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Featured Application: A complete solution for visual detection and autonomous tracking of
a moving target is presented, which is applied to low-cost aerial vehicles in reconnaissance,
surveillance, and target acquisition (RSTA) tasks.

Abstract: Unmanned Aerial Vehicles (UAVs) have recently shown great performance collecting
visual data through autonomous exploration and mapping, which are widely used in reconnaissance,
surveillance, and target acquisition (RSTA) applications. In this paper, we present an onboard
vision-based system for low-cost UAVs to autonomously track a moving target. Real-time visual
tracking is achieved by using an object detection algorithm based on the Kernelized Correlation
Filter (KCF) tracker. A 3-axis gimbaled camera with separate Inertial Measurement Unit (IMU) is
used to aim at the selected target during flights. The flight control algorithm for tracking tasks is
implemented on a customized quadrotor equipped with an onboard computer and a microcontroller.
The proposed system is experimentally validated by successfully chasing a ground and aerial target
in an outdoor environment, which has proven its reliability and efficiency.
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1. Introduction

The past decade has witnessed an explosive growth in the utilization of unmanned aerial vehicles
(UAVs), attracting more and more attention from research institutions around the world [1,2]. With a
series of significant advances in technology domains like micro-electro-mechanical system (MEMS),
many UAV platforms and mission-oriented sensors limited to military affairs in the past are now
widely applied to industrial and commercial sectors [3–7]. UAV-based target tracking is one of the most
challenging tasks, which is closely related to applications such as traffic monitoring, reconnaissance,
surveillance, and target acquisition (RSTA), search and rescue (SAR), inspection of power cables,
etc. [8–13]. The tracking system is an important part of UAVs which detects a target of interest
rapidly in a large area, and then performs continuous surveillance of the selected target in the tracking
phase [14]. In order to achieve target acquisition and localization, military UAVs are usually equipped
with airborne radars [15] or guided seekers [16]; however, they are too heavy and unaffordable for
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most civilian used UAVs. As one of the most popular UAV platforms, quadrotors are more stable and
have a lower manufacturing cost than helicopters. For portability and flexibility, the takeoff weight of
most quadrotors is less than 15 kg, so payload and battery endurance for onboard equipment are very
limited. In this situation, precisely and robustly tracking a moving target by using a small-scale UAV
platform is still a challenging task because the onboard computational capability is poor and sensors
are low-cost [17].

Compared with many other detection sensors, cameras seem to have an inherent potential for
UAV-based target tracking tasks, for they passively receive the environmental information and visual
features, while still being low-cost and lightweight [18]. In recent years, various methods are studied
in many research works to achieve target tracking by using cameras. Wenzel et al. [19] presented a
visual tracking system for autonomous landing of a Hummingbird quadrotor by using an infrared (IR)
camera that was extremely cheap. In [20], a vision-based landing control algorithm for an autonomous
helicopter was designed and implemented by using a downward-pointing charge coupled device
(CCD) camera. The onboard system was integrated with an algorithm for visual acquisition of the
target (a moving helipad) and state estimation, which calculated the six degrees of freedom (DOF)
pose with respect to the landing pad. The helipad which consists of a letter “H” surrounded by a
circle is a typical structured pattern widely used in vision-based tracking and landing tasks because it
can be easily detected and recognized in cluttered environments [21]. The research on square-based
fiducial markers, such as AprilTag [22] and ArUco [23], has also aroused increasing interests toward
marker-based visual tracking. Ref. [24] presented a fully autonomous flight control system for tasks of
target recognition, geo-location, following and finally landing on a AprilTag marker which is attached
to a high-speed moving car. Ref. [25] proposed a vision-based swarming approach for employing
three or more Parrot Ar.Drone 2.0 quadrotors without any extra positioning sensors, while the ArUco
markers fixed on the obstacles were used for localization and mapping. However, artificial markers or
cooperative targets can only be applied to some specific scenarios such as autonomous landing and
indoor navigation, in which the actual size and main features of the pattern are already known [26].
Since the vision system may be requested to track an arbitrary target with unknown size, shape,
and motion, it is impossible to have already acquired information and know how to recognize it.

Object tracking is one of the most fundamental fields in computer vision and has a wide
range of applications in many areas. For this task, many algorithms for visual tracking have been
proposed, which can be generally categorized into generative and discriminative methods according
to their appearance models. Generative methods typically search for the image region which is
most similar to the target, such as incremental subspace tracker (IVT [27]), L1 tracker [28], real-time
compressive sensing tracking (RTCST [29]), superpixel tracking [30], mean shift algorithm [31–33],
and the continuously adaptive mean shift (CAMSHIFT) algorithm [34]. Discriminative methods or
tracking-by-detection methods deal with the tracking problem as a binary classification task and
separate the target object from the background, such as multiple instance learning (MIL) tracker [35],
Struck [36], on-line AdaBoost (OAB) tracker [37], and Tracking-Learning-Detecting (TLD) [38]. The
potential of correlation filters for visual tracking has aroused tremendous research interest because it
reduces the overhead time through fast Fourier transformation (FFT) [39]. Bolme et al. [40] presented
a minimum output sum of squared error (MOSSE) filter, which produced stable correlation filters
when initialized using a single frame. It is able to quickly adapt to variations in scale, rotation, and
lighting while operating at 669 frames per second. Henriques et al. [41] proposed the correlation filter
of the circulant structure with kernel (CSK), and used the kernel trick to learn the appearance model.
After that, the Kernelized Correlation Filter (KCF) tracker that Henriques proposed in [42] further
improved the CSK method by using the histogram of oriented gradients (HOG) feature instead of
gray feature to represent the object, which showed an amazing speed on the OTB2013 dataset [43].
However, the original KCF tracker uses a fixed size template and is not able to handle scale changes
and occlusions, leading to bad performance in some scenarios. To alleviate theses drawbacks, Montero
et al. [44] proposed fast scalable solution based on KCF framework which used an adjustable Gaussian
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window function and a keypoint-based model for scale estimation to deal with the fixed size limitation
in the Kernelized Correlation Filter. Zhang et al. [45] presented an improved KCF tracker by adopting
a cascade classifier composed of multi-scale correlation filter and NN (Neighbor Nearest) classifier,
which showed favorable performance in accuracy and robustness.

To actually track a moving target in real time with a vision-based system onboard a multi-rotor
UAV platform, three steps are required. The first step is to detect the target and localize it in each image
frame as described above. The second step involves getting the line-of-sight (LOS) angle or the position
of the target and maintaining the target in the center of the camera’s field of view (FOV). The third step
is to use this information obtained by the vision system to define the control task of an autonomous
UAV when flying around the target. Generally, a downward-facing strap-down camera has advantages
with its small size, light weight, and simplicity [46]. However, the output of the strap-down camera
cannot be directly used in the flight control system, for it couples with the UAV body angular motion.
In addition, the restricted FOV of the camera makes it a challenging task to keep the fast-moving target
in the image, which also means the FOV constraints must be fully considered in the guidance law [47].
To solve these problems, a gimbal system is widely used to provide inertial stability to the camera
by isolating it from the UAV motion and vibration. A gimbaled camera now available on the market
provides a decoupling along the roll, pitch, and yaw attitudes, which has become an important unit of
the UAV system. In [48], a 3-axis gimbaled camera (DJI Zenmuse X3) is used to solve the problem,
which enabled autonomous landing of a quadrotor on a high-speed ground vehicle. The system is
experimentally implemented and validated by successfully landing a commercial quadrotor on the roof
of a car moving at speeds of up to 50 km/h. Ref. [49] presented a field-tested mini gimbal mechanism to
produce an estimation of the target position, which allowed a flying-wing UAV to fly around the target.
Jakobsen et al. [50] presented the architecture of a pan/tilt/roll camera system implemented on the
Georgia Tech’s UAV research helicopter. Each axis is driven by a servo and optical encoders are utilized
to measure the gimbal orientation. Whitacre et al. [51] performed flight tests using a SeaScan UAV with
a gimballing camera to track ground targets and studied the effect of altitude, camera FOV, and orbit
center offsets within the geo-location tracking performance for both stationary and moving targets.

In this paper, motivated by the existing challenges, an onboard vision-based system for tracking
arbitrary 3D objects moving at unknown velocities is proposed by utilizing a 3-axis gimbal system.
A KCF tracker is used to detect and localize the target of interest from images acquired by the gimbaled
camera. The 3-axis stabilized gimbal system is driven by brushless direct current motors (BLDCMs)
and a magnetic rotary encoder is attached to each axis with a high-resolution output of the angular
position. Then, the results of the KCF tracker are put into a proportional-derivative (PD) controller,
which aligns the optical axis of the gimbaled camera with the LOS joining the camera and the target.
A tracking strategy for multi-rotor UAVs is proposed based on the proportional navigation (PN)
method, which makes it possible to keep following the target, although the target position is not
known. A low-cost experimental quadrotor is customized for real-time flight tests, which is equipped
with a microcontroller using consumer sensors and an onboard computer for image processing. The
presented system is experimentally implemented and validated by successfully tracking a commercial
quadrotor flying along an unknown path. By analyzing the flight data of both the target and the
interceptor, the system is demonstrated to be reliable and cost-effective.

The rest of this paper is organized as follows. The vision system and control of the gimbaled
camera are described in Section 2. The visual tracking algorithm used to detect and localize the target
in image stream is presented in Section 3. Section 4 established the dynamic model of the quadrotor,
and the target tracking strategy as well as the control law is presented. Section 5 describes preparation
for flight experiments, and the results of the flight tests are given in this part. Finally, Section 6
concludes this paper and presents the future work.
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2. Gimbal System

2.1. Problem Formulation and System Architecture

Although there are many algorithms capable of tracking targets from the video streams, techniques
reported in the field of computer vision cannot be easily extended to airborne applications because
of high dynamic UAV-target relative motion. In this section, a small commercial drone (41 cm in
diameter) is considered as the target with unknown speed. If this unwanted aerial visitor flies into
places such as airports, prisons, and military bases where consumer drones are not allowed, it can
cause a big problem. Therefore, a lot of anti-UAV defense systems are being introduced to combat the
growing threats of malicious UAVs. One way is to use a rifle-like device which sends a high-power
electromagnetic wave to jam the UAV control systems and force them to land immediately. Another
option is to capture the target in mid-air, using a UAV platform that carries a net gun.

Consider Figure 1, which depicts the UAV-Target relative kinematics and defines the coordinate
systems. Let B denote the body frame that moves with the UAV, C the camera frame that is attached to
the UAV but rotates with respect to frame B, N a North-East-Down (NED) coordinate system taken
as an inertial reference frame, I, the image frame. The origin of the camera frame C is the optical
center and Zc coincides with the optical axis of the camera. Following the notation introduced in [52],
let pC = [xc, yc, zc]

T denote the position of the target in frame C. The rotation transformation n
c R from

frame C to frame N is:
n
c R = n

b Rb
cR (1)

where the transformation n
b R is calculated by the roll, pitch, and yaw angles of the UAV given by

the flight controller. b
cR can be computed by the gimbal system using the relative angular position

measured by the encoders. Let p be the position of the target with respect to the optical center of
camera resolved in N, which is given as:

p = n
b Rb

cR · pC (2)
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Thus, the target position pT in NED coordinate system can be estimated, which is given as:

pT = pB + n
b RpBC + p (3)
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where pBC is the position of gimbaled camera relative to the UAV body in frame B, and pB is the UAV
position in N.

To deal with the task of moving target tracking, an autonomous quadrotor UAV system equipped
with a 3-axis gimbaled camera is constructed to detect and follow the flying object in the pursuit-evasion
scenario. The visual tracking system processes the images and drives the gimbal to search the target
areas. Once an intruding drone is detected, the location of the target in each image frame is acquired,
and this is utilized by the automated targeting module for aiming control of the gimbal. While the
target is locked down, the camera pose can be used as input information to control the UAV flight.
Figure 2 presents the proposed vision-based system.
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For most civil UAV applications, the gimbal system and the UAV flight control system are
independent of each other. However, to achieve autonomous tracking of a moving target, the two
systems are coordinated by the proposed vision algorithm which is implemented in the onboard
computer running a Linux based system.

2.2. Kinematics of the Gimbal System

While the FOV of a single camera is limited, the gimbal systems are able to rotate the camera to a
desired direction, which are widely applied to many fields such as filming and monitoring. When these
systems are mounted onboard an UAV, the torque motors are activated by the IMUs and other angular
sensors to compensate for all the rotations resulting from the UAV flight, which returns the stable
member to its original attitude. As shown in Figures 3 and 4, the gimbal system which is used in this
paper consists of direct current (DC) motors that balance the platform, magnetic rotary encoders that
sense the relative rotation, embedded stabilization controller that process all the sensors information
and output the control signals, the vibration damper that connects the outer gimbal to the UAV body,
and the camera that captures the images.
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The 3-axis gimbaled camera supporting structure consists of the case, outer frame, middle frame
and inner frame as depicted in Figure 5. The kinematic relations are set as a yaw, roll, pitch sequence
and four reference frames are introduced: the body-fixed frame F, the outer frame O, the middle frame
M, the inner frame G connected by three revolute joints. Considering the common structure of gimbals
in [53–55], relative angles are defined as yaw (θY), roll (θR) and pitch (θP). The frame F is carried into
frame O by rotation θY around the axis zF. Frame O is carried into frame M by rotation θR around the
axis xO. Finally, frame M is carried into frame G by rotation θP around the axis yM. The coordinate
systems of the gimbal (Figure 5) are placed parallel to each other as the initial state in the configuration
(θY,θR,θP) = (0, 0, 0).



Appl. Sci. 2020, 10, 5064 7 of 27

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 28 

Figure 3. 3-axis gimbaled camera. (1) the output port of the video stream; (2) the embedded 
stabilization controller; (3) the brushless DC motor with magnetic rotary encoder; (4) the vibration 
damper; (5) the camera. 

  

(a) (b) 

Figure 4. Details of the gimbal control system. (a) 3-axis stabilization controller (BaseCam SimpleBGC 
32-bit Tiny); (b) HT3505 brushless DC motor with AS5048A magnetic rotary encoder. 

The 3-axis gimbaled camera supporting structure consists of the case, outer frame, middle frame 
and inner frame as depicted in Figure 5. The kinematic relations are set as a yaw, roll, pitch sequence 
and four reference frames are introduced: the body-fixed frame F , the outer frame O , the middle 
frame M , the inner frame G  connected by three revolute joints. Considering the common structure 
of gimbals in [53–55], relative angles are defined as yaw (Y ), roll (R ) and pitch (P ). The frame F  
is carried into frame O  by rotation Y  around the axis Fz . Frame O  is carried into frame M  by 

rotation R  around the axis Ox . Finally, frame M  is carried into frame G  by rotation P  around 

the axis My . The coordinate systems of the gimbal (Figure 5) are placed parallel to each other as the 

initial state in the configuration (Y ,R ,P ) = (0, 0, 0). 

 
Figure 5. The gimbal in configuration (Y ,R ,P ) = (0, 0, 0) viewed from the side and the front with 

reference frames and relations between them. The direction of each joint is indicated by the dotted 
line. 

Figure 5. The gimbal in configuration (θY,θR,θP) = (0, 0, 0) viewed from the side and the front with
reference frames and relations between them. The direction of each joint is indicated by the dotted line.

The coordinate of an arbitrary point P in frame G denoted as the vector GrP can be described in a
different coordinate frame F using the rotation matrix FRG and the translation vector FdG between the
frames according to the above relationship:

BrP = FRG
GrP + FdG (4)

where, in a 3D environment,

GrP =


GxP
GyP
GzP

 (5)

A more convenient way to describe such transformation is to use homogeneous transformation
matrices FTG given as:

FTG =

[ FRG
FdG

01×3 1

]
(6)

Several intermediate transformations are required to get the final transformation in Equation (4)
given as [ BrP

1

]
= FTG

[ GrP
1

]
(7)

where
FTG = FTO

OTM
MTG (8)

With the parameters l1, l2, h1, h3 and b2 in Figure 5, the transformations between the frames are
as follows.

The transformation between the frame F and frame O:

FRO =


cosθY − sinθY 0
sinθY cosθY 0

0 0 1

 (9)
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FdO =


−l1 cosθY
−l1 sinθY

h1

 (10)

or

FTO =


cosθY − sinθY 0 −l1 cosθY
sinθY cosθY 0 −l1 sinθY

0 0 1 h1

0 0 0 1

 (11)

The transformation between the frame O and frame M:

ORM =


1 0 0
0 cosθR − sinθR

0 sinθR cosθR

 (12)

OdM =


l2

−b2 cosθR

−b2 sinθR

 (13)

or

OTM =


1 0 0 l2
0 cosθR − sinθR −b2 cosθR

0 sinθR cosθR −b2 sinθR

0 0 0 1

 (14)

The transformation between the frame M and frame G:

MRG =


cosθP 0 sinθP

0 1 0
− sinθP 0 cosθP

 (15)

MdG =


h3 sinθP

b2

h3 cosθP

 (16)

or

MTG =


cosθP 0 sinθP h3 sinθP

0 1 0 b2

− sinθP 0 cosθP h3 cosθP

0 0 0 1

 (17)

Thus, the total rotation matrix FRG and translation vector FdG between frame F and frame G is:

FRG =


cosθY cosθP − sinθY sinθR sinθP − cosθR sinθY cosθY sinθP + cosθP sinθY sinθR

cosθP sinθY + cosθY sinθR sinθP cosθY cosθR sinθY sinθP − cosθY cosθP sinθR

− cosθR sinθP sinθR cosθR cosθP

 (18)

FdG = FRO
ORM

MdG + FRO
OdM + OdF

=


l2 cosθY − l1 cosθY + h3 cosθY sinθP + h3 cosθP sinθY sinθR

l2 sinθY − l1 sinθY + h3 sinθY sinθP − h3 cosθY cosθP sinθR

h1 + h3 cosθR cosθP

 (19)
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The FRG is called a pitch-roll-yaw rotation matrix according to the order in which the rotation
matrices are successively multiplied. In a similar way, the rotation between frame and inertial reference
frame can be described as:

NRG =


cosαY cosαP − sinαY sinαR sinαP − cosαR sinαY cosαY sinαP + cosαP sinαY sinαR

cosαP sinαY + cosαY sinαR sinαP cosαY cosαR sinαY sinαP − cosαY cosαP sinαR

− cosαR sinαP sinαR cosαR cosαP

 (20)

where αY, αR, and αP are derived using the information from the gyros and accelerometers on the IMU
attached to the camera. The NRG can also be derived using the rotation matrix FRG and NRF, as below:

NRG = NRF
FRG (21)

where FωNF, and the angular velocity of frame F respect to frame N introduced in frame F is measured
and available given as:

FωNF =
[

p q r
]T

(22)

Angular velocities of frame O, M, and G respect to frame N introduced in its own frames are
as follows:

OωNO = OωNF +
OωFO =

(
FRO

)TFωNF +


0
0
.
θY

 =


p cosθY + q sinθY
−p sinθY + q cosθY

r +
.
θY

 (23)

MωNM = MωNO + MωOM =
(
ORM

)TOωNO +


.
θR

0
0

 =


p cosθY + q sinθY +
.
θR

cosθR(−p sinθY + q cosθY) + sinθR(r +
.
θY)

sinθR(p sinθY − q cosθY) + cosθR(r +
.
θY)

 (24)

GωNG = GωNM + GωMG =
(
MRG

)TMωNM +


0
.
θP

0


=


cosθP(p cosθY + q sinθY +

.
θR) − sinθP(sinθR(p sinθY − q cosθY) + cosθR(r +

.
θY))

cosθR(−p sinθY + q cosθY) + sinθR(r +
.
θY) +

.
θP

sinθP(p cosθY + q sinθY +
.
θR) + cosθP(sinθR(p sinθY − q cosθY) + cosθR(r +

.
θY))


(25)

The inertia matrices of the outer gimbal, middle gimbal, and inner gimbal are:

JO = diag
{

JOx JOy JOz
}

(26)

JM = diag
{

JMx JMy JMz
}

(27)

JG = diag
{

JGx JGy JGz
}

(28)

where Jkx, Jky, Jkz (k = O, M, G) refer to the diagonal elements. For simplicity, it is assumed that
the off-diagonal elements of inertia matrices can be neglected and only the moments of inertia are
considered. The angular momentum of the pitch gimbal is:

HG = JG
GωNG (29)

the roll gimbal is:
HM = JM

MωNM + MRG JG
GωNG (30)

the yaw gimbal is:
HO = JO

OωNO + ORM(JN
MωNM + MRG JG

GωNG) (31)
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and each member of the gimbal system is treated as a rigid body and the moment equation can be
written as:

τk =
dHk
dt

+ kωNk ×Hk (k = O, M, G) (32)

where external torques τO, τM and τG, about zF, xO and yM, respectively, are applied to gimbals from
motor and other external disturbance torques.

2.3. Stabilization and Aiming

The camera fitted on the innermost frame is inertially stabilized and controlled by the gimbal
system. Furthermore, the system is required to align its optical axis in elevation and azimuth with
a LOS joining the camera and target. Figure 6 describes the angular geometry of how the gimbaled
camera aims at the target, where θ is the pitch angle of the UAV body, δ is the boresight angle, λ is the
LOS angle, θP is the pitch angle of the gimbal frame, and ε is the boresight error angle.
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There are four operation modes, namely, the preset angle mode, search mode, stabilize mode,
and tracking mode as shown in Figure 7. When the gimbal system is powered on and initialized,
its direction is kept at δ = 0 in inertial space. In preset angle mode, the optical axis of the camera will
be set to a given angle and the control system will maintain the desired direction despite disturbances.
Then, the system may switch to search mode, in which the gimbal will rotate circularly between its
minimum and maximum angle to search a larger range of area.

When a target is confirmed, the control system will switch to the tracking mode and keep the
target in the center of the camera view. In addition, if the target is lost and cannot be recaptured in a
few seconds, the system will return to the search mode and try to find it again. Figure 8 shows how the
control system works which contains two loops: tracking loop and stabilizing loop.
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Based on the image information and measurement data received from angular sensors, the tracking
loop generates a rate command to direct the boresight towards the target LOS so that the pointing error
can be kept near zero. On the other hand, the stabilizing loop isolates the camera from UAV motion
and external disturbances, which would perturb the aim-point. The control loops in roll, elevation,
and azimuth channels are related by the cross coupling unit based on the gimbal system dynamics,
which may be defined as the impact on one axis with the rotation of another [56].

3. Target Tracking

3.1. KCF Tracker

The KCF tracker [42,57] that is used in this paper considers the process of sample training as
a Ridge Regression problem, which is also a regular minimization problem with a closed solution.
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Consider a n× 1 vector x =
[

x1 x2 · · · xn
]T

as the base sample, which represents a patch with
the target of interest. A small translation of this vector is given as:

Px =
[

xn x1 · · · xn−1
]T

(33)

where P is the permutation matrix:

P =



0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
...

...
. . . . . .

...
0 0 · · · 1 0


(34)

and u shifts can be made to achieve a larger translation by using the matrix power Pux. By cyclic
shifting operations, we can use these vectors to constitute a circulant matrix as:

X = C(x) =



(P0x)T

(P1x)T

(P2x)T

...

(Pn−1x)T


=



x1 x2 x3 · · · xn

xn x1 x2 · · · xn−1

xn−1 xn x1 · · · xn−2
...

...
...

. . .
...

x2 x3 x4 · · · x1


(35)

and it is useful that all circulant matrices are diagonalized by the Discrete Fourier Transform (DFT),
regardless of the base sample x, which can be expressed as:

X = Fdiag(x̂)FH (36)

where x̂ is the DFT of base sample, x̂ = F(x), and F is a constant matrix known as the DFT matrix that
does not depend on x.

Based on Ridge Regression, the goal of training is to find a function f (z) that minimizes the
squared error over samples xi and their regression targets yi, as shown below:

E = min
w

∑
i

( f (xi) − yi)
2 + λ‖w‖2 (37)

where the regularization parameter λ is used to control over fitting, as in the Support Vector Machines
(SVM) [57] and w represents the filter coefficients.

Consider a linear regression function f (z) = wTz, the minimizer has a closed-form solution
given as:

w = (XTX + λI)
−1

XT y (38)

where X is the circulant matrix with one sample per row xi, each element of y is a regression target yi,
and I is an identity matrix. By utilizing the diagonalization of the circulant matrices, Equation (38) can
be expressed in Fourier domain as:

ŵ =
x̂∗ � ŷ

x̂∗ � x̂ + λ
(39)

where ŵ, x̂, ŷ are the DFT of w, x, y, respectively, and x̂∗ is the complex-conjugate. In addition, w can be
easily recovered in the spatial domain with Inverse Discrete Fourier Transform (IDFT).
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When regression function f (z) is nonlinear, the kernel trick is used to map the inputs of a linear
problem to a nonlinear and high-dimensional feature space ϕ(x):

w =
∑

i

αiϕ(xi) (40)

Then, the variables under optimization are α instead of w. The kernel function k is used to compute the
algorithm in terms of dot-products, as shown below:

ϕT(x)ϕ(x′) = k(x, x′) (41)

where all the dot-products between samples are stored in a n× n kernel matrix K, with elements:

Ki j = k(xi, x j) (42)

and the regression function f (z) can be expressed as:

f (z) = wTz =
n∑

i=1

αik(z, xi) (43)

The solution of this regression function can be given as:

α = (K + λI)−1y (44)

where K is the kernel matrix and α is the vector of coefficients αi, which express the solution in the
dual space. By making K circulant, Equation (44) can be diagonalized as in the linear case, obtaining:

α̂ =
ŷ

k̂xx + λ
(45)

where k̂xx is the correlation kernel of x with itself in Fourier domain and α̂, ŷ are the DFT of vector α, y.
For the kernel matrix Kz between all training samples (cyclic shifts of x) and candidate image

patches (cyclic shifts of base patch z), each element of Kz is given by k(Pi−1z, P j−1x). From Equation
(43), the regression function can be computed for all candidate patches with:

f (z) = (Kz)Tα (46)

where f (z) is a vector, containing the output of all cyclic shift of z, which is the full detection response.
The position where the output response takes the maximum value is the position of the target in a new
frame. To compute Equation (46) efficiently, it is diagonalized as shown below:

f̂ (z) = k̂xz
� α̂ (47)

where a hat ∧ denotes the DFT of a vector. In this paper, given the nonlinear Gaussian kernel
k(x, x′) = exp(− 1

σ2 ‖x− x,
‖

2), we get:

kxx,
= exp

(
−

1
σ2

(
‖x‖2 + ‖x,

‖
2
− 2F−1(x̂∗ � x̂′)

))
(48)

where the kernel correlation can be computed by using a few DFT/IDFT and element-wise operations
in O(n log n) time. Henriques et al. [42] proved that the conversion from inverse operation of matrix in
spatial domain to matrix multiplication in Fourier domain would greatly reduce the computational
complexity and shorten the computation time.
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In the tracking process, considering the target variations, such as illumination, scale, occlusion,
and deformation factors, the target apparent model and coefficient vector are updated after each
frame [58], as shown below:

xt = (1− ηt)xt−1 + ηtx (49)

αt = (1− ηt)αt−1 + ηtα (50)

where xt−1, xt are the target model updated after the t− 1 and the t frame. αt−1, αt are the coefficient
vector updated after the t− 1 and the t frame. ηt is the learning rate.

3.2. Target Localization

Consider a monocular camera model as shown in Figure 9.
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Figure 9. Coordinate system of a monocular camera.

When an arbitrary point p(xw, yw, zw) in world frame W is detected by the camera, its 2D position
pi(xi, yi) on the image plane can be given as:

xi =
f xc

zc
= (u− u0)dx (51)

yi =
f yc

zc
= (v− v0)dy (52)

where (xc, yc, zc) is the position of p in the camera frame, f is the focal length, (u, v) is the target position
in pixel values, (u0, v0) is the intersection of the optical axis, and the image plane, dx and dy are the
physical length per pixel in the xi and yi axis directions. Equations (51) and (52) can be integrated as:

u
v
1

 = Min


xc/zc

yc/zc

1

 = Min


x1c
y1c
1

 (53)

where [x1c, y1c, 1]T is the point on the normalized plane and Min is the intrinsic parameter matrix of the
camera, which is given as:

Min =


f /dx 0 u0

0 f /dy v0

0 0 1

 (54)
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With a calibrated camera, the pointing error angle ε in elevation and azimuth can be computed by
using the above relations, as shown below:

εχ = arctan(xc/zc) (55)

εγ = arctan(yc/zc) (56)

where εχ and εγ are the pointing error or boresight error in azimuth and elevation, respectively,
which can be put into the target aiming system as input information to control the gimbal.

A scalable KCF tracker is used in this paper, with the scale changes of the target taken into
consideration. The tracker not only updates the centroid position of the target in the image frame,
but also outputs the target size in pixel values. This can be used to control the distance between the
interceptor and the target while tracking, though the physical size of the target is unknown. The running
results of tracking a pedestrian with the proposed tracker are shown in Figure 10. The bounding box
changes with adaption to the target variations in the video streams.
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Figure 10. Tracking of a human target moving at pedestrian speed. (a) video streams with no target
selected; (b) tracking of the selected target with its error pixels displayed on screen; (c) autonomously
lock on the target in close range using the gimbal system; (d) real-time adjustment to the scale changes
of the target.

4. Flight Control Algorithm

4.1. UAV Dynamic Model

The 6 DOF motion of a rigid quadrotor is described in Figure 11.
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Figure 11. The quadrotor with corresponding frames.

Let m denote the mass of the quadrotor and J the moment of inertia. The external forces
and torques which act on the quadrotor platform are primarily caused by propellers and gravity.
A local NED frame N and body-fixed frame B are introduced to describe the motion of the quadrotor.
np =

[
npx

npy
npz

]T
and nv =

[
nvx

nvy
nvz

]T
are the position and linear velocity of the

quadrotor’s mass center relative to N. Θ = [φ θ Ψ]T is the roll/pitch/yaw angles, which represents the
orientation of the quadrotor in N. The rotation matrix Rn

b from B to N is expressed as:

NRB =


cosθ cosψ sinφ sinθ cosψ− cosφ sinψ cosφ sinθ cosψ+ sinφ sinψ
cosθ sinψ sinφ sinθ sinψ+ cosφ cosψ cosφ sinθ sinψ− sinφ cosψ
− sinθ sinφ cosθ cosφ cosθ

 (57)

The equations of motion can be described as:

n .
p = nv (58)

n .
v = gn3 −

fb
m

Rn
b n3 (59)

J · b
.
ω = −bω ×

(
J · bω

)
+ Ga + τ (60)

where fb is the force applied to the quadrotor given in B, τ is the torque, g is the gravitational acceleration
and bω is the angular velocity of the quadrotor in B. The gyroscopic moment Ga is mainly produced by
propellers, which can be neglected. In addition, the translational dynamics shown in Equations (58) and (59)
can be simplified as:

n ..
px = −

fb
m
(sinφ sinψ+ cosφ sinθ cosψ) (61)

n ..
py = −

fb
m
(− sinφ cosψ+ cosφ sinθ sinψ) (62)

n ..
pz = g−

fb
m

cosφ cosθ (63)

Furthermore, it can be assumed that sinφ ≈ φ, cosφ ≈ 1, sinθ ≈ θ, and cosθ ≈ 1 for small angle
approximation, which leads to a simplified dynamic model as described in [59].
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4.2. Tracking Strategy

The tracking strategy used in this paper is based on proportional navigation (PN), which is a
well-known guidance law and has been widely used to enable a missile to catch its target in optimal
time. The constant bearing approach considers that the missile will finally collide with the detected
target if the LOS angle is kept constant. The PN method improves the constant bearing approach to
accommodate for target maneuver by accelerating the missile in a direction lateral to the LOS with
magnitude proportional to the rate change of the LOS angle. There are different types of PN methods
according to their different mathematical formulations and their performances have been analyzed
in [60], when applied to guidance of a quadrotor.

The desired acceleration
..
udes obtained by the PN method can be expressed as:

..
udes

= NL×
.
λ (64)

where
.
λ is rate change of the LOS angle, N is the navigation gain, and L is the normal direction of the

acceleration command that is calculated for different ways as follows:

LRTPN = uT − u (65)

LIPN =
.
uT −

.
u (66)

LPPN = −
.
u (67)

LNGL =

∣∣∣ .
u
∣∣∣u

|uT − u|
·

sin β∣∣∣∣ .
λ
∣∣∣∣ (68)

where LRTPN, LIPN, LPPN, and LNGL represent for Realistic True Proportional Navigation (RTPN) [61],
Ideal Proportional Navigation (IPN) [62], Pure Proportional Navigation (PPN) [63], and Nonlinear
Guidance Law (NGL) [64], respectively. uT,

.
uT,

..
uT ∈ R2 are the position, velocity, and acceleration

of the target, respectively, u,
.
u,

..
u ∈ R2 are the position, velocity, and acceleration of the interceptor,

respectively. |·| represents the magnitude of the vector and β is the angle between interception velocity
and LOS of the target.

In addition,
.
λ can be described as:

.
λ =

(uT − u) × (
.
uT −

.
u)

|uT − u|2
(69)

The aim of the research in this paper is to track a moving target with a quadrotor platform, and
coordinated control of the UAV and gimbaled camera is considered. As shown in Figure 12a,b, it can
be done in two directions: the longitudinal direction and the lateral direction [65].

The λχ, λγ are the lateral and longitudinal LOS angle of the target, respectively. The εχ, εγ are
the boresight error angle in lateral and longitudinal direction, respectively, which are controlled to
be zero (εχ, εγ → 0). The

.
uχT,

.
uγT are the velocity of the target in lateral and longitudinal directions,

respectively. The
.
uχ is the velocity of the UAV in lateral direction that is aligned with the axis xb of the

body frame B and the desired yaw angle of the UAV is ψdes = λχ. A pure pursuit guidance law is used
for tracking in the lateral direction, which works on the principle that, if the interceptor persistently
points towards the target (ψ→ λχ,

.
ψ→

.
λχ ), then it will ultimately intercept it.

When the tracking is initiated, the UAV follows the target by tracking its lateral LOS angle with
a forward speed

.
uχ, which is the horizontal component of the approaching velocity

.
uApp. To keep

following the target moving at unknown speed, the approaching velocity
.
uApp is decided by the scale

changes of the target in the image frame. Then, a PPN guidance law will activate and the acceleration
command

..
udes

PPN will be applied to the UAV according to the rate changes of λγ, as shown in Figure 12b.
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PN guidance law.

4.3. Flight Control System

The quadrotor is a typical underactuated system with only four independent inputs less than
the degrees of freedom, so only the desired position and desired yaw angle can be directly tracked.
The desired roll angle and the desired pitch angle are determined by the known ones. The flight control
system of a quadrotor is described in Figure 13.
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The pixel values uT, vT are the centroid of the target position in each image frame, and ST is the
scale change of the target, which is given by the proposed KCF tracker. The state of the quadrotor
(Θ,ω) expressed in global NED frame is given by the autopilot using an Extended Kalman Filter (EKF).

The desired position
[

xd yd zd
]T

and the desired yaw angleψd are given by the gimbal system in the
global NED using the above-mentioned tracking strategy. A cascade proportional-integral-derivative
(PID) controller is designed to individually control the 6 DOF motion of the quadrotor. The attitude
control loop is implemented on the microcontroller, while the outer loop for position control is
implemented on the onboard computer. All PID gains have been preliminarily tuned in hovering
flight tests. The outputs of the cascade PID controller are the desired force fd and the desired torque τd,
which are applied to the UAV body. The mixer gives the desired angular velocity of each motor to the
electronic speed controller (ESC), which is expressed as a Pulse Width Modulation (PWM) signal.

It is worth mentioning that the thrust value is not only determined by the desired position, but also
by the takeoff weight of the quadrotor platform. Thus, the height control can be considered as two
parts: a slightly changed base value for hovering control and a fast controller for position control.
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When the target is selected, the quadrotor will keep the distance relative to the target based on the
estimation of its scale changes in the image frame, which is shown in Supplementary Materials.

5. Experiments and Results

5.1. Experimental Setup

Most experimental UAVs are equipped with expensive sensors and devices, such as high-precision
IMUs, 3D light detection, and ranging (Lidar) sensors and differential global positioning system
(DGPS), which will definitely improve the control accuracy but are unaffordable in many practical
applications. To test the proposed tracking system in this paper, a customized quadrotor platform
(65 cm in diameter) is used to perform all the flight experiments, which weighs 4.2 kg including all the
payloads, as shown in Figure 14. The cost is much lower than the other platforms (e.g., DJI Matrice
200). The 3-axis gimbal at a dimension of 108 × 86.2 × 137.3 mm3, weighs only 409 g, as shown in
Figure 15a. The IMUs and encoders are consumer sensors at very low prices. The camera with focal
lengths ranging from 4.9–49 mm has a maximum resolution of 1920 × 1080 at 60 frames per second
(fps). The cost of the gimbaled camera is less than $400, which makes it very attractive considering its
great performance. The AS5048A magnetic rotary encoder used in the gimbal system measures the
angular position of each axis, which has a 14-bit high resolution output (0.0219 deg/LSB).
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As shown in Figure 15b, the quadrotor is equipped with an embedded microcontroller developed
by the Pixhawk team at ETU Zürich [66]. The selected firmware version is 1.9.2.

To achieve real-time image processing, a NVIDIA Jetson TX2 module is used as an onboard
computer to implement the tracking algorithm, which is almost the fastest and most power-efficient
embedded AI computing device. The output data of the vision system can be transferred from
the onboard computer to the Pixhawk flight controller using serial communication, which is based
on a MAVLINK [67] extendable communication node for the Robot Operation System (ROS) [68].
The control rate is at 30 Hz limited by the onboard processing speed. By using a 2.4 GHz remote
controller (RC), the tracking process can be initiated by switching to the offboard mode when a target
is selected.

5.2. Experimental Results and Analysis

To evaluate the performance of the proposed tracking and targeting system, we test it in different
situations. After selecting a target in the video streams, the gimbal system is activated and rotates
the camera to point at the selected target, which can be regarded as a step response. The boresight
error pixels are plotted in azimuth and elevation, respectively, which are also printed on the top left of
the screen.

As shown in Figure 16, the system responds rapidly and the steady-state error is about ±3 pixels,
while the initial errors are hundreds of pixels. This test is usually used to tune all the control parameters
of the gimbal system, which can be completed on the ground.
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Figure 16. Boresight error in pixels during ground step tests. (a) the response of the gimbal system in
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Then, the gimbal system and the onboard computer are fixed on the experimental quadrotor
platform for further tests. To aim at a target from the UAV, the motion and vibration of the platform
should be isolated. Once the target is locked, the UAV is in a fully autonomous mode controlled by the
integrated system. Figure 17 shows the results of the boresight error while the UAV is following a
pedestrian moving at 0.9–2 m/s. In about 250 seconds’ flight, an accuracy of ±9.34 pixels in the azimuth
and ±5.07 pixels in the elevation was achieved.
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While tracking a ground moving pedestrian, the altitude change of the target can be ignored in
most situations, which makes the task less difficult. However, tracking a flying drone is much more
complicated. The drones are able to change its position and velocity in a very short time, which may
cause tracking errors or failures. During the flight experiment, autonomous tracking of an intruded
drone has been achieved. Figure 18 shows the results of the boresight error while the UAV is tracking a
flying drone.
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Figure 18. Boresight error in pixels while the UAV is tracking a flying drone. (a) the response in
azimuth; (b) the response in elevation.

Some oscillations still remain in the current configuration, which occurred when the flight path
of the target suddenly changed. It is a great challenge for the system to catch up with the target in
such a short time. The deviations caused by the image transmission delay cannot be ignored, which is
about 220 milliseconds for the current system. Other factors such as image noises and illumination
changes may also have an impact on the tracking accuracy to some extent. The root mean square errors
(RMSEs) of boresight errors in drone tracking experiment are listed in Table 1, compared with the other
two tests.
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Table 1. Root mean square errors (RMSEs) of boresight errors in different cases.

RMSE (Pixel) Azimuth Elevation 2D

Step test 31.57 4.83 31.94
Pedestrian
following 9.34 5.07 10.63

Drone tracking 21.50 19.28 28.88

Figure 19 shows the process of a successful drone tracking experiment. During the flight, the
roll/pitch/yaw angle of the UAV, camera, and gimbal frames are plotted, respectively, in Figure 20a–c.
The actual approaching speed of the UAV has tracked the setpoint changes accurately as shown in
Figure 20d. The trajectories of the intruded drone and the interceptor are plotted in a local NED frame
as shown in Figure 21.

Higher control rate and less image transmission delay would significantly improve the response
speed and the accuracy, if better hardware configuration were used. However, considering that all
the sensors and onboard devices are low-cost, the performance of the proposed tracking system is
very attractive in practical applications. A video of the experiments is available in the Supplementary
Materials section (Video S1).
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6. Conclusions

In the presented work, we proposed an onboard visual tracking system which consists of a
gimbaled camera, an onboard computer for image processing and a microcontroller to control the
UAV to approach the moving target. Our system used a KCF-based algorithm to detect and track an
arbitrary object in real time, which has proved its efficiency and reliability in experiments. With the
visual information, the 3-axis gimbal system autonomously aims at the selected target, which has
achieved good performance during real flights. The proposed system has been demonstrated through
real-time target tracking experiments, which enabled a low-cost quadrotor to chase a flying drone as
shown in the video.

Future work may include using a laser ranging module attached to the camera, which is able to
provide an accurate distance of the UAV with respect to the target. Even though this will increase
the cost of the system, we look forward to its potential applications such as target geo-location and
autonomous landing. Performance improvements could also be achieved by using deep learning-based
detection algorithms combined with a large number of sample images. The CMOS sensors used in
this paper are low-cost, which could lead to the effect of rolling shutter [69]. If the error is dramatic,
compensation should be made to handle this issue.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/15/5064/s1,
Video S1: Gimbal-based Visual Tracking System for UAV.
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