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Abstract: The tensile testing of a needle-punched nonwoven fabric is presented. A high-sensitivity
Split-Hopkinson Tensile Bar device was specifically designed for this purpose. The strain gauge
measurements were combined with high-speed photography and Digital Image Correlation to
analyse the deformation micromechanisms at high strain rates. The experimental set-up allowed
to determine the wave propagation velocity of the as-received nonwove fabric, the evolution of
the strain field with deformation and the wave interaction inside the fabric. The deformation was
accommodated by the same micromechanisms observed during quasi-static tensile testing and
ballistic impact, which comprised fibre straightening, rotation and sliding. Heterogeneous strain
fields were developed in the nonwoven fabric as a result of the non-linear pseudoplastic response of
the fabric and the internal dissipation due to the frictional deformation micromechanisms, preventing
the propagation of high magnitude strain waves into the specimen. Additionally, the output forces
were analysed to determine the influence of high-strain rates in the mechanical response of the
nonwoven fabric, finding an increment of the stiffness for low applied strains under dynamic loading.
These findings provide the basis to develop strain-rate dependent constitutive models to predict
wave propagation in needle-punched nonwoven fabrics when subjected to impact loads.

Keywords: split Hopkinson bar; nonwoven fabrics; experimental mechanics; wave propagation;
low impedance

1. Introduction

Dry fabrics based on high strength fibres such as Kevlar and Dyneema are conventionally
used for soft body armour due to their high energy absorption capacity against ballistic impact [1].
These materials present a very low bending stiffness due to the lack of resin, resulting in lightweight
flexible textiles for personal protection [2]. Their membrane response results in a large amount of energy
absorption due to in-plane deformation [3]. They can be divided into woven and nonwoven fabrics
depending on the disposition of the fibres in the fabric. Needle-punched nonwoven fabrics present
a lower stiffness and strength (as well as processing cost) than their woven counterparts, but possess
a higher deformability and excellent ballistic performance against small calibres and shrapnel [4].
It is possible to find in the literature multiple applications for protective barriers based on nonwoven
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fabrics for soft body armour and the transport industry [5–10]; nevertheless, the biggest improvement
in ballistic performance is obtained when nonwoven fabrics are combined with traditional barriers
based on dry woven fabrics, as cushion layers, or metal plates with a negligible increment of the total
areal weight of the target [4,11–13]. It is possible to find detailed studies focused on the quasi-static
response [14,15] and the ballistic performance of the material [10,16–19]; nevertheless, there is still
a lack of knowledge regarding the effect of high strain rates in its mechanical properties. For instance,
a detailed dynamic characterisation is required to understand the differences in the wave propagation
(scattering and dissipation) between a continuous medium and the actual network structure [20].
Moreover, further research is needed to determine the dynamic mechanical properties and developed
sound, physically-based strain rate dependent constitutive models with superior predictive capability
than the current phenomenological approaches that tuned the stiffness and strength of the fabric to fit
the ballistic limit of the layer [21].

The dynamic characterisation of structural materials is usually accomplished with a Split-Hopkinson
Bar (SHB) device, that procures the stress–strain constitutive relationships for high strain rates [22];
however, measuring the dynamic tensile response of nonwoven fabrics is a challenging task that presents
considerable technical difficulties. For instance: (i) the mechanical characterisation of low impedance
fabrics results in a low response in the transmission bar, difficult to register by conventional strain gauges;
(ii) their inherent low wave speed makes the transit time much longer than in metallic materials and an
equilibrated stress state may not be reached during dynamic deformation [23,24]. The validity and the
accuracy of the experimental data thus need to be examined in detail; (iii) the nonwoven fabrics present
high ductility and strain to failure, hence, the time duration of the pulse needs to be long enough to
ensure large deformations are applied; (iv) the minimum representative sample size to characterise the
fibre network is given by the fibre length of several millimeters, which is orders of magnitude higher than
the size of constituents of conventional composite materials, in the order of micrometres [25]. This fact
makes necessary the use of large gauge lengths that contain at least one Representative Volume Element
(RVE) to reproduce the characteristic mechanical response of the fabric [14,26]. As a result, the maximum
strains and strain rates reachable during the SHB experiment become lower. The transit time also increases,
hindering the possibility to attain the force equilibrium state in the bars [27].

To overcome these issues, several solutions have been reported in the literature, mostly applied
to the dynamic characterisation of engineering foams and tissues. The response of soft materials
is usually characterised with high sensitivity transmission bars such us hollow metal tubes [28–30],
low impedance Magnesium bars [31,32] or polymer bars [33–35]. A higher sensitivity can be obtained
by embedded piezoelectric pressure transducers, able to provide forces three orders of magnitude
lower than conventional SHB transmission bars [36–38]. Large applied strains are also achievable
when increasing the duration of the stress pulse, either employing long strikers [39] or electromagnetic
loading [40]. Despite all previous developments, it is possible to find in the literature experimental
campaigns where the equilibrium stress state in the bars was not attained [38,41]. In those cases,
analysis is usually complemented by high-speed photography and Digital Image Correlation to
evaluate the heterogeneous strain fields and interpret the registered forces [42].

This study aims to determine the dynamic response of needle-punched nonwoven fabrics
subjected to in-plane tensile loads, with special emphasis on the evolution of wave propagation.
A high-sensitivity Split-Hopkinson Tensile Bar device is specifically designed for this purpose.
Strain gauge measurements are combined with high-speed photography and Digital Image Correlation
to analyse the deformation micromechanisms at high strain rates. The experimental set-up allows
to determine the wave propagation velocity, the evolution of the strain field with deformation and
the wave interaction inside the fabric. Local strains and output forces are afterwards combined
to estimate the strain rate dependency of the stiffness of the material. This investigation provides
the basis to develop algorithms to predict the wave propagation phenomenon of needle-punched
nonwoven fabrics.
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2. Material

The material selected for this study was a needle-punched nonwoven fabric with commercial
name Fraglight NW201 (DSM) comprised of a web of ultrahigh molecular weight polyethylene
Dyneema SK75 fibres of ≈60 mm in length. The nominal areal density was ≈190 to 220 g/m2 and
the thickness varied from ≈1.5 to 2 mm. The fabric was composed by a random network of curved
fibres that transfer the load through the knots generated during the needle punching process [43].
The manufacturing process introduced two orthogonal principal material orientations denominated
the roll or machine (MD) and transverse (TD) directions, inducing a higher fibre connectivity along the
TD with larger volume fraction of entangled active fibres. The quasi-static in-plane tensile response and
the ballistic performance of the material have been previously characterised, and the main deformation
and failure mechanisms are briefly recalled in Section 4.1 for the sake of completion [15,19,44].

3. Experimental Techniques

3.1. Quasi-Static Tensile Testing

Rectangular specimens of 35 mm in width (maximum width allowance for the current Split
Hopkinson Bar) and gauge length varying from 10 to 60 mm were cut from the fabric roll with
special scissors for high strength fibres. The specimens were subjected to in-plane unidirectional
tensile deformation at the orientation transverse to the roll direction (TD), the stiffest direction of the
nonwoven fabric. Two flat steel plates were used to clamp the fabric by means of frictional loads
with a gripping length of 25 mm to avoid slippage. The quasi-static tests were carried out under
stroke control at cross head speed of 1 mm/s with the actuator of a Zwick screw-driven testing frame.
The load was recorded continuously with a 20 kN load cell together with the cross-head displacement
of the testing frame. Additionally, a laser extensometer was used to acquire the displacement of the
gauge section. Three test repetitions per gauge length were accomplished.

3.2. Dynamic Tensile Testing

The dynamic testing of the nonwoven fabric was conducted on a Split-Hopkinson Tensile Bar
(SHTB) device specially designed for this project. The requirements were set at: (i) high sensitivity
of the output bar to register the mechanical response of soft fabrics; (ii) long time duration of the
stress pulse, to facilitate the force equilibrium between bar ends and increase the applied strain;
and (iii) large gauge length to characterise the fibre network response and avoid the influence of the
material constituents.

The present experimental set-up comprised of hollow input and output bars connected to a loading
bar actuated by a striker; see Figure 1a. The loading bar was surrounded by a striker with a U shaped
cross-section supported through brass railings to freely slide and strike the impact flange of the loading
bar. The striker was fired by a hook connected to a pulling rod and piston propelled by a low-pressure
chamber. The hook accelerated the striker towards the impact flange generating the stress pulse
that propagated towards the loading and input bars. Further details of this SHTB equipment are
available in [39]. For the current experiment, a titanium Ti-6Al-4V loading bar of 3.6 m in length
and 20 mm diameter was used, surrounded by a titanium U shaped striker of 35 mm diameter and
2.5 m in length providing a pulse duration T ≈ 1 ms [45]. The input and output bars comprised
of Aluminium 7075-T6 alloy hollow tubes of 50.8 mm outer diameter, 1.651 mm wall thickness and
2.7 m in length. A thread adaptor manufactured in steel was included to connect the loading and
input bar. The fabric was gripped by conical clamps allowing a maximum specimen width of 35 mm,
see Figure 1b. The gauge length of the specimens, equivalent to the distance between clamps, was set to
35 mm for all experiments to ensure the mechanical response was representative of the homogeneous
macroscale. All the components of the grips were manufactured in Aluminium except the threads that
were produced in brass to avoid welding during the loading process; see Figure 1c.
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Figure 1. Split-Hopkinson tensile bar experimental set up. (a) Schematic of the different components
of the SHTB, (b) gripped specimen between bar ends and (c) aluminium and brass components of
the grips.

The input and output bars were instrumented with three strain gauges, as in Figure 1a.
The amplifiers were used to accurately record the signal on the order of millivolts. All the signals
were registered by a high frequency oscilloscope and were post-processed with a Matlab script.
The main outcomes were the forces and the velocities of the bars and the average applied strain rate.
The specimens were speckled with a random pattern and the full-field displacement measurements
were carried out via high-speed photography, employing an high-speed Kirana camera operated at
50,000 fps. Acquisition rate was limited by the time duration of the experiment. 2D Digital Image
Correlation analysis was performed using the commercial software Vic2D.

4. Results and Discussion

4.1. Mechanical Response and Deformation Micromechanisms

The quasi-static in-plane mechanical response of the material was dominated by the rotation and
realignment of fibres towards the loading direction; see Figure 2. The stiffness of the material was
directly proportional to the fibre orientation distribution function (ODF) resulting in an equivalent
increment of tangent stiffness with strain; see Figure 3a. The fabric also presented a pseudo-plastic
response with irrecoverable deformations even at very low strains; see Figure 3b. A large scattering in
mechanical properties such as nominal strength was registered due to the stochastic nature of the fibre
network; however, similar stiffness and strength values were found for quasi-static strain rates ranging
from 0.001 to 0.08 s−1 [15]. The strain distribution was fairly homogeneous in the central region of the
specimens before the maximum load. Afterwards, the failure of the material was triggered, inducing
large strain gradients due to damage localisation; see Figure 4. The final failure of the material occurred
due to fibre sliding and pull-out from the entanglement points, resulting in a high energy dissipation
and a gradual reduction of load carrying capacity. The energy dissipation mechanisms at a smaller
scale were quantitatively characterised by individual pull-out tests. A predominance of frictional
fibre slippage was found, with a significant amount of dissipated internal energy during the loading
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process, two times larger in magnitude than the elastic energy stored by individual Dyneema fibres
upon uniaxial stretching. Further details of this characterisation are available in [15].

Figure 2. Evolution of fibre orientation distribution function with the applied strain. (a) As-receive
nonwoven fabric and (b) after 40% of deformation along the transverse direction (TD) [15].

Figure 3. (a) Representative nominal stress vs. engineering strain curves for quasi-static strain rates.
(b) Comparison between monotonic and cyclic deformation [15].

Figure 4. Contour plots of the logarithmic strain in the loading direction at different applied strains
(a) 50%, (b) 70% and (c) 85% [15,44].
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The same deformation mechanisms appeared during ballistic impact. A longitudinal tensile wave
was propagated through the fabric, and the material within the wave front dissipated energy through
in-plane deformation. As a result of the dissimilar fibre connectivity along material directions, different
wave propagation velocities appeared generating an elliptical wave front for the longitudinal and
transverse waves; see Figure 5a. The main deformation micromechanisms were characterised such as
radial uncurling, rotation and sliding of the active fibres towards the impact point. The tensile wave
was followed by a slower transverse wave forming a cone of deformed material, see dashed line in
Figure 5a and the experimental deflection in Figure 5b. A higher deformation was localised at the
impact point, resulting in a steep strain gradient. Local fabric tearing and fibre pull-out was registered
at the impact point for velocities above the ballistic limit; see Figure 5c. A numerical model was
developed to predict the ballistic performance of the layers. Although the model captured the ballistic
limit and the failure mechanisms for different fibre ODFs, it overestimated the energy absorption
above the penetration threshold as a result of inaccuracies when modelling the wave propagation
phenomenon. Further details are available in [19,21].

Figure 5. Deformation of a 350 × 350 mm2 target impacted by a small steel sphere of 5.5 mm diameter.
Ballistic response for initial impact velocity 300 m/s at t = 500 µs, below the ballistic limit. (a) Contour
plot of the maximum principal logarithmic strain, showing the fronts of the longitudinal and transverse
waves (dashed line) and (b) experimental deflection. (c) Fibre disentanglement for impact velocity
360 m/s at t = 175 µs, above the ballistic limit [19,21].

4.2. Gauge Sensitivity

A parametric study of the representative dimensions of the specimen was carried out to determine
the size of a RVE and the minimum gauge length for dynamic testing in SHTB. The specimens with
varying gauge lengths were systematically tested, and representative nominal stress (force per fabric
width) vs. engineering strain curves are showed in the Figure 6. The results were compared against
the baseline characterisation previously conducted on full-size samples (100 × 100 mm2) [14,15].
The mechanical response of very short specimens was distorted due to the parasitic fibre clamping
between both grips. Influence of a biaxial loading condition should be also considered. As a result,
the samples with gauge length lower than 30 mm possessed a higher strength and stiffness and
presented a significant percentage of fibre breakage, identified by a rough stress-strain curve at the
onset of damage, as opposed to the representative smooth baseline mechanical response. The tensile
fibre breakage was not a dominant failure mode of needle-punched nonwoven fabrics subjected to
in-plane tensile loads or ballistic impact [15,19], nevertheless, the influence of this mechanisms could
be neglected for gauge dimensions larger than half the average fibre length (30 mm).
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Figure 6. Representative nominal stress vs. engineering strain curves for different gauge lengths.

4.3. SHTB Validation

The dynamic tensile testing at high strain rates was conducted on the SHTB apparatus presented
in Section 3.2. Figure 7a shows the raw voltage obtained from the strain gauges. The gauges 1 and
2 were installed on the input bar and the gauge 3 on the output bar. The generated stress pulse had
an approximate trapezoidal shape with a duration of T ≈ 1 ms. A final peak was observed in the
input signal (gauge 1) due to the overlap with the reflected wave generated at the interface between
the input bar and clamp. The clamp, with higher impedance than the hollow tube, induced a reflected
wave of same sign and lower magnitude, and transmitted to the specimen a tensile wave of same sign
and higher magnitude [46].

(a) (b)

Figure 7. (a) Voltage vs. time for each strain gauge. The gauges 1 and 2 were installed in the input bar
and the gauge 3 was installed in the output bar. (b) Forces vs. time monitored at input and output
bar ends.

The output bar was sensitive enough to monitor the response of the fabric registering a maximum
force of ≈1 kN. Figure 7b shows the forces at the ends of the input and output bars. The time t = 0 ms
indicates the onset of the stress propagation from the input grip. The response has been divided in
three different stages: (i) onset of propagation of the tensile pulse, (ii) first reflection of the transmitted
wave at the output bar interface and (iii) end of the tensile pulse. The wave propagation velocity
of the nonwoven fabric was determined from the time lapse between the input and output forces
(point (i) to (ii)), resulting in c ≈ 827.5 m/s, exceptionally slow compared to the wave propagation
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velocity of bulk semi-crystalline polyethylene (3800 m/s, [47]) or the theoretical wave propagation
velocity of ultrahigh molecular weight polyethylene fibres (11,600 m/s, [48]), but in agreement with
previous values registered for this fabric, ≈600 m/s [27]. The low wave propagation velocity and the
large gauge length hindered the development of a theoretical force equilibrium state between bars.
Input and output forces achieved similar force values (≈1 kN) after t = 0.7 ms; however, the input
bar signal presented significant vibrational noise of same magnitude of the obtained force.

Digital Image Correlation (DIC) was employed to analyse the wave propagation in the material.
The measurements were validated against the velocities monitored by the strain gauges, finding
very good correlation; see Figure 8a. The maximum velocity at the input interface was registered as
vinp ≈ 14.5 m/s, with an output bar velocity virtually zero. Once the tensile pulse was exhausted,
the input velocity decreased rapidly. The DIC contour plots registered a gradual transition of imposed
velocities along the gauge length; see Figure 8b,c, and the wave end of the tensile pulse; see Figure 8d,e.
The maximum input bar velocity was in agreement with the estimated analytical bound obtained by
one-dimensional wave propagation theory considering the relationship between bar strains (or stresses)
and particle velocity [45]:

σ = vcρ (1)

where σ stood for the incident pulse (0.11 GPa), and ρ and c stood for the density and the wave
speed in the aluminium material, ρ = 2800 kg/m3 and c = 5070 m/s, respectively. The resulting
theoretical bar velocity was approximately v = 7.75 m/s. Due to the strong impedance mismatch
between the aluminium tube and the specimen, nearly all the incident tensile wave was reflected at
the specimen/bar interface with same magnitude and opposite sign, duplicating the particle velocity
imposed at the input interface (14.5 ≈ 2v = 15.5 m/s).

Figure 8. Validation of DIC measurements. (a) Velocities at the input and output interfaces registered by
the strain gauges. Corresponding contour plots of longitudinal velocities at (b) t = 0.6 ms, (c) t = 0.8 ms,
(d) t = 1.0 ms and (e) t = 1.4 ms.

4.4. Dynamic Tensile Testing

The deformation mechanisms were analysed by DIC. The left hand side of Figure 9 shows the
evolution of the longitudinal strain at different stages of the experiment and Figure 10a plots the local
longitudinal strain distribution at the dashed mid-line. The input bar pulled the nonwoven fabric
from the right side. At the initial stage of the loading process (t = 0.2 ms), the material acquired an
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oscillating deformation around the 10% as a result of the wave reflection process. The magnitude of
the applied strain continued to increase progressively in time (t = 0.4 ms) up to ≈20% of deformation,
maintaining the original distribution. After a certain instant in time (t = 0.6 ms) the evolution of the
strain nearby the output bar froze at a maximum value of 18% deformation leading to a heterogeneous
strain field across the specimen (see Figure 9e,g) with an steep increment of deformation located at
the input interface once onset of damage was attained at ≈40% of deformation; see Figure 10a. These
strain gradients developed even at low strain values before the onset of damage, in contrast to the
characteristic homogeneous strain distributions obtained at quasi-static loading regimes. Nevertheless,
the strain gradients and damage localisation generated during dynamic testing were in agreement
with the response registered during ballistic impact, where larger deformation and final fabric tearing
were localised at the impact point, and did not further propagate through the target [19,21].

Figure 9. Evolution of the longitudinal strain εx (a,c,e,g) and lateral strain εy (b,d,f,h). (a,b) t = 0.2 ms,
(c,d) t = 0.4 ms, (e,f) t = 0.6 ms, (g,h) t = 0.9 ms. Dashed line represents the mid-line used to
monitor longitudinal strains and strain rates in Figure 10.

(a) (b)

Figure 10. Evolution of spacial distribution of local longitudinal (a) strain and (b) strain rate.
X = 0 mm stand for the material particles at the output interface, meanwhile X ≈ 34 mm
stand for the material particles at the input interface.
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The lateral strain was analysed, showing evidence of a biaxial stress state across the specimen,
see the right hand side of Figure 9. The biaxial stresses were triggered by the large Poisson’s ratio of
the material, inducing higher deformations (longitudinal and lateral) at the outer edges of the fabric
with respect to the mid-line region. This resulted in an heterogeneous transverse contraction of the
material with lower influence of biaxiallity at the mid-line region of the sample, where quasi-constant
lateral strains developed. The lateral strain was also directly proportional to the longitudinal strain
and the contraction decreased with the distance from the input face.

The strain rate was not constant along the specimen during the dynamic testing. The average
strain rate was registered by the strain gauges as ε̇ ≈ 400 s−1, in agreement with the local DIC
measurements; see Figure 10b. These values were four orders of magnitude higher than the previous
quasi-static experiments. Overall, the strain rate decreased with the distance from the input interface.
The final stage of the experiment (t = 0.9 ms) presented a different trend in strain rate distribution
due to damage localisation, showing a drastic increment near by the input interface.

The deformation was accommodated by the same micromechanisms observed during
the quasi-static uniaxial deformation; fibre straightening, rotation and sliding towards the loading
direction [15]. Upon stretching, the fibres progressively aligned with the loading direction, increasing
the tangent stiffness and the wave speed of the material. The load transference was the result of
a complex wave propagation phenomenon between the individual entangled fibres that could not be
analysed by conventional one-dimensional wave propagation theory. The stochastic fibre network
exhibited an irregular wave front due to the multiple fibre loops, and it evolved with the microstructure,
increasing the apparent wave speed when aligning the fibres with the loading direction. For instance,
previous authors reported an approximately linear increase in the wave speed of needle-punched
nonwoven fabrics from 600 m/s in as-received condition up to 4000 m/s after 25% of deformation
[27]. Additionally, the magnitude of the tensile wave decreased with the distance to the input interface
due to two different sources of mechanical dissipation: (i) the frictional nature of the deformation
micromechanisms and (ii) the partial wave reflection at the entanglement points.

As a result of the variable stiffness and wave speed with the applied deformation, heterogeneous
strain gradients developed during the dynamic testing. The wave propagation sequence is analysed
in Figure 11. The tensile pulse first propagated into the specimen with velocity c0; see Figure 11a.
The stress magnitude progressively decreased with the distance from the input bar due to the internal
dissipation of the material. Afterwards, the tensile pulse reached the output interface while faster
waves with a higher stress magnitude appeared at the input interface as a result of the increment
of stiffness of the material with the deformation (c1 > c0); see Figure 11b. Once the two waves
(the transmitted and the reflected) travelling at different velocities arrived at the same material point,
they created a macromechanical interface with an impedance mismatch at both sides due to the
variation of stiffness with the evolution of the fibre alignment, preventing the propagation of larger
strain waves into the left side of the specimen; see Figure 11c. The reflections were repeated during
the experiment with waves of higher velocity (c2 > c1). The result of this iterative process induced
a strong strain gradient as shown in Figure 10a, with a dramatic increment of deformation nearby the
input bar.

The strain gradients are conventional in Split Hopkinson Bar experiments of soft materials
such as gelatin or animal tissue, where the wave propagation velocity is relatively low and the
duration of the pulse is not long enough to ensure dynamic force equilibrium between bars [38,41].
The non-homogeneous deformation also occurs in the dynamic testing of non-linear elasto-plastic
materials. For instance, it has been observed in metallic or epoxy foams subjected to impact [49–52].
Foams usually present an initial linear elastic response followed by a plastic plateau of lower stiffness
and therefore, two different waves are generated upon impact: a fast elastic precursor and a slower
plastic shock front that induces a permanent deformation of the shocked region.

The output forces were analysed to determine the influence of the high strain rates in the
mechanical response of the fabric. Figure 12 plots the output stress monitored by the strain gauge
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vs. the mid-line local longitudinal strains registered by DIC at the input and output interfaces.
Although the lack of a constant strain over the specimen hindered the acquisition of a conventional
stress-strain constitutive equation, this methodology allows to visualise the variation in strain over the
specimen mid-line at each stress level and provides the upper and lower bounds for potential high-rate
stress-strain relationships. These curves are compared against the quasi-static stress-strain constitutive
relationship. The mechanical response can be divided in two different stages; an initial sudden increase
in the stiffness within the range 10–15% of deformation, and a progressive increment of the load
due to the development of the strain gradient and fibre sliding on the input interface. This analysis
showed evidence of the strain rate dependency of the frictional mechanisms between entangled fibres
in agreement with previous parametrical studies carried out by means of numerical simulations [21].
An increment of the fibre pull-out strength was formerly defined to fit the ballistic limit of the
as-received fabric subjected to ballistic impact of small metallic fragments, leading to a virtual
increment of the ply stiffness and strength when subjected to in-plane dynamic tensile loads, suggesting
a strain rate dependency of the nature observed during the present SHTB experimental campaign.

Figure 11. Wave rebound in the specimen during dynamic testing. c0 < c1 < c2. (a) Initial wave
propagation at velocity c0. (b) Reflection of the first wave arriving at the output bar. (c) Interference of
both waves at an intermediate point of the specimen, while new waves with velocity c2 are created at
the input bar interface.

Figure 12. Output stress vs. local engineering strain at different locations of the specimen. Blue dashed
line stands for the local strain at the output interface (dynamic lower bound, X = 0 mm in Figure 10)
and red dashed line stands for the local strain at the input interface (dynamic upper bound, X = 34 mm
in Figure 10).
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5. Conclusions

This study presents the first attempt to characterise the dynamic response of dyneema
needle-punched nonwoven fabrics specifically designed for ballistic protection. Nonwoven fabrics
present a large energy absorption capacity due to their ability to sustain load at very large strains
and the frictional micromechanisms triggered during in-plane deformation, and have the capacity
to improve the ballistic performance of conventional dry woven barriers acting as cushion layers.
The experimental dynamic characterisation of the in-plane response of a needle-punched nonwoven
fabric was conducted on a novel Split-Hopkinson Tensile Bar device specifically developed for this
study. The apparatus included a high-sensitivity output bar to register the response of the soft fabrics
and had a pulse duration of 1 ms to impose large deformations. The gauge length of the specimen
was also long enough (35 mm) to ensure at least one representative volume element was tested.
This experimental campaign offered detailed understanding on the wave propagation phenomenon
in nonwoven fabrics by a combination of high-speed photography and Digital Image Correlation
(DIC). The device was able to provide quantitative measurements of the wave speed, the evolution of
strain fields and the wave interaction. It also presented several limitations summarised as; (i) low time
resolution of the high-speed camera and (ii) a lack of force equilibrium in the bars. These limitations
have been considered during the data analysis.

The deformation for dynamic loading was accommodated by the same micromechanisms
observed during quasi-static in-plane tensile testing and ballistic impact, which comprised fibre
straightening, rotation and sliding with the loading direction. The initial wave propagation velocity of
the as-received nonwoven fabric was characterised as c = 827.5 m/s, exceptionally slow compared to
those of bulk polyethylene or ultrahigh molecular weight polyethylene fibres. The main differences
between quasi-static and dynamic loading regimes was given by the heterogeneous strain gradient
developed at high-strain rates, in contrast with the homogeneous deformation field observed before
onset of damage in quasi-static experiments. As a result of the heterogeneous strain field, the strain
rate distribution was also non constant along the specimen, with an average value of ε̇ ≈ 400 s−1,
four orders of magnitude higher than previous quasi-static tests.

The heterogeneous strain field was a consequence of the non-linear pseudo-plastic response of the
fabric and the internal energy dissipation mechanisms related to the frictional deformation processes
such as fibre sliding. The load transference process was dictated by the wave propagation phenomenon
between individual entangled fibres, and it depended on the current fibre orientation distribution
function. Upon stretching, the fibres progressively aligned with the loading direction, increasing the
tangent stiffness of the material, and therefore, the wave propagation velocity. As a result, during
dynamic testing, the differences in fibre orientation distribution function and stiffness arising from
the interference of reflected waves generated internal impedance mismatch fronts, preventing the
propagation of larger strain waves towards the output interface. In consequence, after a certain period
of time, the deformation nearby the output interface froze; meanwhile, large strain gradients and fibre
pull-out developed nearby the input interface. Similar gradients have been previously reported for
ballistic tests, showing large deformations and localised damage at the impact point.

The output forces were analysed to determine the influence of high strain rates in the mechanical
response of the nonwoven fabric. Although the strain gradients hindered the development of a
theoretical equilibrium stress-state in the bars, the proposed analysis established reasonable bounds
for potential dynamic stress-strain curves. The strain rate sensitivity was found in the frictional
mechanisms between the entangled fibres, such as fibre sliding, in agreement with the previous
parametrical studies. In particular, an increment of the stiffness for low applied strains was exhibited
during dynamic loading. This study provides the basis to develop algorithms to predict the wave
propagation phenomenon of needle-punched nonwoven fabrics and closes the gap in knowledge
regarding their mechanical response when subjected to dynamic loads such as ballistic impact.
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