
applied
sciences

Article

Development Cycle Modeling: Process Risk

Samuel Denard 1,* , Atila Ertas 2, Susan Mengel 3 and Stephen Ekwaro-Osire 2

1 Fortify, Micro Focus International plc, Houston, TX 77027, USA
2 Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA;

atila.ertas@ttu.edu (A.E.); stephen.ekwaro-osire@ttu.edu (S.E.-O.)
3 Department of Computer Science, Texas Tech University, Lubbock, TX 79409, USA; susan.mengel@ttu.edu
* Correspondence: sam.denard@ttu.edu

Received: 1 June 2020; Accepted: 20 July 2020; Published: 23 July 2020
����������
�������

Abstract: The first part of this paper outlined the Statistical Agent-based Model of Development and
Evaluation (SAbMDE) and demonstrated the model’s ability to estimate development cycle resource
utilization. This second part of the paper explores the model’s ability to compute development
cycle information content and process risk. Risk managers focus mostly on outcome risk, i.e., the
likelihood that a running system will behave in an undesirable manner. SAbMDE assumes that a
subset of outcome risks are not inherent and immutable but are, instead, the result of defects and
vulnerabilities introduced during the system’s development process. The likelihood of defect and
vulnerability introduction is a process risk. SAbMDE further assumes that measuring process risk is
a prerequisite for minimizing defects and vulnerabilities and, therefore, outcome risk. The model
implements the measurement with Shannon’s information–probability relationship similar to its
use in Axiomatic Design Theory (ADT). This paper details the SAbMDE’s information and risk
calculations and demonstrates those calculations with examples. The process risk calculation is
consistent with and offers a mechanism for the ADT Information Axiom.

Keywords: Risk Analysis; Design Theory and Methodology; Decision Theory; Axiomatic Design
Theory; Information Theory

1. Introduction

A development cycle model represents the phases of system and/or product development. There
are many such models currently in use. For example, Microsoft offers their Security Development
Lifecycle [1,2]. The National Institute of Standards and Technology (NIST) and other government
organizations specify standards and instructions [3,4] that are necessarily incorporated by industry [5,6].
Researchers, such as [7], have often enumerated and compared various methodologies. However,
all these models and methodologies represent a developer’s effort to convert a concept into an end
product. The models describe the intermediate requirement, design, and implementation phases as
well as the testing phase that maintains the integrity of the conversion process. The top half of Figure 1
illustrates this representation in broad terms.

The conventional models are usually expressed as best practices, guidance, and policies [8,9].
For that reason, the models’ effectiveness depends strongly on the skill and will of the developers
who interpret and execute the models [10]. The models are qualitative; it is difficult to apply them
objectively and consistently. Many quantitative function- and/or phase-specific sub-models exist:
software reliability growth models (SRGM) [11], technical debt [12], run-time behavior extraction [13,14],
and more. However, the sub-models typically measure output from an existing system. Consequently,
they analyze history rather than predict possibilities. In addition, the sub-models represent development
phases differently, so differently that the idea of an end-to-end development cycle model has seemed out
of reach. Even so, there is some consensus in the Design Theory and Methodology (DTM) community

Appl. Sci. 2020, 10, 5082; doi:10.3390/app10155082 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-0655-590X
https://orcid.org/0000-0003-0722-1941
https://orcid.org/0000-0002-9548-8648
http://dx.doi.org/10.3390/app10155082
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/15/5082?type=check_update&version=3

Appl. Sci. 2020, 10, 5082 2 of 19

that a phase-independent underlying model exists. The literature reviews [15,16] state this consensus;
and [17] describes the evolution of that consensus. There is also evidence of this thinking outside of the
DTM community. For example, while formulating a theoretical foundation for building construction,
Antunes and Gonzalez [18] state, “In this research, construction is not restricted to civil engineering
and architecture, but comprehends a broader understanding of building, putting up, setting up,
establishing and assembling. Construction is the materialization of a concept through design, taking into
account functional requirements and technical specifications for a project product utilizing specialized
labour.” Antunes and SAbMDE both envision underlying domain-independent models. The Defense
Advanced Research Projects Agency (DARPA) is one of the organizations that fuels renewed interest
in the underlying model by soliciting the research results [19–22] that such a model might promise.
The increasing complexity of modern systems [23,24] is a major reason for the renewal.

Figure 1. Development modeling framework.

2. Proposed Model

Figure 1 also illustrates an underlying model candidate: the Statistical Agent-based Model of
Development and Evaluation (SAbMDE). SAbMDE joins with those [25] who accept development as
an inherently human process and builds on a neuroscience foundation [26–28] of agent mind, body,
and environment interaction. SAbMDE then uses process algebra ideas, such as Wang’s [29,30], to
represent each development phase so that analytical techniques can be uniformly applied across the
entire development cycle. Wang has shown [31] that a desired end product (DEP) can be developed by
sequentially composing intermediate products (IP) from sets of fundamental composable elements:
processes and relations. SAbMDE introduces an agent who decides which elements to compose.
A correct decision set produces a sequence of compositions that become an end product, hopefully, the
DEP. SAbMDE recognizes (a) that each decision is one of a set of alternatives, (b) that the hierarchical
super-set of alternatives forms a development space (DSpace), and (c) that the correct DEP decision
set is the best of many development paths (DPaths) through DSpace. The model’s foundation reflects
itself in this representation via three inter-related sub-models: Agent, Development, and Evaluation.

Appl. Sci. 2020, 10, 5082 3 of 19

Model D houses the algorithms and structures that quantitatively define DSpace as well as the tools for
DSpace navigation and traversal. Model E contains the testing and evaluation mechanism that informs
the decisions that compel DSpace compositions. Model A emulates a development agent’s perception,
experience, vocabulary, and other human factors needed to create the Model E tests and to evaluate
their results. Because each DSpace composition is connected by a decision to an evaluation of test
results, there is an ESpace that mirrors DSpace. Because each ESpace test and/or evaluation maps to an
agent’s perception and vocabulary, there is an ASpace that mirrors ESpace. These spaces, generically
XSpaces, have the same form and share a mathematical description. When executed together, Models
A, D, and E represent a development cycle quantitatively and flexibly. This capability allows SAbMDE
to hypothesize that DSpace characteristics constrain and guide an agent’s decision-making in ways that
conventional development cycle models can not. SAbMDE constructs DSpace from sets of composable
elements: vocabulary items, V, and relations, R. For example, (1) and (2) are the basis of the simple
DSpace fragment in Figure 2. Composable elements are supplied directly by an agent or extracted
from documents by simple parsing or more sophisticated techniques such as those applied by Park
and Kim [32].

V = {v0, v1, v2, v3} (1)

R = {r0} (2)

The construction begins at composition index 0 (l = 0) with an empty set. Construction continues
by enumerating the composable elements at l = 1, and then by using the cross-product operator to
compose all the combinations of composable elements for l > 1. As a result, at every DSpace node
(DNode) for l > 1, an agent decision-maker has exactly |V||R| options from which to choose. Note
that at l = 1, only the vocabulary items are listed because composition is the same as vocabulary
item selection at this composition index; relations have been enumerated but not applied. DSpace is
characterized by the choice of composable elements, the numbers of types of composable elements,
(|V| and |R|), and the number of compositions, L, required to produce the DEP.

Figure 2. A simple DSpace excerpt with highlighted DPath.

A development agent navigates or traverses DSpace by deciding which DNode to compose next.
Figure 2 shows a DPath. Note that the DPath is not a direct one. The decision to traverse to DNode e
was a mistake that had to be corrected. An evaluation of DNodes f and k confirmed the error. Thus,
the actual DPath is contorted. At each DNode, the structure of DSpace offers a probability floor for the
agent’s likelihood of making a successful decision, i.e., one that leads to the DEP. Those floor values
are defined by (3)–(5), and they correspond to random choices. In real situations, agents act with some
level of skill. To recognize this skill, the DNode probabilities are scaled with a 0–10 (random-perfect)
index, fs, as in (6).

Appl. Sci. 2020, 10, 5082 4 of 19

p(l) =

0 , l= 0

1
|V| , l= 1

1
|V||R| , l >1

(3)

u =
1
|V| (4)

q =
1

|V||R| =
1
Q

(5)

p = x +
fs

10
(1− x), fs = 0, 1, ...10 and x = u or q (6)

With this brief outline and with the details to follow, SAbMDE proposes to quantitatively model
development processes. This paper supports that proposal by focusing on two closely-related aspects
of the SAbMDE framework: development cycle information content and probability of development
success. The latter is the complement of development risk.

3. Related Work

There are many researchers and corporate practitioners who investigate development modeling.
Their work falls under various headings: Design Theory and Methodology (DTM), Design Research
(DR), Modeling and Managing of Engineering Processes (MMEP), or other similar terms.

For example, Quereshi [33] et al. wrote about transdisciplinary commonalities of design processes
across various organizations. They concluded that “An important finding of the study is the higher level
commonalities of the design process in terms of the product life phases and its subdivisions, the form of the design
process, and the verification of the common design states. Using these commonalities, the authors consider it to
be of significant importance to develop further, these elements in a transdisciplinary context so that a coupling of
discipline specific processes may be achieved with a minimum loss of context and information.”

Srinivasan and Chakrabarti [34] wrote about their approach to design analysis and synthesis.
Importantly, they included the concept of design causality in their work. They demonstrated their
model with several examples, and they concluded, in part, that “The model in its current form can support
only conceptual and early embodiment phases and needs to be extended to support other detailed phases.”

Reich and Subrahmanian [35] created the PSI Matrix theory of design and applied it to
real-world cases with some success. In the end, they stated that “We are presently conducting multi-case,
transdisciplinary, multi-context studies with numerous partners to provide more insight on the utility of the
PSI matrix as guidance for design and also to test it as a theory of designing. While they are too early to report,
we clearly see the benefit of constantly looking at the situation and its PSI matrix model and deriving guidance
for the project. It is clear that many fundamental topics will arise in that process and new research questions
be formulated.”

Gericke et al. [36] wrote about how to discuss design methods so that the methods can be
understood and so that industry practitioners could evaluate their utility. One of their conclusions
says that “As a community, we expect that research results such as new methods are carefully evaluated before
being published. However, we are still struggling to find consensus about proper research methods for evaluation
and qualifiers for uptake of methods in industry.”

Given this sampling of conclusions, it seems that no definitive model has yet been developed.
The work required to build such a model remains to be done.

The state-of-the-art is painted clearly by Gerike and Eckert [37] who summarized the efforts of
39 purposely selected practitioners from academia and 27 companies. The summary was presented
as a roadmap of DR goals. Therein, remaining work was identified and categorized. Those authors
took the additional step of comparing the roadmap with the actual research topics on which the DR
community was then currently working. Gerike and Eckert concluded, in part, “We need to learn from

Appl. Sci. 2020, 10, 5082 5 of 19

other fields and have a greater dialogue across fields: computing, complexity, operations research, management
science, system engineering. As it is a long road to achieve grand visions, we should better go it together.”

This paper, while focusing on one aspect of SAbMDE, hopes to help the community take a small
step down the road to the Design Research (DR) goals.

4. Problem Description

This paper asks one question: How can the likelihood of a project’s success be calculated? Or,
conversely, what is the risk of project failure?

There are many types of risk; Spacey [38] lists dozens. However, Kendrick [39] (p. 191) categorizes
project risk simply. There are known risks and unknown risks; and, of the known risks, there are those
that are controllable or not. This paper is concerned with known controllable risks associated with the
construction of a product or other system, i.e., its development. In practice, project development focus
tends toward operational risk and related undesirable outcomes. For example, software development
weaknesses are cataloged [40] for reference and captured in situ [41]; and their exploitation is publicly
reported. Procedures for how to discover and report vulnerabilities are well documented [42].
The undesirable outcomes become the center of attention, and the response to them is usually one of
four standard steps [39] (p. 196) and [43]: avoid, transfer, mitigate, or accept.

Unfortunately, outcomes are not directly controllable, but the processes that generate them may be.
The root cause of the undesirable outcomes is due, in part, to defects and vulnerabilities that entered
the system during its construction. Construction is a controllable process. The likelihood of incorrect
construction is the development process risk on which this paper focuses specifically. The software
industry invests in the controllability assertion by providing development standards [1,44] and related
tools. SAbMDE also invests in process controllability; the first part of this paper hypothesized that
SAbMDE can guide an agent towards a DEP. When the guidance is successful, the probability of
development success is maximized and the development risk is minimized. This paper focuses on how
the guidance is generated. The guiding principle is Suh’s Axiomatic Design Theory [45], specifically, the
Information Axiom [45] (p. 147). It states that the best end product (EP) of several candidates is the one
with the minimum information content. Suh uses domain-specific definitions of information logically
combined with the properties of Shannon’s information formula (7) to solve real-world engineering
problems. Vigo [46], while operationalizing Shannon’s formula for human communication, adds a bit of
rigor to Suh’s logic. Vigo also argues strongly for minimizing human interpretation of probability in (7).
Because SAbMDE defines a structure for DSpace, probabilities and information values can be calculated
for each development step. In doing so, SAbMDE achieves a similar minimization by extruding human
interpretation into those probabilities through a die of formally structured tests. Combining the
development step probability values yields a probability for an entire DPath; thus, SAbMDE can satisfy
the Information Axiom. Although SAbMDE information and risk is introduced in terms of software
development, it should be re-iterated that the model is actually domain-independent. This is not
entirely unique. Domain-independence is anticipated in other originally domain-specific models and
theories. For example, Antunes and Gonzalez [18] propose a theory of building construction where
“Construction is the materialization of a concept through design...”. They also broaden the conceptual base of
their model to put its finer points into perspective. The following sections will describe how these ideas
are integrated into SAbMDE. The next section derives and describes the methods and calculations that
make the ideas work. After that, the calculations are discussed, and then some conclusions are drawn.

5. Results

The results of this work are presented in four parts. First, building on the Figure 1 framework in
the first section of this paper, the value of a development step is defined in terms of its information
content. Second, the information source and other details are explained. Third, the DSpace traversal
guidance that this technique offers to an agent is demonstrated with two examples. Fourth and finally,
the ability to calculate a development process’s probability of success is explained and demonstrated.

Appl. Sci. 2020, 10, 5082 6 of 19

5.1. Development Step Value

Consider the following conditions of a never-before-attempted project. First, at the very beginning
of the project, nothing is known about the end product, so there is a large amount of information
that must be gathered and focused on the project. Otherwise, there can be no understanding of how
to proceed. Second, at the successful end of the project, everything is known about the DEP; there
is no remaining information to be gathered. Third, because the project is developed in a step-wise
fashion, each step must somehow use or absorb an increment of the gathered information. A SAbMDE
development step is a composition of vocabulary items and relations represented by a development
node (DNode). With each DNode absorbing information, Figure 3 shows notionally that the information
content of a DSpace, as measured from successive points along a net DPath, decreases from a maximum
value at the beginning of a project to zero at its successful conclusion. The original DSpace is densely
packed with information for an agent to evaluate. As the agent traverses the DSpace, its information
is dissipated by the agent’s increasing certainty about the next steps. This decrease is inherent in the
structure of DSpace.

Figure 3. DSpace information content decreases as traversal approaches desired end product (DEP).

This notional concept of information decrease is captured more rigorously beginning with (7),
which restates Shannon’s basic information definition [47].

h = log2(
1
p
) (7)

Given this definition, a quantity of information can be assigned to a DNode using the probabilities
(4) and (5). A DSpace is a union of DNodes. Equation (8) computes the number of DNodes in a DSpace
defined by |V|, |R|, and L; therefore, (9) defines the total information in that DSpace as it is viewed
from the DSpace origin.

NS(V, R, L) = 0 + |V|+
L

∑
l=2
|V|l |R|l−1 = |V|+ 1

|R|
L

∑
l=2

Ql (8)

HS(V, R, L, skill) =

[
|V| log2(

1
u
) +

log2(
1
q)

|R|
L

∑
l=2

Ql

]
skill=0

(9)

Appl. Sci. 2020, 10, 5082 7 of 19

Consider the view of the DSpace from some later composition level, lc > 2. Equation (10) defines
the information in that sub-DSpace.

HS(V, R, L− lc, skill) =

[
log2(

1
q)

|R|
L

∑
l=lc

Ql

]
skill=0

(10)

Equation (11) is the ratio of the sub-DSpace information to the full DSpace information.

ηS =
HS(V, R, L− lc, skill)

HS(V, R, L, skill)
(11)

Equations (9)–(11) are symbolic expressions of Figure 3. ηs decreases as lc increases. If this
characteristic is true for the DSpace as a whole, then it must also apply to any sub-section of the
DSpace, such as a DPath. Consider the nodes associated with a single DPath. A DPath traversal
involves only a portion of the DNodes in the DSpace. The random probabilities, (4) and (5), dictate that
at each composition level, l, an agent may examine as many as Q nodes to make a next-DNode decision.
Consequently, (12) states the number of DNodes associated with the DPath, and, as was done with (9)
for the DSpace as a whole, (13) defines the maximum information in a DPath with respect to the origin
of the DPath.

NP(V, R, L) = [|V|+ (L− 2)Q]skill=0 (12)

HP(V, R, L, skill) =
[
|V| log2(

1
u
) + (L− 2)Q log2(

1
q
)

]
skill=0

(13)

In general, the decision probability pskill , is a function of the composition index, l; therefore, the
information in the DPath traversed with pskill is defined by (14). However, if pskill is treated as constant,
(4) and (5), pskill dictates the number of DNodes examined at each composition level. The general
expression, (14), can then be simplified into (15) where nl is the number of decision retries associated
with pskill .

HP(V, R, L, skill) =

[
L

∑
l=1

n(l)

∑
k=0

log2(
1

pskill(l)
)

]
0<skill<1

(14)

HP(V, R, L, skill) =

{
(nl=1(skill) + 1) log2(

1
u) + (L− 1)(nl≥2(skill) + 1) log2(

1
q) , lc = 1

(L− lc)(nl≥2(skill) + 1) log2(
1
q) , lc ≥ 1

(15)

ηP =
HP(V, R, L− lc, skill)

HP(V, R, L, skill)
(16)

As is the case for the DSpace as a whole, Figure 4 plots (16) and shows that any DPath’s information
decreases to a minimum as an agent traverses the DPath towards an EP. In accordance with ADT’s
Information Axiom, SAbMDE asserts that the information reaches its absolute minimum when the
DPath is a net traversed DPath to a DEP. On the one hand, an agent can wander in a DSpace creating
an arbitrarily long and convoluted DPath that may never terminate at a DEP. On the other hand,
some wandering is necessary; the point of an agent’s (hopefully) wise explorations of DSpace is to
locate the net DEP DPath. A net DEP DPath is the DPath that a perfect agent would choose to reach
a DEP. Practically, a net DPath is found, after the fact, to be the DPath that an agent has actually
traversed minus any convolutions. For example, in Figure 2, the actual and net DPaths are described,
respectively, by the DNode sequences shown in Table 1.

Appl. Sci. 2020, 10, 5082 8 of 19

Figure 4. Normalized DPath information vs. composition index, l, by skill index.

Table 1. Comparison of Figure 2 DPaths.

DPath Type
DPath Index (Traversal and Navigation)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Actual a b c d e f’ e d g k’ g h’ g h i DEP

Net a b c d g h i DEP

The actual DPath in Figure 2 and Table 1 has several convolutions. For example, a traversal to
DNode e turned out to be a misstep that required backtracking; and two next-step contemplations
(navigations) to DNodes k and f were discarded. Looking back at the actual traversal history, an agent
can see the minimal or net sequence of DNodes that should have been traversed. It is the net DPath’s
information that decreases most as the traversal approaches a DEP. The net DPaths have the minimum
information content of all DPaths in the DSpace as required by the Information Axiom. Figure 4 shows
that a DPath conforms to this axiom.

5.2. Information Source

Until this point in the discussion, an agent’s ability to traverse DSpace efficiently was represented
with a scaled probability of successful next-DNode selection, (6). The structure of DSpace provided a
floor value for this probability. However, no justification for assigning particular values above that floor
was stated. Equivalently, according to (7), no source of decision-enhancing information was identified.
To cure this justification deficiency, assume that any increase in probability must be contributed by an
agent. Then, let the agent generate additional probability traditionally: with tests [48]. Such tests allow
an agent to acquire and add the necessary information to the DSpace. SAbMDE prescribes tests in the
following way.

ti = test definition

τi = test result =

−1 not performed
0|1 failure|success
[0,1] degree of success

wi = weight value for ti

T = test set, e.g., { {t0,τ0,w0}, ...{ti,τi,wi},...{tn−1,τn−1,wn−1} }

Appl. Sci. 2020, 10, 5082 9 of 19

Each test, ti, is conceived and constructed by an agent and added to a test set, T. When a
next-DNode decision is to be made, the test set members are performed on each DNode candidate.
For each DNode candidate, the test results are combined into a non-dimensional quantity according
to (17).

ν(l, k) =
1
|T|

|T|−1

∑
i=0

wiτi where ∑ wi = |T| (17)

To the degree that the test set is complete, sufficient, and executed properly, (17) provides a scaled
value that directly represents a DNode’s fitness for inclusion in a DEP DPath. This value supplies the
additional probability of DNode selection success by replacing (6) with (18). Note that (18) should be
applied according to the rules stated by (19).

p = x + ν(l, k)(1− x) where x = u or q (18)

p =

x when no tests are available
p when any test results are available
0 when all test results fail

(19)

5.3. Examples

The ADT Information Axiom states that a development project’s information content is at its
maximum value when the project is least well understood. Conversely, the project’s information
content reaches its minimum value when the project is most precisely defined, i.e., when it achieves
the DEP. Figure 4 shows that the SAbMDE DSpace structure inherently handles development
information as required by the ADT Information Axiom. The foundation laid in this paper’s previous
sections supports a mechanism for effective DSpace navigation and traversal. The mechanism can be
demonstrated with simple examples. Begin by defining a DSpace for which Figure 2 is an excerpt.
Define the composable elements as follows:

V = {−, X, +, O } (20)

R = { “select” } (21)

Note that SAbMDE is domain-independent, so the names and meanings of the composable
elements are flexible; they can be whatever is required for the particular domain under development.
In this case, the domain is represented by four arbitrary symbols and the ability to select those symbols
in sequence. Figure 5 is a tabular representation of the example DSpace.

Let the DEPs of this DSpace be specified sequences of symbols. An agent can traverse this DSpace
with the confidence of reaching the DEPs by applying tests such as (22)–(24) and (26) below, each
constructed according to (17).

t0 =
[
node(lc + 1, k) = designated vocabulary item, vj =X

]
(22)

t1 = [node(lc + 1, k) = node(lc, kc) for k = 1,2,...,Q] (23)

t2 =

{
t0 for l = 0
t1 for 1 ≤ l ≤ lc

(24)

ν(l, k) =
1
3
(t0 + t1 + t2) (25)

For the first example, define a test set, T0, with members (22)–(24). T0 defines a DEP as a contiguous
sequence of a specified member of V, in this case, X. Table 2 lays out the traversal mechanism using T0

and (25) applied to the example DSpace. For this simplified example, the DEP DPath stands out as
the darkest highlighted X cells in Figure 5 and the low points in Figure 6. The stark distinction of the
single DPath is a consequence of the (22) test’s specificity. Equation (22) selects DNodes with 100%
certainty, it is known at the first composition, and it applies to every subsequent composition.

Appl. Sci. 2020, 10, 5082 10 of 19

Figure 5. A DSpace in tabular format with highlighted DPaths.

Table 2. A DSpace traversal using Test Set 0.

Current DNode Next DNode Options

(l,ka) k ν(l+1,k) p(l+1,k) h(l+1,k) Selected

(0,~)

0 0.00 0.2500 2.0000
1 1.00 1.0000 0.0000 Y
2 0.00 0.2500 2.0000
3 0.00 0.2500 2.0000

(1,1)

0 0.00 0.2500 2.0000
1 1.00 1.0000 0.0000 Y
2 0.00 0.2500 2.0000
3 0.00 0.2500 2.0000

(2,5)

0 0.00 0.2500 2.0000
1 1.00 1.0000 0.0000 Y
2 0.00 0.2500 2.0000
3 0.00 0.2500 2.0000

(3,21)

0 0.00 0.2500 2.0000
1 1.00 1.0000 0.0000 Y
2 0.00 0.2500 2.0000
3 0.00 0.2500 2.0000

Figure 6. DPath Information for a DSpace traversal using Test Set 0.

Appl. Sci. 2020, 10, 5082 11 of 19

For the second example, include the more ambiguous test (26) in the test set T1 along with (23) and
(24). This test set identifies “cross-like” vocabulary items for inclusion in a DEP sequence. SAbMDE
hypothesizes that the traversal mechanism can rank alternative DPaths and, thus, guide an agent to
the best DEP.

t4 =

node(lc + 1, k) = cross-like, τ4 =

0.0 for −
1.0 for X
0.5 for +
0.0 for O

 (26)

ν(l, k) =
1
3
(t4 + t1 + t2) (27)

Application of test set T1 and (27) identifies the 16 DPaths highlighted in Figure 5. Table 3 shows
the states of the traversal mechanism, at each composition index, as it drives those DPaths toward their
corresponding DEPs. Table 4 also shows the test results, the DNode probabilities, and the information for
each DPath. Figure 7 is a graphical representation of Table 4. As hypothesized, the relative information
values distinguish the DPaths from one another. At any composition level, an agent can compute the
likelihood that the current DPath is the best one. Or, to the degree that the agent projects the DPaths
forward (as has been done here), the agent can get a sense of the best DPath options.

Figure 7. DPath Information for a DSpace traversal using Test Set 1.

Appl. Sci. 2020, 10, 5082 12 of 19

Table 3. Traversal mechanism parameters for DSpace traversals using Test Sets 0 and 1.

Composition Index (l)

Test Set DPath Index
0 1 2 3 4

k ν(l,k) p(l,k) h(l,k) k ν(l,k) p(l,k) h(l,k) k ν(l,k) p(l,k) h(l,k) k ν(l,k) p(l,k) h(l,k) k ν(l,k) p(l,k) h(l,k)

0
0 ~ ~ 0.25 2.00 1 1.00 1.00 0.00 5 1.00 1.00 0.00 21 1.00 1.00 0.00 85 1.00 1.00 0.00

Others ~ ~ 0.25 2.00 — 0.00 0.25 2.00 — 0.00 0.25 2.00 — 0.00 0.25 2.00 — 0.00 0.25 2.00

1

0 ~ ~ 0.25 2.00 1 1.00 1.00 0.00 5 1.00 1.00 0.00 21 1.00 1.00 0.00 85 1.00 1.00 0.00
1 ~ ~ 0.25 2.00 1 1.00 1.00 0.00 5 1.00 1.00 0.00 21 1.00 1.00 0.00 86 0.83 0.87 0.19
2 ~ ~ 0.25 2.00 1 1.00 1.00 0.00 5 1.00 1.00 0.00 22 0.83 0.87 0.20 89 1.00 1.00 0.00
3 ~ ~ 0.25 2.00 1 1.00 1.00 0.00 5 1.00 1.00 0.00 22 0.83 0.87 0.20 90 0.83 0.87 0.20
4 ~ ~ 0.25 2.00 1 1.00 1.00 0.00 6 0.83 0.87 0.20 25 1.00 1.00 0.00 101 1.00 1.00 0.00
5 ~ ~ 0.25 2.00 1 1.00 1.00 0.00 6 0.83 0.87 0.20 25 1.00 1.00 0.00 102 0.83 0.87 0.20
6 ~ ~ 0.25 2.00 1 1.00 1.00 0.00 6 0.83 0.87 0.20 26 0.83 0.87 0.20 105 1.00 1.00 0.00
7 ~ ~ 0.25 2.00 1 1.00 1.00 0.00 6 0.83 0.87 0.20 26 0.83 0.87 0.20 106 0.83 0.87 0.20
8 ~ ~ 0.25 2.00 2 0.83 0.87 0.20 9 1.00 1.00 0.00 37 1.00 1.00 0.00 149 1.00 1.00 0.00
9 ~ ~ 0.25 2.00 2 0.83 0.87 0.20 9 1.00 1.00 0.00 37 1.00 1.00 0.00 150 0.83 0.87 0.20
10 ~ ~ 0.25 2.00 2 0.83 0.87 0.20 9 1.00 1.00 0.00 38 0.83 0.87 0.20 153 1.00 1.00 0.00
11 ~ ~ 0.25 2.00 2 0.83 0.87 0.20 9 1.00 1.00 0.00 38 0.83 0.87 0.20 154 0.83 0.87 0.20
12 ~ ~ 0.25 2.00 2 0.83 0.87 0.20 10 0.83 0.87 0.20 41 1.00 1.00 0.00 165 1.00 1.00 0.00
13 ~ ~ 0.25 2.00 2 0.83 0.87 0.20 10 0.83 0.87 0.20 41 1.00 1.00 0.00 166 0.83 0.87 0.20
14 ~ ~ 0.25 2.00 2 0.83 0.87 0.20 10 0.83 0.87 0.20 42 0.83 0.87 0.20 169 1.00 1.00 0.00
15 ~ ~ 0.25 2.00 2 0.83 0.87 0.20 10 0.83 0.87 0.20 42 0.83 0.87 0.20 170 0.83 0.87 0.20

Others ~ ~ 0.25 2.00 — 0.00 0.25 2.00 — 0.00 0.25 2.00 — 0.00 0.25 2.00 — 0.00 0.25 2.00

Appl. Sci. 2020, 10, 5082 13 of 19

Table 4. DPath success and risk probabilities for DSpace traversals using Test Sets 0 and 1.

Test Set DPath Index
Information Probability

DPath Minimum Success Risk

0
0 0.00

0.00
1.00 0.00

Others 0.00 1.00 0.00

1

0 0.00

0.00

1.00 0.00
1 0.19 0.87 0.13
2 0.20 0.87 0.13
3 0.39 0.76 0.24
4 0.20 0.87 0.13
5 0.39 0.76 0.24
6 0.39 0.76 0.24
7 0.59 0.66 0.34
8 0.20 0.87 0.13
9 0.39 0.76 0.24
10 0.39 0.76 0.24
11 0.59 0.66 0.34
12 0.39 0.76 0.24
13 0.59 0.66 0.34
14 0.59 0.66 0.34
15 0.79 0.58 0.42

Others 8.00 0.00 1.00

5.4. Probability of Success

It appears that SAbMDE does show promise for quantifying development processes and guiding
an agent’s decision-making. However, these results can be extended a step further by considering the
information captured in the DEP DPath in the context of the Shannon information formula (7) when
restated as in (28). The DPath information is the sum of the information in each of the DPath’s DNodes.

HP(V, R, L, skill) = log2(
1
p
) (28)

The probability associated with the DEP DPath information can be interpreted as the probability
of successful traversal (29).

psuccess =
1

2HP(V,R,L,skill)
(29)

It follows that the probability of project failure, i.e., the risk, is given by (30).

risk = p f ailure = 1− psuccess = 1− 1
2HP(V,R,L,skill)

(30)

Table 4 is an extension of Table 3 that shows the probabilities of success and failure for each DPath
revealed by the T1 test set as calculated by (29) and (30), respectively. These examples are necessarily
small ones; they must fit within the confines of this paper. However, it should be stated that DPaths can
be quite long, perhaps hundreds or thousands of compositions long. Because each DNode’s worst-case
information value corresponds to the DSpace’s structural probability at a given composition level,
each DNode information value can be large. Consequently, the sum of the DNodes’ information, a
DPath’s information, can grow quite large. In Table 3, consider the DPaths designated as “Others”.
Those paths are untested. Their DNode information values are an order of magnitude greater than the
values for tested DNodes. This differential carries over to Table 4 where (29) imposes a range limit

Appl. Sci. 2020, 10, 5082 14 of 19

on the DPath information value. Because the psuccess range is [0,1], the non-linear Hp() range is [∞,0].
In practice, a probability lower limit value is chosen to fix an information upper limit, hul and this
limit can be used to scale raw calculated DPath information values to the range needed by (29), see
(31). For example, a 0.1 probability lower limit value means a 10% chance of DPath success. That
probability value corresponds to an information upper limit value of 3.3219281 according to (29).

hscaled =
hul

HP(V, R, L, skill)
(31)

Table 5 is an example where information values, randomly selected from a [0, 10,000] range, were
scaled with (31). Table 5 shows a set of information values that distinguish potentially successful
DPaths from the remainder.

Table 5. An example of large DPath information values scaled for probability calculation.

DPath
Information Probability

Actual Scaled Success Risk

0 3021.351 1.07 0.48 0.52
1 8824.484 3.12 0.11 0.89
2 5104.543 1.81 0.29 0.71
3 8669.417 3.07 0.12 0.88
4 5855.308 2.07 0.24 0.76
5 7499.249 2.65 0.16 0.84
6 498.490 1.45 0.37 0.63
7 644.061 0.23 0.85 0.15
8 6843.825 2.42 0.19 0.81
9 1621.288 0.57 0.67 0.33
10 5426.940 1.92 0.26 0.74
11 6042.189 2.14 0.23 0.77
12 7838.449 2.77 0.15 0.85
13 8574.182 3.03 0.12 0.88
14 5791.182 2.05 0.24 0.76
15 9390.285 3.32 0.10 0.90
16 315.768 0.11 0.93 0.07

The scaling technique works because an agent needs only to rank DPath alternatives by their
merit, and for this purpose, only the relative information values are needed, not their absolute values.
The scaled information allows the probability of success or the risk of failure to be calculated for
any DPath.

6. Discussion

First, a DSpace is a set of points (DNodes), and its minimal visualization is a three-dimensional
scatter graph. Figures 6 and 7 show this paper’s example DSpace as a three-dimensional surface
graph. The surfaces, especially, the flattened downward cones, are misleading; they imply that there is
something between the DNodes. In fact, at the given level of detail, DSpace is empty except for the
defined DNodes. However, the surface graph does express the idea that an agent wanders on a high
plain of uncertainty, periodically finds a comfortable burrow, and then re-launches the search for the
next safe haven, if not their final destination. The surface graph also points out that the search always
begins on uncertain ground, perhaps without even the vocabulary to describe the destination. This
initial uncertainty begs the question, “Why would an agent begin a journey toward the unknown?” The
answer could be that agents are not blank slates; they have some shiny, half-formed, maybe misguided,

Appl. Sci. 2020, 10, 5082 15 of 19

even outright wrong concept of what is beyond where they are. Perhaps any goal is enough motivation
to begin. Alternatively, perhaps the prospect of indefinite uncertainty makes it intolerable to stay.
Tables 3 and 4 offer some comment on agent motivation. There the DPath information values are
summed from composition levels 1 through 4. When composition level 0 is included, it is clear that the
success probability of every DPath is reduced. Only by leaving level 0 is it possible, though not certain,
for an agent to improve its situation. This departure gives new meaning to the old aphorism, “Well
begun is half done.”

Second, a slight correction to the first point of discussion: the space between DNodes is likely not
empty. One could speculate that the space between DNodes is filled with other DNodes that exist at
increased levels of detail.

Third, a caveat: the methods described herein are not a substitute for agent skill and expertise.
The agent must still add value via tests if a project is to succeed; the alternative is expensive [49,50].
SAbMDE can offer guidance on completeness and options, it can offer accounting services for the work
that an agent has done, and it can enhance communication among interested parties. SAbMDE cannot
force an agent to do the right thing, but it can help an agent do the thing right. For example, Table 5
information values have a wide range, and this range made DPaths distinguishable. The information
values could just as easily have been too similar to offer any distinction. The information is derived
from tests, so uniform information values may indicate poorly designed or otherwise insufficient tests.
SAbMDE can alert a developer to this situation but cannot correct it.

Fourth, reconsider Figure 4, the graph of normalized DPath information versus composition
index, l, parameterized by skill index. Figure 8 is the same data graphed as information versus skill
index and parameterized by composition level. Figure 8 shows that agent information contribution
plateaus at certain skill index values. For example, at l = 15, about 91% of the necessary information is
added by an agent with a 4 or 5 skill index. Adding 6% or 7% more information requires an agent with
a skill index of 6 or above. But above 6, there is no information benefit to be had until skill index 9 is
exceeded. Of course, the higher-skilled agents use fewer resources to get the job done. This plateaued
information contribution was unexpected and warrants further consideration.

Figure 8. Normalized DPath Information vs. Skill Index by composition index, l.

Appl. Sci. 2020, 10, 5082 16 of 19

Finally, SAbMDE is a work in progress. Further mathematical and software development is
necessary. Although the model reproduces COCOMO results quite well and has been shown to match
certain accepted characteristics of ADT and other design theories, additional validation is necessary
and underway. Because the modeling concept is new and because user interface requirements are
challenging, practical deployment of the model could be problematic; however, these issues are being
given due consideration.

7. Conclusions

First, there is a practical motivation for understanding development process risk and a pressing
need to implement techniques for doing so. Second, SAbMDE, briefly outlined herein, is a model of
development processes. The model offered an explanation of Suh’s ADT Information Axiom. Two
simple development examples showed how the model uses development process information to guide
a developer towards a desired end product. Third, it is possible to calculate a justifiable, actionable,
and traceable probability of project success and/or failure. Fourth and finally, this paper promotes the
idea that improved development processes will reduce defects and vulnerabilities that contribute to
outcome risk.

Author Contributions: This paper was written from S.D.’s Ph.D. dissertation. A.E., the advisor of S.D., helped
draft the preparation of the article. S.M. and S.E.-O., S.D.’s committee members, helped with reviewing and
editing of the article. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following nomenclature is used in this manuscript:

Symbols Definitions
fs skill index value
h Shannon information

hscaled
raw DPath information value proportionately reduced so that hscaled falls within the
probability range [0, pll]

hul DPath information value that corresponds to pll
HP total information in a DPath
HS total information in a DSpace
i, j dummy index variables
k, absolute sequential index of all DNodes in a specified composition level
k, relative sequential index of all DNodes reachable from the current DNode
l composition level or index
lc current composition level, the reference level for next-DNode decisions
L number of composition levels needed to compose a DEP
n number of retries needed to select the correct DNode
nl number of retries associated with a composition index
ηS normalized DSpace information
ηP normalized DPath information
NS number of DNodes associated with a DSpace
NP number of DNodes associated with a DPath
p general probability variable
p f ailure probability that a DPath does not lead to a DEP, i.e., risk of project failure
pll DPath success probability lower limit
pskill probability associated with a skill index value
psuccess probability that a DPath leads to a DEP
q probability associated with DNode selection
Q product of V and R

Appl. Sci. 2020, 10, 5082 17 of 19

R set of relations
r member of the set of relations
skill, skillindex index with range [0,10] that ranks an agent’s skill level, see fs

t test, a member of test set T
τ test result corresponding to test t
T set of tests
u probability associated with vocabulary item selection
v member of the set of vocabulary items
V set of vocabulary items
ν test set result computed as the weighted sum of results of the test set’s members.
w weight applied to a test result, τ, when calculating a test set result
x placeholder variable

References

1. Howard, M.; Lipner, S. The Security Development Lifecycle; Secure Software Deelopment, Microsoft Press:
Redmond, WA, USA, 2006; p. 320.

2. Microsoft. Simplified Implementation of the Microsoft SDL. Available online: https://www.microsoft.com/
en-us/securityengineering/sdl/ (accessed on 3 May 2020).

3. NIST Special Publication 800-37 Revision 2. Risk Management Framework for Information Systems and
Organizations. Department of Commerce. p. 183. Available online: https://doi.org/10.6028/NIST.SP.800-
37r2 (accessed on 23 May 2020).

4. Systems Engineering Life Cycle Department of Homeland Security. p. 15. Available online: https://www.
dhs.gov/sites/default/files/publications/Systems%20Engineering%20Life%20Cycle.pdf (accessed on 23
May 2020).

5. Seal, D.; Farr, D.; Hatakeyama, J.; Haase, S. The System Engineering Vee is it Still Relevant in the Digital
Age? In Proceedings of the NIST Model Based Enterprise Summit 2018, Gaithersburg, MD, USA, 4 April
2018; p. 10.

6. FHWA. Systems Engineering for ITS Handbook—Section 3 What is Systems Engineering? Available online:
https://ops.fhwa.dot.gov/publications/seitsguide/section3.htm (accessed on 3 May 2020).

7. Modi, H.S.; Singh, N.K.; Chauhan, H.P. Comprehensive Analysis of Software Development Life Cycle
Models. Int. Res. J. Eng. Technol. 2017, 4, 117–122.

8. Sedmak, A. DoD Systems Engineering Policy, Guidance and Standardization. In Proceedings of the 19th
Annual NDIA Systems Engineering Conference, Springfield, VA, USA, 26 October 2016; p. 21. Available
online: https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2016/systems/18925-AileenSedmak.pdf
(accessed on 1 June 2020).

9. Systems Engineering Plan Preparation Guide. Department of Defense. 2008. p. 96. Available online: Http:
//www.acqnotes.com/Attachments/Systems%20Engineering%20Plan%20Preparation%20Guide.pdf
(accessed on 1 June 2020).

10. Jolly, S. Systems Engineering: Roles and Responsibilities. In Proceedings of the NASA PI-Forum, Annapolis,
MD, USA, 27 July 2011; p. 21. Available online: https://www.nasa.gov/pdf/580677main_02_Steve_Jolly_
Systems_Engineering.pdf (accessed on 1 June 2020).

11. Kaur, D.; Sharma, M. Classification Scheme for Software Reliability Models. In Artificial Intelligence and
Evolutionary Computations in Engineering Systems, Advances in Intelligent Systems and Computing 394; Dash, S.,
Ed.; Springer: New Delhi, India, 2016; pp. 723–733. [CrossRef]

12. Kruchten, P.; Nord, R.L.; Ozkaya, I. Managing Technical Debt: Reducing Friction in Software Development, 1st ed.;
SEI Series in Software Engineering; Addison-Wesley Professional: Boston, MA, USA, 2019.

13. Palepu, V.K.; Jones, J.A. Visualizing Constituent Behaviors within Executions. In Proceedings of the 2013
First IEEE Working Conference on Software Visualization (VISSOFT), Eindhoven, The Netherlands, 27–28
September 2013; pp. 1–4. [CrossRef]

14. Palepu, V.K.; Jones, J.A. Revealing Runtime Features and Constituent Behaviors within Software. In Proceedings
of the 2015 IEEE 3rd Working Conference on Software Visualization (VISSOFT), Bremen, Germany, 27–28
September 2015; pp. 86–95. [CrossRef]

https://www.microsoft.com/en-us/securityengineering/sdl/
https://www.microsoft.com/en-us/securityengineering/sdl/
https://doi.org/10.6028/NIST.SP.800-37r2
https://doi.org/10.6028/NIST.SP.800-37r2
https://www.dhs.gov/sites/default/files/publications/Systems%20Engineering%20Life%20Cycle.pdf
https://www.dhs.gov/sites/default/files/publications/Systems%20Engineering%20Life%20Cycle.pdf
https://ops.fhwa.dot.gov/publications/seitsguide/section3.htm
https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2016/systems/18925-AileenSedmak.pdf
Http://www.acqnotes.com/Attachments/Systems%20Engineering%20Plan%20Preparation%20Guide.pdf
Http://www.acqnotes.com/Attachments/Systems%20Engineering%20Plan%20Preparation%20Guide.pdf
https://www.nasa.gov/pdf/580677main_02_Steve_Jolly_Systems_Engineering.pdf
https://www.nasa.gov/pdf/580677main_02_Steve_Jolly_Systems_Engineering.pdf
http://dx.doi.org/10.1007/978-81-322-2656-7_66
http://dx.doi.org/10.1109/VISSOFT.2013.6650537
http://dx.doi.org/10.1109/VISSOFT.2013.6650537

Appl. Sci. 2020, 10, 5082 18 of 19

15. Gericke, K.; Blessing, L. Comparisons Of Design Methodologies And Process Models Across Disciplines:
A Literature Review. In Proceedings of the International Conference On Engineering Design, ICED11,
Lyngby/Copenhagen, Denmark, 15–18 August 2011; Technical University of Denmark: Lyngby, Denmark, 2011.

16. Thakurta, R.; Mueller, B.; Ahlemann, F.; Hoffmann, D. The State of Design—A Comprehensive Literature
Review to Chart the Design Science Research Discourse. In Proceedings of the 50th Hawaii International
Conference on System Sciences, Hilton Waikoloa Village, HI, USA, 4–7 January 2017; pp. 4685–4694.

17. Forlizzi, J.; Stolterman, E.; Zimmerman, J. From Design Research to Theory: Evidence of a Maturing Field.
Korean Soc. Des. Sci. 2009, 9, 2889–2898.

18. Antunes, R.; Gonzalez, V. A Production Model for Construction: A Theoretical Framework. Buildings 2015,
5, 209–228. [CrossRef]

19. Vandenbrande, J. Transformative Design (TRADES). Available online: https://www.darpa.mil/program/
transformative-design (accessed on 3 May 2020).

20. Vandenbrande, J. Enabling Quantification of Uncertainty in Physical Systems (EQUiPS). Available online:
https://www.darpa.mil/program/equips (accessed on 3 May 2020).

21. Vandenbrande, J. Fundamental Design (FUN Design). Available online: https://www.darpa.mil/program/
fundamental-design (accessed on 3 May 2020).

22. Vandenbrande, J. Evolving Computers from Tools to Partners in Cyber-Physical System Design. Available
online: https://www.darpa.mil/news-events/2019-08-02 (accessed on 3 May 2020).

23. Ertas, A. Transdisciplinary Engineering Design Process; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; p. 818.
24. Suh, N.P. Complexity Theory and Applications; Oxford University Press: Oxford, UK, 2005.
25. Friedman, K. Theory Construction in Design Research. Criteria, Approaches, and Methods. In Proceedings

of the 2002 Design Research Society International Conference, London, UK, 5–7 September 2002.
26. Saunier, J.; Carrascosa, C.; Galland, S.; Patrick, S.K. Agent Bodies: An Interface Between Agent and

Environment. In Agent Environments for Multi-Agent Systems IV, Lecture Notes in Computer Science; Weyns, D.,
Michel, F., Eds.; Springer: Cham, Switzerland, 2015; Volume 9068, pp. 25–40. [CrossRef]

27. Heylighen, F.; Vidal, C. Getting Things Done: The Science Behind Stress-Free Productivity. Long Range Plan.
2008, 41, 585–605. [CrossRef]

28. Eagleman, D. Incognito; Vintage Books: New York, NY, USA, 2011; p. 290.
29. Wang, Y. On Contemporary Denotational Mathematics for Computational Intelligence. In Transactions on

Computer Science II, LNCS 5150; Springer: Berlin/Heidelberg, Germany, 2008; pp. 6–29.
30. Wang, Y. Using Process Algebra to Describe Human and Software Behaviors. Brain Mind 2003, 4, 199–213.

[CrossRef]
31. Wang, Y.; Tan, X.; Ngolah, C.F. Design and Implementation of an Autonomic Code Generator Based on

RTPA. Int. J. Softw. Sci. Comput. Intell. 2010, 2, 44–65. [CrossRef]
32. Park, B.K.; Kim, R.Y.C. Effort Estimation Approach through Extracting Use Cases via Informal Requirement

Specifications. Appl. Sci. 2020, 10, 15. [CrossRef]
33. Qureshi, A.J.; Gericke, K.; Blessing, L. Design Process Commonalities in Transdisciplinary Design. In Proceedings

of the International Conference on Engineering Design (ICED13), Seoul, Korea, 19–22 August 2013.
34. Srinivasan, V.; Chakrabarti, A. SAPPhIRE—An Approach to Analysis and Synthesis. In Proceedings of the

International Conference on Engineering Design (ICED09), Stanford, CA, USA, 24–27 August 2009.
35. Reich, Y.; Subramanian, G.H. The PSI Matrix—A Framework and a Theory of Design. In Proceedings of the

21st International Conference on Engineering Design (ICED17), Vancouver, BC, Canada, 21–25 August 2017.
36. Gericke, K.; Eckert, C.M.; Martin, S. What Do We Need To Say About A Design Method? In Proceedings of the

21st International Conference on Engineering Design (ICED17), Vancouver, BC, Canada, 21–25 August 2017.
37. Gericke, K.; Eckert, C.M. The Long Road to Improvement in Modelling and Managing Engineering Design

Processes. In Proceedings of the International Conference on Engineering Design (ICED15), Milan, Italy,
27–30 July 2015.

38. Spacey, J. Risk Guide. Available online: https://simplicable.com/new/risk (accessed on 17 May 2020).
39. Kendrick, T. Identifying and Managing Project Risk, 3rd ed.; American Management Association: New York,

NY, USA, 2015.
40. MITRE. Common Weakness Scoring System (CWSSTM). Available online: https://cwe.mitre.org/cwss/

cwss_v1.0.1.html (accessed on 3 May 2020).
41. WhiteHat. Application Security Statistics Report; WhiteHat Security: San Jose, CA, USA, 2019; p. 34.

http://dx.doi.org/10.3390/buildings5010209
https://www.darpa.mil/program/transformative-design
https://www.darpa.mil/program/transformative-design
https://www.darpa.mil/program/equips
https://www.darpa.mil/program/fundamental-design
https://www.darpa.mil/program/fundamental-design
https://www.darpa.mil/news-events/2019-08-02
http://dx.doi.org/10.1007/978-3-319-23850-0_2
http://dx.doi.org/10.1016/j.lrp.2008.09.004
http://dx.doi.org/10.1023/A:1025457612549
http://dx.doi.org/10.4018/jssci.2010040103
http://dx.doi.org/10.3390/app10093044
https://simplicable.com/new/risk
https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://cwe.mitre.org/cwss/cwss_v1.0.1.html

Appl. Sci. 2020, 10, 5082 19 of 19

42. Open Web Application Security Project. OWASP Risk Rating Methodology. Available online: https://owasp.
org/www-community/OWASP_Risk_Rating_Methodology (accessed on 21 May 2020).

43. Becker, G.M. A Practical Risk Management Approach. In PMI Global Congress 2004—North America, Anaheim,
CA; Project Management Institute: Newtown Square, PA, USA, 2004. Available online: https://www.pmi.
org/learning/library/practical-risk-management-approach-8248 (accessed on 3 May 2020).

44. Rashid, A.; Chivers, H.; Danezis, G.; Lupu, E.; Martin, A. The Cyber Security Body of Knowledge; Centre,
T.N.C.S., Ed.; University of Bristol: Bristol, UK, 2019; p. 834.

45. Suh, N.P. Principles of Design; Oxford University Press: New York, NY, USA, 1990; p. 401.
46. Vigo, R. Complexity over Uncertainty in Generalized Representational Information Theory (GRIT): A

Structure-Sensitive General Theory of Information. Inf. Syst. Des. Intell. 2013, 4, 1. [CrossRef]
47. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
48. Naik, K.; Tripathy, P. Software Testing and Quality Assurance; John Wiley & Sons, Inc.: Hoboken, NJ, USA,

2008; p. 616.
49. RTI. The Economic Impacts of Inadequate Infrastructure for Software Testing; RTI: Gaithersburg, MD, USA, 2002.
50. McConnell, S. Code Complete; Microsoft Press: Redmond, WA, USA, 1993.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://www.pmi.org/learning/library/practical-risk-management-approach-8248
https://www.pmi.org/learning/library/practical-risk-management-approach-8248
http://dx.doi.org/10.3390/info4010001
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed Model
	Related Work
	Problem Description
	Results
	Development Step Value
	Information Source
	Examples
	Probability of Success

	Discussion
	Conclusions
	References

