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Abstract: This paper aims to apply and compare the performance of the three machine learning
algorithms–support vector machine (SVM), bayesian logistic regression (BLR), and alternating
decision tree (ADTree)–to map landslide susceptibility along the mountainous road of the Salavat
Abad saddle, Kurdistan province, Iran. We identified 66 shallow landslide locations, based on field
surveys, by recording the locations of the landslides by a global position System (GPS), Google Earth
imagery and black-and-white aerial photographs (scale 1: 20,000) and 19 landslide conditioning
factors, then tested these factors using the information gain ratio (IGR) technique. We checked the
validity of the models using statistical metrics, including sensitivity, specificity, accuracy, kappa,
root mean square error (RMSE), and area under the receiver operating characteristic curve (AUC).
We found that, although all three machine learning algorithms yielded excellent performance, the
SVM algorithm (AUC = 0.984) slightly outperformed the BLR (AUC = 0.980), and ADTree (AUC =

0.977) algorithms. We observed that not only all three algorithms are useful and effective tools for
identifying shallow landslide-prone areas but also the BLR algorithm can be used such as the SVM
algorithm as a soft computing benchmark algorithm to check the performance of the models in future.

Keywords: shallow landslides; machine learning; goodness-of-fit; support vector machine; bayesian
logistic regression; Kurdistan; Iran
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1. Introduction

A landslide is defined as the movement of the slope covers, including soil, rock, and organic
materials, under the influence of a gravitational force down the slope [1]. Among natural hazards
(e.g., pollution, flooding, earthquakes, and landslides), landslides, the topic of this paper, rank seventh
globally in terms of death and economic impact [2], including damage to roads rail lines, power lines,
and touristic and historical [3–5]. Landslides can significantly affect the geomorphic evolution of the
landscape that create some geological disasters throughout the world [6].

Iran is one such country; nearly 4900 destructive landslides recorded in the country up to the end
of September 2007, causing approximately USD 12.7 billion (126,893 billion Iranian Rials) damage [7,8].
Between 2500 and 4000, people have died in landslides between AD 763 and 2016 [9]. Slumps are the
most common mass movements in the region [9]. Debris and rock avalanches are relatively uncommon
but are responsible for much loss of life. Landslides are particularly frequent in the Alborz and Zagros
Mountains [4,9]. The risk posed by landslides in these areas is amplified by the inadequate scientific
knowledge and resources aimed at dealing with the problem [5,10]. The mountainous road of Salvat
Abad saddle is one of the vital links of the strategic road network in Kurdistan province of Iran. This
road corridor was severely affected by several landslides every year that caused damages to tens of
thousands of dollars every year [11].

Considering the damage from the landslides particularly along the roads, monitoring the areas
prone to landslide occurrence by preparing landslide susceptibility mapping is a mandatory for
preventing and mitigating the most vulnerable areas [4,12,13]. According to the definition, landslide
susceptibility refers to preventing and mitigating risk posed to the most vulnerable areas [14–16].
This map can specify the landslide prone areas with degrees of susceptibility so that land managers,
governments, environmental planners, and policy makers can manage these areas before a catastrophic
landslide. Indeed, the areas along the road, Salavat Abad, are classified into the same susceptibility
classes to introduce these areas to implementing organizations, in order to manage them through
control of the landslide before it occurs.

Many methods have been developed for landslide susceptibility mapping, for example (1)
expert knowledge-based models such as analytical hierarchy process (AHP) [17], PROMETHEE
II, and fuzzy AHP [18]; (2) bivariate and multivariate statistical models such as frequency ratio
(FR) [19–21]; index of entropy (IOE) [22–24], weighted linear combination (WLC) [25], certainty factors
(CF) [26,27], and logistic regression (LR) [15,28]; (3) deterministic (physical-based) models such as
Stability Index Mapping (SINMAP) [29], Shallow Landsliding Stability Model (SHALSTAB) [30],
Self-Organized Slope (SOSlope) [31], PRobabilistIc MUltidimensional shallow Landslide Analysis
(PRIMULA) [32], SHETRAN [33], Transient Rainfall Infiltration and Grid-based Regional Slope-Stability
Model (TRIGRS) [34], and (4) machine learning models. Literatures show that AHP, LR, and SVM
are the most commonly used methods [35]. Expert knowledge-based models are typically based on
questionnaires and expert opinions that may differ from one expert to another and also may suffer
from cognitive limitations centered around uncertainty and subjectivity [36]. Bivariate statistical
methods, although robust and flexible, lack sensitivity in their analysis of conditioning factors and also
oversimplify input data [37]. Multivariate methods allow users to order parametric importance before
using modeling, but require a more profound knowledge of mathematics, statistics, and software [38].

Recently, machine learning methods have gained popularity over expert knowledge-based
and bivariate and multivariate methods in studies of natural hazards because of their objectivity
and high accuracy. A wide variety of machine learning models are now in use in natural hazard
research, including: artificial neural network (ANN) [39,40], adaptive neuro-fuzzy inference system
(ANFIS) [41–44], support vector machine (SVM) [15,45,46], K-nearest neighbor (KNN) [47], logistic
model tree (LMT) [48,49], alternating decision tree (ADTree) [50–53], random subspace (RS) [54], credal
decision tree (CDT) [14], quantile regression (QR) [55], radial basis function (RBF) [56], stochastic
gradient descent (SGD) [57]. classification and regression tree (CART) [58], J48 decision tree [59],
reduced error pruning tree (REPT) [60–62], reduced error pruning tree (REPTree) [61,63], random
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forest (RF) [64], naïve bayes tree (NBT) [11,15], baysian logistic regression (BLR) [65], Fisher’s linear
discriminant function (FLDA) [66], bayes net (BN) [67], grey wolf optimizer (GWO) [68,69], naïve
bayes (NB) [70]; naïve Bayes tree (NBTree) [71–73], evidential belief function (EBF) [74], and kernel
logistic regression (KLR) [75].

All machine learning algorithms must be tested and validated in landslide-prone areas to select
those with the highest performance and prediction accuracy. Therefore, the main aim of this study
is to compare the efficiency of BLR, SVM, and ADTree algorithms to landslide susceptibility along
a road section using in Kurdistan province, Iran. BLR is an algorithm that is a combination of a
base-based theory algorithm and a logistic regression function. However, the ADTree is a decision
tree algorithm. Its performance on landslide modeling and susceptibility modeling has been earlier
confirmed and suggested [51,53,76–79]. Therefore, in this study, we aim to compare the performance
of a functional-based algorithm, SVM, a bayes-based theory algorithm, BLR, with a decision tree-based
algorithm, ADTree, for shallow landslide susceptibility modeling in the study area. SVM, in particular,
can handle complex and non-linear datasets [35], and thus, is a robust benchmark model that has
been successfully used in landslide susceptibility mapping. This study is a pioneering step in the
application of advanced predictive machine learning algorithms in landslide susceptibility research
in the study area Another objective is to check the ability of the BLR and ADTree algorithm as the
benchmark models, such as the SVM in landslide susceptibility mapping.

2. Study Area

The Salavat Abad saddle is located in southwest Kurdistan province, Iran (Figure 1). The study
area covers about 18.7 km2 and ranges in elevation from 1699 to 2500 m above sea level [19]. A road
through the saddle, which connects Sanandaj City to Tehran, the capital of Iran, has strategic, economic,
and socio-cultural importance. Much of Kurdistan province is located in the Zagros Mountains, a
tectonically active range dominated by sedimentary and volcanic rocks [80].
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Figure 1. The study area and its location in Kurdistan province (upper right) in northwest Iran (lower
right).

The climate of the study area is influenced by warm Mediterranean air masses, resulting in rainfall
and snowfall in winter, with an average precipitation of about 470 mm [19]. Many costly and fatal
mass movements occur in the winter season.
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3. Data Acquisition

3.1. Landslide Inventory Map

The dataset for this study comprises 66 landslides previously mapped by the Forest, Rangeland,
and Watershed Management Organization of Iran [19]. We examined the landslides by reviewing
aerial photographs (1:40,000 scale) and Google Earth image, and by inspection in the field. Most of the
landslides are the result of the slope modification of slopes due to road construction (Figure 2). In this
study, landslide bodies were converted into the points (central points) and each polygon of landslides
was considered as one landslide location that was applied for the modeling procedure.
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Figure 2. Examples of shallow landslides in the study area.

3.2. Landslide Conditioning Factors

Based on the literature, data availability, and our experience, we selected 18 landslide conditioning
factors for modelling: Slope angle, slope aspect, elevation, distance to road, topographic wetness index
(TWI), normalized difference vegetation index (NDVI), lithology, land use/land cover, rainfall, distance
to fault, plan curvature, profile curvature, slope length-angle index (LS), solar radiation, stream power
index (SPI), distance to the river, river density, and fault density. The factors are described briefly in
the following subsections:

3.2.1. Slope Angle

A map of slope angles was extracted from DEM, and values were then grouped into five categories
(0–30, 31–46, 47–56, 59–66, and >66◦) using a natural break classification method. Most landslides
occurred on slopes steeper than 47◦ (Figure 3a).
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Figure 3. Spatial database for landslide susceptibility analysis: (a) slope, (b) aspect, (c) elevation, (d)
distance to road, (e) TWI, (f) NDVI, (g) lithology, (h) land cover, (i) rainfall, (j) distance to fault, (k)
plan curvature, (l) profile curvature, (m) LS, (n) solar radiation, (o) SPI, (p) distance to river, (q) river
density, (r) fault density.

3.2.2. Slope Aspect

The slope aspect is defined as the cardinal direction of the maximum slope [81]. We extracted nine
slope aspect classes from the DEM with a resolution of 12.5 m, obtained from Advanced Land Observing
Satellite (ALOS) Phased Array L-type Synthetic Aperture Radar (PALSAR): North, northeast, northwest,
east, southeast, southwest, south, west, and flat. Most landslides are located on the southwest- and
east-facing slopes (Figure 3b).
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3.2.3. Elevation

An elevation map was extracted from DEM, and values placed in five categories using the natural
break classification method: 1557–1751, 1751–1917, 1917–2096, 2096–2300, and 2300–2515 m asl. Nearly
half of the landslides are located in the lowest elevation class (Figure 3c).

3.2.4. Distance to Road

Distances to the arterial road were separated into five categories using the “Euclidean distance
tool” in ArcGIS 10.2: 0–50, 50–100, 100–150, 150–200, and >200 m (Figure 3d).

3.2.5. Topographic Wetness Index

The TWI introduced by Beven and Kirkby [82] in rainfall-runoff modeling to identify the impact
of topography and wetness on rates of runoff. It can be computed as follows,

TWI = Ln(
χ

tanγ
) (1)

where χ is the specific catchment area and γ is the slope angle (in degree). We created a TWI layer and
defined five categories using the natural break classification method: <6, 6–7, 7–8, 8–9, and >9. Most
landslides are within the TWI > 9 class (Figure 3e).

3.2.6. Normalized Difference Vegetation Index

Normalized difference vegetation index (NDVI) provides a measure of vegetation within an
area [57]. NDVI can be formulated as follows,

NDVI =
(NIR(Band4) −Red(Band3))
(NIR(Band4) + Red(Band3))

(2)

where Red and NIR are the red and near-infrared bands, respectively. The NDVI map was generated
using Landsat 8 OLI from 2017. Our NDVI map is shown in Figure 3f.

3.2.7. Lithology

A geology map of the study area at a scale of 1:100,000, obtained from Geological Surveys of Iran
(GSI). The description of the lithological units are shown in Table 1, and its categories are shown in
Figure 3g.

3.2.8. Land Cover/Land Use

Our field survey indicated that most of the landslides in the study area have happened near the
road where the vegetation has been removed. In this study, we extracted a land cover/land use map
from the Kurdistan province land cover map printed at a scale of 1:100,000 (Figure 3h).

3.2.9. Rainfall

A mean annual rainfall map was prepared from data acquired from eight meteorological stations
in and around the study area using the IDW (Inverse distance weighted) interpolation method. We
defined five categories: 413–419, 419–422, 422–426, 426–430, and >430 mm (Figure 3i).

3.2.10. Distance to Fault

A map of fault distances was extracted from the geology map. We defined five categories based
on the manual classification method: 0–50, 50–100, 100–150, 150–200, and >200 m (Figure 3j).
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Table 1. Lithological units and its description of the study area.

Lithological
Unit Description Age Era Age Period

1 Kll1
Gray and light gray, thick-bedded to
massive, fetid orbitolina bearing
limestone.

MESOZOIC Early
Cretaceous

2 Kll2 Thick-bedded, gray to dark gray, rudist
and orbitolina bearing limestone. MESOZOIC Early

Cretaceous

3 Klv,12
Basaltic and andesitic volcanics, tuff,
volcanic breccia and calcareous shale with
intercalations of limestone.

MESOZOIC Early
Cretaceous

4 K213
Gray and light gray micritic limestone
and radioarian limestone with calcschiste
structure.

MESOZOIC Late Cretaceous

5 K2v
Basalt, andesite, spilitic basalte and
pyroclastic rocks with developed layering
and climbing.

MESOZOIC Late Cretaceous

6 Klv,13
Spilitic basalt, basalt and andesite lava
with intercalation of red, blue, gray
limestone, red shale and sandstone.

MESOZOIC Early
Cretaceous

7 Klv,14 Tuff, green tuff, andesite and andesitic
dacite, shale, limestone and sandstone. MESOZOIC Early

Cretaceous

8 Kls
Purpel to red medium to thick-bedded
sandstone with intercalation of
polymictic conglomerate and silty shale.

MESOZOIC Early
Cretaceous

9 K2sh

Black, dark gray, yellow shale, silty shale
and phillitic shale with minor sandstone
and micritic limestone intercalations.
(Sanandaj shale)

MESOZOIC Late Cretaceous

10 Qal Recent alluvium (alluvial channel
deposits). CENOZOIC Quaternary

11 Residential
area Salavat Saddle

3.2.11. Plan Curvature

Plan curvature provides a measure of convergence or divergence of runoff on slopes [83]. Values
can be positive (concave curvature), negative (convex curvature), or zero (flat slopes. A plan curvature
layer was extracted from the DEM and divided into five categories using the natural break classification
method: [(−0.0908)–(−0.0118)], [(−0.0118)–(−0.00355)], [(−0.00355)–(−0.0034)], [0.0034–0.0122], and
[0.0122–0.0704] (Figure 3k).

3.2.12. Profile Curvature

Profile curvature can affect the velocity of runoff and thus erosion [48]. We extracted the profile
curvature from the DEM and created five categories using the natural break classification method:
[(−0.119)–(−0.0134)], [(−0.0134)–(−0.0034)], [(−0.00429)–0.00296], [0.00296–0.0129], and [0.0129–0.112]
(Figure 3l).

3.2.13. Slope Length-Angle Index (LS)

The LS index was obtained by summing the slope length (L) and slope angle (S). It was extracted
from the DEM using SGAG software. We defined five LS categories using the natural breaks
classification method: 0–5.225, 5.226–10.73, 10.74–16.78, 16.79–24.75, and 24.76–70.13 (Figure 3m).
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3.2.14. Solar Radiation

Solar radiation was extracted from DEM in ArcGIS using the “Area solar radiation” tool and then
grouped into five categories: 256,000–506,000, 507,000–594,000, 595,000–660,000, 661,000–718,000, and
719,000–819,000 kw/hr (Figure 3n).

3.2.15. Stream Power Index (SPI)

SPI can be formulated as follows [84],

SPI = Ar tanγ (3)

where Ar is the specific catchment area and γ is the slope angle. We created an SPI map from the DEM
in SGAG software and then defined five categories based on the natural breaks classification method:
0–9651, 9652–42,460, 42,470–104,200, 104,300–206,500, and 206,600–492,200 (Figure 3o).

3.2.16. Distance to the River

A layer of river distance was created based on mapped rivers in the study area. We defined five
categories based on the manual classification method: 0–50, 50–100, 100–150, 150–200, and >200 m
(Figure 3p).

3.2.17. River Density

Our river density map shows the total length of the river per km2. Five categories were established
based on the natural break classification method: 0–4, 4–8, 8–12, 12–16, and >16 km/km2 (Figure 3q).

3.2.18. Fault Density

The fault density matrix is defined as the total length of the faults within a standard area of 1
km2 [85]. We prepared this map based on mapped faults and created five categories using the natural
break classification method: 0–2, 2–4, 4–6, 6–8, and >8 km/km2 (Figure 3r).

4. Machine Learning Algorithms

4.1. Support Vector Machine

Support vector machine (SVM) is one of the machine learning methods used for classification
and regression [86]. The main objective of the algorithm is to classify data with the highest confidence
margin using linear data sorting. It maps input data to a much higher level using the Phi function on a
training dataset. A linear equation called the ‘surface separator’ separates the data into two classes
(in the case of this study, landslide, and non-landslide). SVM minimizes error by classifying and
separating data with the help of a separator-hyperplane. Training points near the line of separation are
termed ‘surface vectors’ [87].

Consider set Xi, which includes linear training data i = (0, 2, 3, . . . , n), referred to as training
vectors. The training vectors contain two classes denoted by yi = ±1. The support vector machine
maximizes the two datasets by finding an n-dimensional hyperplane (Figure 4), expressed as follows,

1
2
||w||2 (4)

with the following condition,
yi((w.xi ) + b) ≥ 1 (5)
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where w is the normal separator hyperplane, b is a scalable datum, and (.) signifies a multiplication
operation. The following is obtained using Lagrangian coefficients of cost,

L =
1
2
||w||2−

n∑
i=1

λi(yi((w.xi) + b) − 1) (6)

where λi is the Lagrangian multiplier. Equation (7) can be minimized by using the w and b ratios as a
standard. For cases that are noisy and indistinguishable (Figure 4), a variable ξi can be used as a weak
meaning (slack variables ξi), in which case Equation (8) becomes:

yi((w.xi )+b) ≥ 1−ξi (7)

L =
1
2
||W||2−

1
vn

n∑
i=1

ξi. (8)
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4.2. Bayesian Logistic Regression

Bayesian logistic regression (BLR) has been used with a two-state dependent variable about
effective factors of landslides [88]. With this method, a logistic regression model is created based on the
relations between dependent and independent variables. Then, a Bayesian function is applied based
on the behavior and response of the effective factors using a prior probability function [88]. A Bayesian
function is created in three stages, as follows [88]:

(1) Determine the prior probability of parameters
(2) Determine the likelihood function for data
(3) Create a posterior distribution function for parameters
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If x is a training dataset and x = (x1, x2, . . . , xn), landslide conditioning factors, and y = (y1, y2) is a
dependent variable (landslides and non-landslides), a logistic function obtains the posterior probability
function for samples belonging to a specific class,

P(Class|x 1, x2, . . . , xn) =
1(

1 + exp(b+w0∗c+
∑n

i=1 wi∗f(xi))
) (9)

where xi are the effective factors, c is the prior log odds ratio (c = log P(class=0)
P(class=1) ), and b is the bias. w0

and wi are the weights trained by training data, and ith factors of xi are used to calculate the f(xi)

function using log P(xi |class=0)
P(xi |class=1) (for binary variables). A prior univariate Gaussian function is used to

calculate weights in Bayesian-logistic regression model,

P(W|σ i) = N(0,σi) =
1

√
2πσi

exp
−(w2)

2σI (10)

where ‘0′ and ‘σi’ are the data average, and variance, respectively [89].

4.3. Alternating Decision Tree

The alternating decision tree (ADTree) algorithm uses the rules of a tree algorithm for classification
by combining tree and boosting algorithms [90]. ADTree identifies and eliminates gaps among the tree
and boosting algorithms. The algorithm includes decision and prediction nodes. The decision node
expresses a situation, and the prediction node includes a numerical value [91]. ADTree first searches
the best constant prediction coefficient for the training data in the stem of the tree. The tree is then
grown based on the repetition of data, using the boosting algorithm, and a new rule is added. Next, a
decision node and two prediction nodes are created [90]. Then, the algorithm allocates weight to each
prediction node so that its predictability can be calculated by summing all weights [92].

(x1, y1), . . . , (xm, ym), are pixels in the training data, xi ∈ Rd, and yi is the equivalence of
occurrence and non-occurrence of landslides. The boosting algorithm grows the tree, with each
repetition (t) supporting two conditions–a precondition (Pt) and a group of rules (Rt). A group of
major conditions, C, is created by the weak algorithm in each repetition of the boosting algorithm. The
algorithm works as follows:

1- Initialization

Let Rt be correct for creating major rules, assuming a precondition (related to the selection of a
prediction node for entering the algorithm) and the condition (related to the decision node in the stem
of the tree). The first predicted amount is obtained by the following equation,

a =
1
2

ln
W+(T)
W−(T)

(11)

where W+(T) and W−(T) are the sums of positive, and negative weights, respectively, and they justify
the C condition in the training data.

2- Pre-adjustment

The test samples are weighted again by Wi,1 = Wi,0e−αyi

where t = 1,2, . . . , T

- Create a C group of rules by the weak algorithm using the weight-related to each training sample
Wi,t.
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- For each main precondition c1 ∈ Pt and each condition c1 ∈ Pt calculate:

Zt(c1, c2) = 2
(√

W + (c1̂c2)W − (c1̂c2) +

√
W + (c1̂

_
c 2)W − (c1̂

_
c 2)

)
+ W(

_
c 1) (12)

- Select c1, c2 with minima Zt(c1, c2) and run Rt+1 and Rt through the adding Rt rule so that the
precondition and condition are equal to, respectively, c1 and c2. Then predict the two prediction
amounts:

α =
1
2

ln
W+(c 1 ĉ 2)+ε

W−(c 1 ĉ 2)+ε
(13)

b =
1
2

ln
W+(c 1̂

_
c 2)+ε

W−(c 1̂
_
c 2)+ε

(14)

- Establish Pt+1 and Pt by adding c1̂c2 and c1̂
_
c 2

- Update the weights based on the following equation for each repeat:

Wi,t+1 = Wi,te−rt(xi)yi (15)

3- Output

Sum all weights and all major rules Rt + 1:

class(x) = sign

 T∑
t=1

rt(x)

 (16)

4.4. Multicollinearity Tests

The correlation between the factors increases the redundancy affecting the landslide modelling
and the accuracy of the results. Therefore, the multi-collinearity test of the conditioning factors is
necessary to analysis when evaluating landslide modeling and susceptibility. For this analysis, two
measures, including the tolerance (TOL) (TOL=1 − R2) and variance inflation factor (VIF) (VIF =

1/TOL), have been used in the multicollinearity test [93,94]. If TOL > 0.1 and VIF < 10, there is a
correlation among the factors and the factor with having such information should be removed from
the modeling process [48,75].

4.5. Selecting the Most Important Conditioning Factors by IGR

Several methods have been used to determine the importance of different factors for landslide
occurrence, notably fuzzy-rough theory [95], relief algorithm [96], information gain, and information
gain ratio [97]. Information gain specifies the amount of information that a factor can provide about the
class. It selects factors with high levels of probability, and does not consider factors with low entropy
level. This result is achieved using the IGR index, which was introduced by Quinlan in 1996 [98].
Effective factors for prediction have high IGR values. In this study, we evaluated the importance of our
18 conditioning factors using the Average merit (AM) of the IGR technique [62]. Average merit (AM)
quantitatively determines the importance and ranking of factors [62]. The AM is the weight computed
by the IGR feature selection technique.

Assume S is the training dataset with n input samples, and also that n (Li, S) is the number of
training data in S belonging to Li class (landslide and non-landslide). Then:

In f o(S) =
2∑

i=1

n(Li, S)
|S|

log2
n(Li, S)
|S|

(17)
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If we consider the factors impacting landslides, the needed information gain for dividing S into
(S1, S2, . . . ., Sm) is as follows:

In f o(S, A) = −
m∑

j=1

S j

|S|
In f o(S) (18)

The following equation is used to calculate the information gain for each effective factor, for
example, slope angle (A):

IGR(S, A) =
In f o(S) − In f o(S, A)

SplitIn f o(S, A)
(19)

SplitIn f o is the information gained by the ratio of S training data to a subset with m items using
the following equation:

SplitIn f o(S, A) = −
m∑

j=1

S j

|S|
log2

S j

|S|
(20)

4.6. Validation and Comparison of the Models

In this study, we evaluated model accuracy using the following metrics: Sensitivity, specificity,
accuracy, kappa, root-mean-square deviation (RMSE), and area under the curve (AUC). There are
four types of possible significance, i.e., true positive (TP), false positive (FP), true negative (TN), and
false-negative (FN). TP is the number of expected landslides that are truly landslides. FP is the number
of expected landslides that are non-landslides. TN denotes the number of expected non-landslides
that are truly non-landslide, whereas FN is the number of non-landslides. Better predictive ability
is indicated by higher values of sensitivity, specificity, AUC, and accuracy and the lower values of
RMSE [21]. A kappa index value of 1 indicates an ideal model, whereas a value of −1 signifies a
non-reliable model. The mentioned metrics are expressed as follows:

Sensitivity =
TN

TN + FP
(21)

Speci f icity =
TN

TP + FN
(22)

Accuracy =
TP + TN

TP + TN + FP + FN
(23)

Kappa =
O− E
1− E

(24)

RMSE =

√√
1
n

n∑
i=1

(Xpredicted −Xactual)
2 (25)

where O and E are the observed and expected agreement, respectively, Xpredicted and Xactual are the
predicted and observed values of the ith instance from models, and n is the number of instances.

The receiver operating characteristic (ROC) curve has been used to test the overall performance of
LSM methods [93]. The area under the ROC curve is the statistical summary of the overall performance
of models [72]. The x, and y axes of the AUC are, respectively, the sensitivity and 100-specificity. The
values of AUC range from 0 to 1, with values closer to 1 indicating a better predictive ability; an
AUC value of 1 indicates perfect model performance [94]. The schematic diagram of methodology is
illustrated in Figure 4.
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5. Results and Analysis

5.1. Correlation between the Conditioning Factors

Table 2 shows the correlation between 18 conditioning factors. The results conclude that there
is no correlated problem among the models, and all of them can be selected as inputs to modeling
procedure by the machine learning algorithms.

Table 2. The multicollinearity tests of the factors.

Factors TOL VIF

Slope angle 0.520 1.587
Aspect 0.322 2.184

Elevation 0.212 1.135
Profile curvature 0.825 2.381
Plan curvature 0.705 1.843

Distance to road 0.553 2.529
NDVI 0.498 1.814

Land use 0.340 2.321
Lithology 0.263 1.311

LS 0.541 1.849
Rainfall 0.887 1.552

Solar radiation 0.670 2.698
TWI 0.776 1.541
SPI 0.732 1.873

Distance to river 0.820 2.987
River density 0.922 1.784

Distance to fault 0.712 2.835
Fault density 0.825 2.781

5.2. The Most Important Landslide Conditioning Factors in the Study Area

Each conditioning factor contributes differently to landslide occurrence. Therefore, their predictive
power must be assessed. According to the values of the AM of IGR (AMIGR) with 10-fold cross-validation,
only 10 factors of the 18 conditioning factors have predictive power (Table 3). We, therefore, used only those
10 factors when modeling. Distance to road (AMIGR = 0.1434) is the most significant factor, followed by
NDVI (AMIGR = 0.0725), land use (AMIGR = 0.0187), slope aspect (AMIGR = 0.0139), lithology (AMIGR
= 0.0097), slope angle (AMIGR = 0.0091), rainfall (AMIGR = 0.0090), distance to fault (AMIGR = 0.0087),
elevation (AMIGR = 0.0078), and TWI (AMIGR = 0.0040) (Table 3).

Table 3. Ranks of significant landslide conditioning factors based on the IGR technique and the
training dataset.

Conditioning Factor Rank AMIGR

Distance to road 1 0.1434
NDVI 2 0.0725

Land use 3 0.0187
Aspect 4 0.0139

Lithology 5 0.0097
Slope angle 6 0.0091

Rainfall 7 0.0090
Distance to fault 8 0.0087

Elevation 9 0.0078
TWI 10 0.0040
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5.3. Landslide Modeling and Evaluation Process

After selecting significant conditioning factors, we performed the modeling process on the training
dataset using SVM, BLR, and ADTree and then tested the results. The goodness-of-fit analysis indicates
that all landslide models predict the spatial distribution of landslides well (Table 4), although the
SVM model performed best with values of sensitivity, specificity, accuracy, kappa, RMSE, and AUC of,
respectively, 0.943, 0.981, 0.962, 0.924, 0.192, and 0.986. The sensitivity and specificity values show that
94.3% of landslides were correctly classified as landslides and 98.1% of non-landslide locations were
correctly classified as non-landslide locations. In comparison, the BLR model results yielded values
of sensitivity, specificity, accuracy, kappa, RMSE, and AUC of, respectively, 0.906, 0.981, 0.943, 0.886,
0.237, and 0.943, and corresponding values for ADTree are 0.8887, 0.943, 0.915, 0.846, 0.245, and 0.912.

Table 4. Performances of the SVM, ADTree, and BLR algorithms on the training dataset.

Parameter SVM BLR ADTree

TP 50 48 47
TN 52 52 50
FP 1 1 3
FN 3 5 6

Sensitivity 0.943 0.906 0.887
Specificity 0.981 0.981 0.943
Accuracy 0.962 0.943 0.915

Kappa 0.924 0.886 0.846
RMSE 0.192 0.237 0.245
AUC 0.986 0.943 0.912

Next, we assessed the predictive power of the models using the validation dataset (Table 5). The
SVM model yielded the highest sensitivity (85.7%), followed by the BLR (78.6%) and ADTree (71.4%)
models. The SVM model also provided the highest specificity value (91.7%), followed by the BLR
(83.3%) and ADTree (81.8%) models. Accuracy values for the three models are 88.5% (SVM model),
80.8% (BLR), and 76.0% (ADTree). Kappa (0.869) and AUC (0.976) for the SVM model are greater than
corresponding values for the BLR and ADTree models. Finally, the SVM model has the lowest RMSE
(0.251), followed by the BLR (0.277) and ADTree (0.343) modes. Overall, the results from both the
training and validation datasets show that the SVM model outclassed the BLR and ADTree models in
predicting the locations of landslides in the study area.

Table 5. Performances of the SVM, ADTree, and BLR algorithms on the validation dataset.

Parameter SVM BLR ADTree

TP 12 11 11
TN 11 10 9
FP 1 2 2
FN 2 3 4

Sensitivity 0.857 0.786 0.714
Specificity 0.917 0.833 0.818
Accuracy 0.885 0.808 0.760

Kappa 0.869 0.846 0.751
RMSE 0.251 0.277 0.343
AUC 0.976 0.923 0.910

In addition to the comparison of the performance of the models, based on the statistical-indexed
base metrics, we assessed the efficiency of the three algorithms based on the CPU time during the
modeling implementation. We concluded that in the SVM algorithm the CPU time to process by the
training and validation datasets were 0.03 s; however, in the BLR this time for training dataset was 0.05
s and for validation dataset was 0.03 s. Moreover, the ADTree that had the lowest goodness-of-fit and
prediction accuracy had 0.09 s and 0.06 s based on the training and the validation datasets, respectively.
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5.4. Development of Landslide Susceptibility Maps

After training the SVM, BLR, and ADTree machine learning models with the training dataset
and validating them with the validation dataset, we ran the models and obtained outputs as weights
(landslide susceptibility indexes, LSIs). LSIs were assigned to each pixel of the study area to construct the
landslide susceptibility maps. There are a variety of classification methods in ArcGIS, including manual,
equal interval, natural break, quantile, geometric interval, and standard deviation used [16,35,98–100].
We selected the most classification used methods to create the landslide susceptibility maps such
as natural breaks, quintile, and geometric intervals for reclassifying the LSIs. In the natural breaks
method, no jump is detected in the values [101]. However, the quintile and geometric interval methods
essentially split the distribution of susceptibility values into equal divisions, with similar proportions
of the total area attributed to each class [102].

As selecting the method used to reclassify the LSIs depends on the LSI histogram [99,103,104],
we prepare the histogram of the three mentioned methods based on the landslide pixel against
susceptibility classes. A histogram is a better that most of landslide pixels have been placed in high
susceptibility (HS) and very high susceptibility (VH) classes. Then, we chose the quintile classification
method for the landslide susceptibility map derived using the SVM and ADTree models, and the
geometrical interval method for the model based on the BLR (Figure 5). Each map has five susceptibility
classes: very low susceptibility (VLS), low susceptibility (LS), moderate susceptibility (MS), high
susceptibility (HS), and very high susceptibility (VHS) (Figure 6).
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Figure 6. Landslide susceptibility maps generated by (a) SVM with the quantile method, (b) SVM with
the natural break method, (c) SVM classified with the geometrical interval method, (d) BLR with the
quantile method, (e) BLR with the natural break method, (f) BLR with the geometrical interval method,
(g) ADTree with the quantile method, (h) ADTree with the natural break method, and (i) ADTree with
the geometrical interval method.

5.5. Evaluation of Landslide Susceptibility Maps

We used the ROC curves for the training and validation datasets to evaluate the machine learning
models. The probabilities of landslides calculated for the training and validation datasets provide
measures of the performance, and prediction accuracy of the models, respectively [11]. The x-axis, and
y-axis of the ROC curves are, respectively, the sensitivity and 100-specificity indices. The performance
and prediction accuracy of the three models are shown in Figure 7a,b, respectively. The performance
of the SVM model is slightly higher (AUC = 0.988) than that of the BLR (AUC = 0.985), and ADTree
(AUC = 0.977) models. The prediction accuracy of SVM is also slightly higher (AUC = 0.984) than that
of the BLR (AUC = 0.980) and ADTree (AUC = 0.977).
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6. Discussion

The susceptibility of an area to landslides is a function of different possible conditioning factors. As
all of the factors might have no predictive capability, the most important must be objectively chosen to
strengthen the performance and accuracy of the learning algorithms in the training phase. In this study,
we used the IGR technique to identify factors with high predictive powers. The weight of each factor in
the training phase was calculated using an entropy index. In this study, tested 18 conditioning factors
with a raster resolution of 10 m and found that 10 factors were significant: Distance from the road,
normalized difference vegetation index, land use, slope aspect, lithology, slope angle, precipitation,
distance from faults, elevation, and topographic wetness index. Eight factors were removed from
final modeling because they had AM values of 0: e distance from stream, slope-length, annual solar
radiation, profile curvature, plan curvature, fault density, drainage density, and stream power index.

Researchers have used three main methods to display classes on landslide susceptibility maps:
the natural break, geometrical interval, and quantile methods. We statistically tested the three methods
for producing maps using the three machine learning algorithms investigated in this study. The natural
breaks classification method was selected for the SVM and ADTree models, and the quantile method for
the BLR model. Most of the researchers in landslide susceptibility mapping confirmed the capability of
the natural break method to classify the LSIs [105–109]. The quantile method among the classification
methods is generally the most effective and commonly used method [104,110,111]. Nhu et al. [16]
applied the natural break, geometrical interval, and quantile and based on their histogram of landslide
probability values selected the natural break classification method for the random forest algorithm.
However, the geometrical interval method for the three ensemble models of rotation forest-based
random forest (RF-RAF), bagging based random forest (BA-RAF), and random subspace-based random
forest (RS-RAF) to produce shallow landslide susceptibility maps.

Distance to the road is the factor most closely related to landslides in the study area. All the
susceptibility maps showed that most landslides are less than 100 m from the road through the study
area. The road is located at high elevation in wet areas (high topographic wetness index), which
are other significant landslide conditioning factors. In recent years, the road through the study area
has been widened, and new bridges have been constructed, changing the landscape and initiating
instability along the road. The road is also trafficked by trucks and other heavy vehicles. Therefore,
they should be more considered during road widening and other engineering construction in future.
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The second and third most crucial landslide conditioning factors are the normalized difference
vegetation index land use. Most landslides in the study area have happened in unvegetated or sparsely
vegetated areas, including rangeland.

Slope aspect is another critical factor as landslides tend to occur on slopes oriented toward the
northwest and west because these aspects experience more precipitation and runoff than other factors.
Precipitation in the study area is higher than the average for the country. By considering landslides
susceptibility maps and its histograms with three models, it can be concluded that the susceptible areas
of landslides belong to a very high susceptible class.

After selecting appropriate landslide conditioning factors, we prepared landslide susceptibility
maps using three machine learning models and the natural break, geometrical intervals, and quantile
classification methods. Our finding concluded that natural break and quantile had most concordance
and consistency with the reality of the study area. We have shown that the SVM algorithm has the
highest goodness-of-fit and prediction accuracy of the three machine learning algorithms tested in this
study based on both training and validation datasets. This result is consistent with the findings of other
landslide researchers [22,112–117]. For example, Kalantar et al. [115], compared the performance of
SVM, LR, and ANN for landslide assessment in a catchment in the Dodangeh watershed, Mazandaran
province, Iran. They concluded that SVM outperformed the other models, and therefore, it was
potentially known as the most powerful algorithm for landslide modeling in their study area. Abedini
et al. [116] compared the performance of the SVM and LMT models for landslide susceptibility mapping
in Kamyaran county, also in Kurdistan province, and confirmed the superiority of the SVM model.
SVM has also been successfully used in landslide susceptibility mapping in the Cameron Highlands,
Malaysia [19]. In contrast, Nhu et al. [15] compared LMT, LR, NBT, ANN, and SVM models for
landslide susceptibility mapping in Bjar city, Kurdistan province, and found that LMT had the highest,
and SVM the lowest, goodness-of-fit and prediction accuracy.

According to the best of our knowledge of the literature on landslide susceptibility mapping, SVM
can be successfully used as a benchmark computing machine learning algorithm in new ensemble
models [118,119]. For example, Pham et al. [119] proposed a new ensemble model consisting of random
subspace base classification and regression tree (RSSCART) for landslide modeling and assessment
in the Luc Yen district of Yen Bai province, Viet Nam. They compared their new ensemble model,
the SVM benchmark model. SVM offers several advantages over other machine learning models: (i)
It is free from feature selection techniques that are required by other models such as decision trees;
(ii) it can handle complex and non-linear problems with large datasets; and (iii) it solves the convex
quadratic programming optimization problem of separating the hyper-plane and thus is a suitable
replacement for artificial neural networks [35,113,120].

Our results indicate that the BLR algorithm outperformed ADTree in the landslide modeling
process and susceptibility map assessment. BLR is an LR method, within the Bayesian paradigm,
that includes a posterior distribution function for evaluating each landslide conditioning factor. BLR
also offers several advantages that make it as a robust algorithm for modeling: (i) it can estimate
probability intervals of landslide occurrence; (ii) it can be used with small samples, as it does not rely
on large-sample approximations; (iii) available prior information about regression coefficients can be
incorporated in the Bayesian model; and (iv) multi-level data or models are particularly suited to the
hierarchical structure of Bayesian modeling [121,122]. The performance and prediction accuracy of
the BLR model has been confirmed and reported, not only for landslide modeling [65,88], but also for
flood [123] and land subsidence [92] susceptibility mapping.

ADTree has been suggested and used by some environmental researchers [53,92,124]. An
advantage of using ADTree is that it has the fastest induction time for domain problems with few
discriminative features [125]. Moreover, it has been successfully used as a base classifier in coupled
ensemble models, including multiboot (MB), bagging (BA), random subspace (RS), and rotation
forest (RF) for landslide susceptibility mapping [51,78]. Our results will be useful to landslide hazard
managers, decision-makers, and researchers when selecting the most appropriate models for landslide
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susceptibility mapping. However, we acknowledge the limitations of the present study, largely
uncertainties in input data. For example, results can differ depending on the sample size and raster
resolution. Shirzadi et al. [78] studied these uncertainties and suggested a raster resolution of 10 m
for training/validation sample sizes 60/40% and 70/30%; and a resolution of 20 m for sample sizes
of 80/20% and 90/10%. Another limitation of the current study is related to model selection. Each
algorithm has a specific probability distribution function or rule, not all of which fit a given training
dataset. Therefore, it is necessary to test the models and select the best one for a given study. This
process is mainly done using a trial-and-error technique and is time-consuming.

A limitation of landslide susceptibility mapping, in general, is that maps generated with
machine learning techniques can accurately show where landslides are likely to occur based on
geo-environmental factors, but the important physical, mechanical, and elastic properties of soil such
as porosity, permeability, cohesion, and pore water pressure are not considered. These soil-related
properties strongly control landslide occurrence at the site scale, yet preparing maps showing their
distributions is costly and time-consuming. We recommend that researchers consider these factors and
specially to use them in conjunction with slope stability models and deterministic numerical models
that address the factor of safety (FOS). For example, Shallow Landsliding Stability (SHALSTAB) and
SINMAP (Stability Index MAPping). These models couple a hydrologic model with an infinite slope
form of the Mohr-Coulomb failure law to spatially predict slope failures. Therefore, one of the ways to
enhance the accuracy of the susceptibility maps is to use the soil-related factors in future.

Additionally, the application of high-resolution data such as airborne laser scanning of Light
Detection and Ranging (LiDAR) not only could enhance the quality of the conditioning factors but
also the prediction accuracy of the models. The ability of high-resolution data has been confirmed
and evaluated by some landslide researchers [99,126–128]. For example, Jebur et al. [128] by very
high-resolution data, LiDAR, optimized the used landslide conditioning factors, and they concluded
that a high-quality, informative database, is essential and classification of landslide types prior to
landslide susceptibility assessment is necessary to help improve model performance.

7. Conclusions

Accurate landslide susceptibility maps provide land-use managers and government officials with
a valuable tool for managing landslide hazard and risk. In this paper, we evaluate the performance
and prediction accuracy of three well-known machine learning models (SVM, BLR, and ADTree) for
landslide susceptibility mapping in the Salavat Abad saddle, Kurdistan province, Iran. The saddle is
an important area that connects Kurdistan to other provinces of Iran, and thus, a priority for landslide
management and remediation. We determine the most critical geo-environmental factors using the
IGR technique to delineate better, visualize, and interpret landslide-prone areas. In our study area, the
essential factors for landslide modeling are distance to road, NDVI, and land use. Our models show
that the area bordering the arterial road in the Salavat Abad saddle is most susceptible to landsliding.
We also show the SVM algorithm has a high goodness-of-fit and prediction accuracy of landslides in the
study area, and that BLR and ADTree are suitable alternatives in the study area. Therefore, we suggest
the SVM and BLR as soft computing benchmark models in similar areas in terms of topographic,
climate, and lithology features.
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