomonas fluorescens [52]
Burkholderia cepacia [42,50,53,54]

Staphylococcus haemolyticus [55]
Chromobacterium viscosum [56]

Phichia pastoris [57]
Mucor miehei [58]

Thermomyces lanuginosus [59,60]
Aspergillus oryzae [61]
Aspergillus niger [62,63]

Aspergillus terreus [64]
Rhizopus oryzae [41,65,66]

Rhizomucor miehei [60,67]
Geotrichum candidum [68]

Candida antarctica [66,69–71]
Candida cylindracea [72]

Candida rugosa [50,73,74]

4. Free Lipase

Lipases constitute an attractive catalyst for transesterification in those wastes containing large
amounts of moisture and free fatty acids, which is the case of animal fat and is what makes it
troublesome for alkaline transesterification. Table 2 shows some examples of the use of free lipases
for biodiesel production from animal fat waste. The use of lipases has relevant advantages over
conventional alkali catalysts. The most relevant are the absence of soap formation in the reactor,
insensitivity to water content and acidity value, moderate reaction conditions, broad substrate range,
good purity of biodiesel after transesterification and absence of pollutants, especially when treating
cooking oil waste containing large amounts of free fatty acids [75]. On the contrary, there are also
important disadvantages such as the high enzyme costs, poor enzyme stability, and the enzyme
deactivation by alcohol [76] and partly by the generated glycerol [66].

As said, lipases are sensitive to the alcohol, in most cases methanol, used for biodiesel production
and this fact increases the operational costs. There are some alternatives to avoid enzyme damage
by methanol: stepwise addition of methanol to reaction mixtures avoiding a high concentration [65],
the use of co-solvents like hydrophilic tert-butanol that dissolve glycerol and methanol and therefore
allow high transesterification yields and rates [77], also the addition of longer-chain alcohols [78],
or methyl or ethyl acetate as acyl acceptors [79,80]. Another solution is the use of novel lipases that can
support one-step addition of high methanol concentration [81]. In this sense, another solution is the
use of tools like protein engineering, recombinant methods and metabolic engineering that are used to
improve thermostability as well as stability in organic solvents [80]. Glycerol may be extracted with
organic solvents although the enzyme activity may be affected [81].

Lipase transesterification requires an extended time of reaction, and has a slow conversion rate as
shown in Table 2. The recovery of the enzyme is rather difficult and the enzyme stability is poorer
at high temperature and pH [81–84]. All these troubles have hindered its adoption at an industrial
scale and therefore, transesterification with alkaline catalysis is still preferred at biodiesel-producing
industrial plants [23]. However, such troubles experienced with enzymes can be partly overcome
through its immobilization on a solid material that acts as enzyme carrier and increases its stability
and efficiency [81,85,86]. Immobilization also allows an easy downstream separation from the product
and decreases cost [82]. However, recyclability is an issue because lipases tend to lose activity after
continuous operation [86]. In any case, it was reported that the use of soluble lipases might be more
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competitive if the commercial enzymes would have a price 50 times lower than the immobilized
lipase [25,87]

Table 2. Biodiesel production with various free soluble lipases.

Lipase Source Feedstock Conditions
(T, alcohol:oil, t) Yield (%) References

A. niger Waste cooking oil 45 ◦C, 4.2:1, 30 h 90 a [63]
T. lanoginosus Beef tallow 35 ◦C, 4.5:1, 6 h 84.6 a [88]
C. antarctica Lard 30 ◦C, 1:1, 72 h 74 a [89]
C. antarctica Lard 50 ◦C, 5:1, 20 h 97.2 b [90]
Candida sp Lard 40 ◦C, 3:1, 30 h 87.4 b [91]

T. lanoginosus Chicken fat - 89.04 b [92]
C. antarctica Chicken fat 32 ◦C, 3:1, 24 h 96 a [71]

a Biodiesel yield (wt/wt.%) was determined as the methyl esters amount produced by the lipases in the reaction
process divided by the initial amount of esters; or b by the amount of oil.

5. Immobilized Lipase

5.1. Types of Supports and Immobilization Procedures

The immobilization of lipases consists of the retention of the enzyme at the surface of the
support material. In this way, immobilized lipases show an improved efficiency and reduced costs,
with longer enzyme stability and better resistance to denaturation by alcohol. There are many available
supports of organic, synthetic and inorganic nature for lipase immobilization. Such materials may vary
in characteristics such as particle dimensions, shape, pore volume, hydrophobicity, and density and
must be stable to physical, chemical, and microbial degradation [93]. Porous supports with controlled
pore distribution are very interesting for lipase immobilization because they offer an extensive surface
area and therefore, higher enzyme loading. However, caution must be observed if pores are too small
because they could get blocked by the enzyme, reducing its efficiency.

There is a large variety of immobilization procedures (see Figure 2) such as adsorption, covalent
binding, cross-linking, entrapment, or encapsulation that have been developed to enhance the catalytic
activity, and its stability, and make possible the reutilization of the enzyme in relation to the soluble
lipase [94]. Some methods like cross-linking enzyme aggregates are not considered in this review
because even though they are inexpensive, highly efficient, and do not need support for immobilization,
they have rather poor mechanical stability [95].

Immobilization by adsorption on materials such as water-absorbing polymer, hydrophobic
macroporous polypropylene particles or silica gel is simple, but can result in an undesirable leakage
making it necessary to assure the retention of the enzyme by additional ionic or covalent bonds. This can
be an ion exchange resin or cross-linking with glutaraldehyde [68]; performance was improved by
crosslinking with glutaraldehyde. The stability in acid pH was improved as well as thermostability at
45–50 ◦C. It retained 80% of relative biodiesel production after 5 consecutive batches [96]. Adsorption of
lipase from Burkholderia cepacia was compared to covalent immobilization on epoxy acrylic resin.
The adsorbed enzyme gave a higher conversion than the covalent one after a three-step addition
of ethanol, 68% vs 47% [97]. The covalently immobilized enzyme showed lower affinity towards
diglycerides and monoglycerides; this was attributed to blockage of the active groups by the covalent
bonds to the support material, which resulted in enzyme rigidity [98]. Mesoporous materials are
attractive because they have high surface area, larger pore volume, absence of toxicity, and good
stability [99]. Examples of reported immobilized lipases used in recent studies are shown in Table 3.
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Table 3. Biodiesel production with various immobilized lipases.

Lipase Source Feedstock Immobilization Yield a (%) No. Cycles References

A. niger Sardine oil Activated carbon 94.5 a 5 [62]
T. lanoginosus Lard Silica gel 97.6 a 20 [90]

C. antarctica Waste cooking oil Silica nanoflower
pickering emulsion 98.5 a 15 [70]

B. cepacia Castor oil Polyvinylalcohol alginate 75 b 6 [85]
R. miehei and
C. antarctica Waste cooking oil Epoxy functionalized silica 91.5 a 14 [100]

Streptomyces sp Waste cooking oil XAD 1180 resin 95.45 a 4 [79]

B. cepacia Beef tallow
Polysiloxane–polyvinyl

alcohol (SiO2–PVA) hybrid
composite

89 a - [101]

C. antarctica Waste fish oil Acrylic resin 95 a 4 [102]
C. antarctica Waste fish oil Acrylic resin 75 a 10 [103]

a Biodiesel yield (wt/wt.%) was determined as the methyl esters amount produced by the lipases in the reaction
process divided by the initial amount of esters, or b by the amount of oil.

There is a good affinity for immobilization of lipases on hydrophobic supports [104], giving a fast
and good attachment by hydrophobic adsorption [105]. Transesterification of waste lard was tested
with immobilized lipase B from Candida antarctica with the assistance of ultrasound for improving
the dispersion and collision of the reagent molecules. Ultrasonic wave amplitude, ultrasonic cycles,
and reaction parameters were optimized and a kinetic model was developed [69]. Pulsed ultrasound
irradiation increased by about 3 times the synthesis rate of fatty acid ethyl ester by lipases immobilized
on hydrophobic carriers like octadecyl-sepabeads [106].

Porous silica nanoflowers have center-radial pore structure that allows the load of lipase inside
the structure to have good mass transfer for substrates and products [107]. Dichlorodimethylsilane
was used to modify the silica nanoflowers for the adsorption of Candida antarctica lipase B and
the biocatalytic pickering emulsion was constructed [94]. Pickering emulsion stabilized by hybrid
nanoparticles [108], solid particles [109], or carbon nanotubes crosslinked with lipase [110], have been
constructed and successfully used [111,112]. In this way, this emulsion facilitates biphasic reactions
and simplifies the recovery of lipase that remains in its microenvironment [113].

Metal-organic frameworks provide advantages for immobilization: they can be easily separated,
they offer an extended surface area that can be tuned, they have adequate pore size, have structural
and functional diversity and good stability. Immobilization may be through adsorption, encapsulation,
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and coprecipitation [114]. Lipase is strongly adsorbed by metal-chelating affinity immobilization
that is a simple technique with the advantage that support may be reused [54]. Desorption agents
may cause the desorption of the enzyme that can be also achieved by changing the pH value [115].
The compound n-hexane could reduce the deactivation of AGMNP-CO2

+-PFL from methanol. It was
reported that biodiesel production from oil transesterification was higher with n-hexane than using
tert-butanol [70,94].

Encapsulation immobilization entraps lipase by a co-precipitation method and crosslinking agents
like glutaraldehyde are used to interconnect the enzymes. However, there is a high mass transfer
resistance that reduces its efficiency.

The entrapment of cells having lipase activity appears to be a simple and attractive technique.
Lipase immobilized in silicon granules or calcium alginate beads, with glucose supplementation
for cells maintenance, achieved an increased number of cycles, 28 instead of 23, while keeping 90%
activity [33]. Whole cell, recombinant methods and protein and metabolic engineering are promising
options to increase lipase applications [82].

5.2. Magnetic Nanocarriers

Materials like magnetite (Fe3O4) are used as support for immobilization because they allow
a rapid separation from the reaction medium when an external magnetic field is applied [116].
The development of magnetic nanoparticles (MNPs) as a support for enzymes immobilization has
been recently reviewed [117]. Typical magnetic nanomaterials include iron oxide (Fe3O4 and γ-Fe2O3),
alloy-based (CoPt3 and FePt), pure metal (Fe and Co), and spinel-type ferromagnet (MgFe2O4, MnFe2O4,
and CoFe2O4) [117]. Examples of lipase immobilized in various types of magnetic nanoparticles are
shown in Table 4.

Table 4. Biodiesel production with various immobilized lipases using magnetic nanoparticles as carriers.

Lipase Source Carrier Immobilization Yield a (%) No. Cycles References

B. cepacia Silica coated hydroxyapatite and
glutaraldehyde Encapsulation 98 4 [118]

A. terreus Iron oxide polydopamine Covalent bonding 92 7 [64]
T. lanuginosis &

C. antarctica Core-shell structured iron oxide Covalent bonding 99 11 [119]

P. fluorescens Co2+ chelated, with
3-glycidoxypropyltrimethoxysylane

Adsorption 95 10 [70]

R. miehei and
T. lanuginosa

Silica core shell iron oxide with
tryethylamine Covalent bonding 93.1 5 [60]

C. antarctica Poly(urea-urethane) encapsulated
magnetite Encapsulation 95 8 [120]

C. antarctica

Magnetic iron oxide with
1-Butyl-3-methylimidazolium

tetrafluoroborate &
3-aminopropyltriethoxysilane

Covalent bonding 89.4 5 [121]

B. cepacia Polysiloxane–polyvinyl alcohol
hybrid magnetic-polymer composite Covalent bonding 96.5 - [122]

a Biodiesel yield (wt/wt.%) was determined as the methyl esters amount produced by the lipases in the reaction
process divided by the initial amount of esters.

Magnetic nanoparticles (MNPs) have good biocompatibility and non-toxicity but tend to aggregate
and oxidize, so they need to be functionalized on the surface and use a cross-linking agent to bind
the enzyme. One way is by using silica coating where a silica shell is formed on the surface by
using amino-functional reagents like 3-aminopropyl triethoxysilane (APTES). Fe3O4 particles were
encapsulated with mesoporous silicon and modified with APTES or 3-mercaptopropyl trimethoxysilane
(MPTMS) followed by binding of the lipase with glutaraldehyde. APTES-modified Fe3O4 particles
were reported to give better yield of biodiesel (90%) than MPTMS particles [75]. Burkholderria sp. lipase
on Fe3O4 MNPs also achieved 90% conversion [123].

Another way to protect MNPs is with organic polymers, including synthetic polymers and
biopolymers. The polymer can be either incorporated into the precursor solution to form Fe3O4 MNPs
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or externally to create the core shell [117]. The polymer surface provides numerous functional groups
that facilitate the enzyme binding. Magnetic chitosan binds the lipase by covalent attachment [124].

Separation of nanobiocatalysts is difficult in an oily system [119] but the magnetic properties of
MNPs can facilitate the separation of enzyme from reaction media. In this way, the reaction may be
immediately finished as well as using the enzyme for further uses [117].

5.3. Coimmobilization

Some works have proposed to use coimmobilization of enzymes. The advantage is that the
first enzyme releases the product that is transferred to the next coimmobilized enzyme with a short
diffusional distance. This is especially relevant for lipases due to their specificity for triacylglycerols
ester bonds. The mixture of 1,3-specific lipase and a non-specific lipase enhances the global activity
because it removes the limiting acyl-migration step. Several coimmobilized systems have been studied
for biodiesel production like Candida rugosa lipase and Rhyzopus oryzae lipase simultaneously on
silica gel [74], Candida antarctica lipase B and Thermomyces lanuginosus lipase, on the surface of the
Phichia pastoris cell [57], and Rhizomucor miehei and Candida antarctica lipases on epoxy-functionalized
silica [67,100].

Lipases are coimmobilized on the same material surface in order to get better global activity
and improved enzyme specificity and selectivity for hydrolysis of triacylglycerols as well as those
generated diacylglycerols and monoacylglycerols that must be further hydrolyzed [96]. However,
the most active enzyme may get some loss of activity through this procedure [125]. A different
coimmobilization strategy was proposed by immobilizing several lipases layer-by-layer using abcoating
with polyethylenimine [126]. Other authors have used coating with PEI/glutaraldehyde to form
5 enzyme layers of lipases A and B from Candida antarctica, lipases from Rhizomocur miehei, and
Themomyces lanuginosus and phospholipase Lecitase Ultra [125]. Although it gives an innovative way
for fats hydrolysis some problems might arise either from inhibition by coating agents used, high costs
of different lipases used or steric hindrance for accessibility of triacylglycerols to the active site of
lipases immobilized in the inner layers.

6. Industrial Applications of Lipase-Catalyzed Biodiesel

Even though transesterification through alkaline catalysis is the preferred process in the majority of
industrial biodiesel production plants [23], a few lipase-based processes have already been implemented
to plant-scale operation. The collaboration of Novozymes (Bagsvaerd, Denmark) with Piedmont
Biofuels (Pittsboro, NC, USA) resulted in a patent application to produce fatty acid alkyl esters,
by a lipolytic enzyme in a solution containing triacylglycerol, alcohol, water, and glycerol [93,127].
Viesel Fuel (Terrac Stuart, FL, USA) upgraded in 2013 its facility through an enzymatic process
developed by Novozymes (Denmark) to use brown grease and waste cooking oil to produce up to
11 million gallons biodiesel per year using Eversa Transform® lipase from Novozymes, a soluble
lipase produced by a genetically modified strain of Aspergillus oryzae [128], and an ion exchange resin
system for removal of remaining free fatty acids during crude biodiesel refining [129,130]. Viesel Fuel,
Novozymes and Tactical Fabrication also collaborated with Buster Biofuels to upgrade its facility
in San Diego (CA, USA) to produce up to 5 million gallons per year [131]. Lvming and Environmental
Protection Technology Co. Ltd. (Shanghai, China) used lipase of Candida sp. to produce 10,000 tons per
year from waste frying oil [95]. A plant in Sumaré (Sao Paulo, Brazil) produces biodiesel from mixed
beef tallow and soybean oil using Callera® Trans L lipase in a batch reactor [132]. These companies are
using liquid lipase formulations but the efficiency of the process can be improved further by using
recent developments in immobilized lipases. So, Hunan Rivers Bioengineering Co. Ltd. (Hunan,
China) was reported to use Novozym 435® lipase in a stirred tank reactor to produce 20,000 tons of
biodiesel per year. The enzyme is a lipase B from Candida antarctica immobilized on a resin consisting
of macroporous support formed by poly(methyl methacrylate) crosslinked with divinylbenzene [133].
New technology protected with patents [134] has been provided by EnzymoCore, a leading global
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producer company founded in 2007 in Israel and with several active biodiesel plants around the world.
This company has developed modified-immobilized enzymes, supported on solid organic resins,
with high resistance to methanol and able to produce biodiesel from any type of oil or fat, even those
cheap and with very large content of free fatty acids and polar lipids [135].

7. Conclusions

Animal fat waste, usually resulting from slaughterhouses, the meat processing industry,
and cooking facilities, is being increasingly used for biodiesel production. Transesterification
through alkaline catalysis is the preferred process at industrial biodiesel production plants.
Transesterification with lipases has not been attractive for industry yet because of the higher operative
costs in comparison to alkaline catalysis; transesterification with lipases has problems including
poor enzyme stability, difficulties in reusability, and denaturation by alcohol although they are not
affected by water and free fatty acids typically found in animal fats. However, a few companies
could solve such troubles since they are running liquid lipase formulations for producing biodiesel
from cooking oil waste at industrial scale. However, the efficiency of the process can be further
improved. Recent developments in immobilized lipases and availability of different types of supports
such as mesoporus materials, silica nanoflowers, pickering emulsion, and metal-organic frameworks
demonstrate improved efficiency and reduced costs. Immobilization of the enzyme in such materials
increases its stability and makes it more resistant to denaturation by alcohol. Magnetic nanomaterials
constitute an even better support for enzyme immobilization because they can be recovered when an
external magnetic field is applied. These nanoparticles are functionalized on the surface by coating with
silica or organic polymers that enhance the efficiency of the process. The entrapment of whole cells with
lipase activity, appears to be simple and efficient although more research is needed. Coimmobilization
of lipases is an innovative process, but not so attractive for industrial application. It needs further
research because of the need for different lipases that increases the costs and the efficiency affected by
steric difficulties for enzymes to hydrolyze triacylglycerols.
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