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Abstract: Colorectal polyps are critical indicators of colorectal cancer (CRC). Blue Laser
Imaging and Linked Color Imaging are two modalities that allow improved visualization of
the colon. In conjunction with the Blue Laser Imaging (BLI) Adenoma Serrated International
Classification (BASIC) classification, endoscopists are capable of distinguishing benign and
pre-malignant polyps. Despite these advancements, this classification still prevails a high
misclassification rate for pre-malignant colorectal polyps. This work proposes a computer aided
diagnosis (CADx) system that exploits the additional information contained in two novel imaging
modalities, enabling more informative decision-making during colonoscopy. We train and benchmark
six commonly used CNN architectures and compare the results with 19 endoscopists that employed
the standard clinical classification model (BASIC). The proposed CADx system for classifying
colorectal polyps achieves an area under the curve (AUC) of 0.97. Furthermore, we incorporate
visual explanatory information together with a probability score, jointly computed from White Light,
Blue Laser Imaging, and Linked Color Imaging. Our CADx system for automatic polyp malignancy
classification facilitates future advances towards patient safety and may reduce time-consuming and
costly histology assessment.

Keywords: blue light imaging; linked color imaging; colorectal polyp classification; artificial intelligence;
deep learning; CADx; CNN

1. Introduction

Colorectal cancer (CRC) is the fourth cause of cancer-related death worldwide, with the highest
incident rates in developed countries [1,2]. An early diagnosis of CRC can prevent spreading
throughout the colon and avoid further complications. Colorectal polyps (CRP) are precursor lesions
and indicators of colorectal cancer. There are roughly two classes of CRPs: (1) non-neoplastic CRPs,
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which include the hyperplastic polyps (HP); and (2) pre-malignant CRPs, comprising adenomas (ADs)
and the sessile serrated adenomas (SSAs). HPs are considered benign polyps, whilst ADs and SSAs are
capable of developing into CRC when kept untreated [3]. In consequence, not all CRPs are removed,
as different types of colorectal polyps lead to a different risk of progression into CRC. However, even for
experienced and trained endoscopists, it is hard to differentiate between benign and pre-malignant
CRPs based on their visual appearance [4]. Therefore, current medical protocols dictate that all detected
colorectal polyps should be resected to undergo histological evaluation. However, this protocol has
two considerable drawbacks, since (1) unnecessary removal of benign polyps exposes the patient to
additional risks of polypectomy-related complications and (2) histological examination of all resected
polyps leads to significantly increased costs. In order to minimize both the risk and cost, the strategy
of resect-and-discard has been proposed for diminutive (≤5 mm) adenomatous polyps [5–7] and the
diagnose-and-leave strategy for diminutive hyperplastic polyps [8,9]. In spite of the aforementioned
strategies, visual differentiation of CRPs is an ongoing challenge in the clinical endoscopy routine.
White light endoscopy (WL) is the most common technique for detecting lesions in the intestinal tract,
but it falls behind when enhancing the visualization of the vessels and the mucosa. Compared to WL,
chromoendoscopy techniques [10] are capable of achieving high-contrast results, but they require the
injection of chemical dyes into the body. Similar visual effects can be achieved with the use of in-vivo
optical filters, like Narrow-Band Imaging (NBI) [11,12]. An alternative to NBI is the four-LED Multi
Light Technology (Fujifilm Co.), based on the combination of four types of light as source emitters:
blue-violet, blue, green, and red. Blue Light Imaging (BLI) and Linked Color Imaging (LCI) are two
of the observation modes of the four-LED Multi Light Technology that allow enhanced visualization
of hemoglobin. BLI intensifies the blue light emission in the range of 410 nm, which enhances the
visualization of the vessels and the mucosa. Alternatively, LCI accentuates color contrast by decreasing
the intensity of blue-light and emphasizing red-light, providing better delineation and detection of
lesions and inflammation [13,14].

The increasing development of new acquisition systems and the growing need of in-vivo
discrimination between different types of CRPs introduces new challenges onto image interpretability
in clinical practice. Each new imaging mode comes with its own learning curve and reveals
potential clues that enable in-vivo histology assessment. Computer-aided detection (CADe) and
diagnosis (CADx) systems facilitate fast and objective decision-making during clinical assessment,
offering medical experts additional information for medical diagnosis. Furthermore, while providing
the endoscopist with additional evidence to support the diagnosis, it can also shorten the learning
curve for such new modalities by pointing out the relevant visual clues for treatment decisions.

Although gastroenterologists are well-trained in identifying suspicious areas in the colon,
there has been a rapid increase in the development of CADe systems to help localize CRPs from
colonoscopy images. The introduction of deep learning in medical imaging and the increased
availability of large datasets, both public and private, have helped to shape CADe systems towards
real-time detection. Several studies have proposed end-to-end CNNs to tackle the problem of colorectal
polyp detection, which aims to differentiate between normal bowel tissue and polyps. Such work has
been explored on several datasets of WL and NBI [15–19], achieving specificity and sensitivity higher
than 90% and successfully locating polyps on video frames. Given the potential of CNN, the next
logical step is to observe its capabilities in a real clinical environment. In the study of Urban et al. [20],
a CADe system was trained with 8641 WL and NBI polyp images. The CNN was tested on an external
dataset with a variety of polyp sizes and achieved an accuracy of 96.1%, with an area under the
curve (AUC) of 0.99. Additionally, 3 experts reviewed a set of colonoscopy video frames with and
without assistance of the CNN and an increase in polyp detection was observed after employing
the CADe system. A similar study was conducted by Wang et al. [21], where an open nonblinded
trial was performed on 1058 patients, of which 536 were analyzed with colonoscopy and 522 were
subjected to colonoscopy with a CADe system. The system achieved specificity of 95.9% and an
AUC of 0.98 on different polyp sizes and types. The study observed an increased performance
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on polyp detection when the experts were assisted by a CADe system. Overall, in recent years,
systems for polyp detection have achieved impressive results and been shown to be an effective
tool on assisting medical experts. Assuming a high detection rate, the following issue presented
to clinicians is to visually identify a polyp for being benign or pre-malignant, which imposes an
extra challenge that several studies have tried to overcome. In early studies, CRPs were classified
based on local features from blood vessels using NBI images [22–24], or exploiting a combination of
chromoendoscopy, WL, and NBI [25]. In Scheeve et al. [26], handcrafted features were used to predict
the histology of polyps using Support Vector Machines (SVMs) and clinical classification models.
The development of CNNs also had a great impact on colorectal polyp classification. Initial work
employed classifiers using features extracted from broadly used CNNs [27–30], such as AlexNet,
ResNet, or InceptionNet. Next, a more traditional classifier such as SVMs was required to classify
CRPs between healthy and malignant. The early success pushed the development of several CADx
systems to classify polyps using different classification schemes. In Konami et al. [31], high-accuracy
results were obtained (sensitivity, 93.0%; specificity, 93.3%) using SVMs on a dataset of 118 lesions
obtained with NBI magnifying colonoscopy. The study developed a CADx system for the Hiroshima
classification. In a similar fashion in Mori et al. [32], a CADx was developed for CRP classification from
images, obtained with NBI and stained endocytoscopy. The study employed SVM which required
a three-step process to perform the polyp prediction. As the availability of medical data increased,
alternative approaches using more recent deep learning frameworks allowed the design of end-to-end
predictions. In Chen et al. [33], a framework was developed to classify diminutive polyps using
magnified NBI. The magnified modalities allow for detailed imaging of lesions but require a high-level
of precise movement of the endoscope, which makes it a less desirable technique in clinical usage.
More recently, in Byrne et al. [34], a deep learning framework was developed to classify unaltered
video frames of nonmagnified NBI to classify polyps using the NICE classification. One main arising
issue is that the NICE classification does not incorporate SSAs polyps, which causes doctors to consider
them as dangerous as ADs. Despite this aspect, the study presents a great method to accurately
classify polyps during real-time colonoscopy. The current CADx studies have focused their potential
around NBI, whereas BLI and LCI have not yet seen significant developments with the capabilities of
artificial intelligence.

In our previous work [35], we collected a dataset of 203 patients with WL, BLI, and LCI. The limited
dataset constrained the classification of our data. Therefore, we have explored and extracted features
from a pretrained ResNet50 with the aim to classify the dataset of polyps between benign and
pre-malignant. We have trained the features by combining single SVMs for each modality and
evaluated the results via Leave-One-Patient-Out Cross-Validation (LOPOCV). Our study was finalized
by incorporating the information of WL, BLI, and LCI and combining the posterior probabilities of the
trained model.

In this work, we present a new study which builds further on our previous research in the
following points.

1. Our dataset is improved with 458 new patients resulting in a total of 2919 images obtained from
three different hospitals.

2. We perform a benchmark with mostly used state-of-the-art colorectal polyp deep learning
architectures, in order to train an end-to-end CNN, evaluated with a test set of 60 patients
obtained with WL, BLI, and LCI.

3. We build a CADx system to classify CRPs between benign and pre-malignant and we compare
our results with the knowledge and expertise of 19 endoscopists (13 novices and 6 experts).

4. We present a probability score to the endoscopists, which is computed from the average prediction
of WL, BLI, and LCI.

5. Our developed CADx systems provides explainable visual data from the CNN to contribute to
smooth decision-making.
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Our study concludes with showcasing how our CADx system could perform in clinical routine
and how the outcomes can offer benefits to the endoscopists during real-time colonoscopy.

2. Materials and Methods

2.1. Patient Inclusion and Data Acquisition

The data collection was carried out in a prospective fashion, according to a predefined image
acquisition protocol, in the Maastricht University Medical Center+ (MUMC+) and the Catharina
Hospital Eindhoven (CZE), both in the Netherlands, and the Queen Alexandra Hospital in Portsmouth,
United Kingdom. The training dataset consisted of a total of 468 patients, with 2319 pre-malignant
polyps and 420 benign, with CRPs of all sizes, from diminutive polyps to large polyps. The dataset
includes polyps acquired in WL, BLI, LCI, and I-Scan (HDWL; Mode 1, 2, and 3) modalities.
Using I-Scan data adds robustness to the algorithm, as all modes have almost similar visual properties
as the three other modalities. The test set was restricted to 60 patients to match with the exact same
patients analyzed by endoscopists (further explained in Section 2.6). All the test set was acquired from
CZE, with 45 patients identified as pre-malignant polyps and 15 benign. For each test patient, a single
image of the polyp was acquired at different time steps with three different modalities—WL, BLI,
and LCI—adding to a total of 180 polyp images. Figure 1 summarizes the data collection described
above. All collected data was made fully anonymous prior to the study.

Patients screened(n = 461)

135 pre-malignant
45 benign

2,319  pre-malignant
420 benign

Include if HP,
SSA or AD

3 patients with
carcinoma

No

n=458

Yes

Training data

1629  I-Scan (HDWL,
modes 1, 2 and 3)

440 BLI

290 LCI

380 WL

n=398
(2739 images)

60 LCI

60 WL 60 BLI

n = 60
(180 images)

Testing data

Figure 1. Data collection diagram. Patients with carcinoma were excluded. The dataset contained
representatives of several modalities, White Light (WL) and High Definition White Light (HDWL),
Blue Laser Imaging (BLI), Linked Color Imaging (LCI).
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2.2. Data Preprocessing

In order to obtain optimal classification, the central region of the image was automatically selected
as the ROI. The cropped region ensures a coverage of the polyp area, as well as its surrounding
texture. Successively, the dataset was normalized by subtracting the mean and by dividing the
standard deviation of the pretrained ImageNet data. For the last step, each input image was
resized to 229 × 229 pixels in the RGB color space. To increase the generalization of the network,
data augmentation was used to enhance the model capabilities for our classification task. In this
study, the training images are augmented by a combination of flipping, shifting and ±90◦ rotation,
contrast enhancement, blurring, and zooming.

2.3. Network Architectures

We performed a benchmark with different architectures and based on the results, we selected
EfficientNet [36] as the main architecture for our system. This family of models achieves state-of-the-art
accuracy on the ImageNet dataset by employing a simple, yet powerful concept where the network
models are not only scaled in depth, but also in width and resolution. To achieve such a scheme,
the authors propose a compound coefficient (Φ) that uniformly scales the network along the three
dimensions. The coefficient controls the distribution of resources available for scaling the model under
the constraint of a maximum operation growth of 2Φ FLOPS. For our CADx, we employed the variant
B4, which has a total of 19 million parameters. The B4 variant was the preferred option for two main
reasons; one, it achieved a higher performance against state-of-the-art polyp classification architecture
while reducing the number of parameters; and second, it allowed the best memory performance
on our CADx setup. Additionally, several other commonly-used architectures were considered for
the development of our CADx system, therefore we trained all alternatives and compared their
performance with EfficientNet. The architectures were selected based on the most common networks
employed in state-of-the-art polyp detection and classification studies. For this reason, we selected the
following networks: VGG16, ResNet50, ResNet101, Xception, and InceptionResNet.

2.4. Training

All the networks were initialized with ImageNet weights and trained from scratch with Stochastic
Gradient Descent (SGD) using a momentum of 0.9. For all the networks except EfficientNet,
we used a batch size of 32, and for the latter a batch size of 8, due to the memory restrictions on
our single GPU. We chose to use an exponential learning rate, with hard restarts at every two epochs,
ranging from 1 × 10−2 to 4 × 10−3—except for VGG16, where the learning rate ranged from 1 × 10−3

to 1 × 10−4. The results of each architecture can be found in Table 1. Finally, the model was trained
for 100 epochs or until convergence on the validation set, using a single TitanXp GPU. As input,
the network received a single image of any of the modalities present in the training set (WL, BLI,
and LCI), which allowed for shared features between all modalities. To ensure that each class is
representative, during training, an independent image generator was created for the benign and the
pre-malignant class. During inference time, we divided the results in WL, LCI, and BLI and obtained
the posterior probabilities to observe the classification to the final prediction.

2.5. Explainable CADx System

During the assessment of CRPs, the CADx system provides the endoscopist with a quantitative
measure of how likely the observed CRP is to be benign or pre-malignant. Although a probability
measure might be sufficient for agreement between the system and the endoscopist, there is a likelihood
that a visual inspection of the polyps is required for further confirmation. Gradient-weighted Class
Activation Mapping (Grad-CAM) [37] is an effective method that allows the visualization of the
decision region of a CNN. Through the average product of the feature maps and a class-activation
function, we are able to produce a visual map and add explainability to the endoscopist’s observations.
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Table 1. Comparison of our computer aided diagnosis (CADx) results with the group of endoscopists.
The first block presents the results of the experts and novices based on their intuition. The second
block shows the results of the endoscopists after the post-training stage on the BLI Adenoma Serrated
International Classification (BASIC) classification. The third block includes the CADx results of
WL, BLI, and LCI combined modalities, evaluated with common state-of-the art architectures in
polyp classification.

Accuracy (%) Specificity (%) Sensitivity (%) AUC

Intuition (±SD)

Novices (n = 13) 66.7 ± 8.4 93.2 ± 4.0 46.2 ± 16.7 N.A
Experts (n = 6) 79.5 ± 6.6 95.6 ± 4.9 50.0 ± 16.2 N.A
Total (n = 19) 70.7 ± 9.8 93.9 ± 4.3 47.4 ± 16.2 N.A

BASIC (±SD)

Novices (n = 13) 66.5 ± 9.3 92.1 ± 6.2 55.4 ± 14.7 N.A
Experts (n = 6) 81.7 ± 4.2 94.1 ± 1.8 61.1 ± 5.0 N.A
Total (n = 19) 71.3 ± 10.7 92.7 ± 5.2 57.2 ± 12.6 N.A

CADx

VGG16 85.0 84.4 86.7 0.90
ResNet50V2 83.3 93.3 80.0 0.92

ResNet101V2 88.3 93.3 73.3 0.94
Xception 85.0 84.4 86.7 0.93

InceptionResNetV2 85.0 86.7 80.0 0.94
EfficientNetB4 95.0 93.3 95.6 0.97

2.6. Clinical Benchmark

To benchmark the performance of the proposed algorithm, a prospective, endoscopist-blinded,
noninterventional study was conducted at the Maastricht University Medical Center+ (MUMC+) and
Catharina Hospital Eindhoven (CZE). The study was in accordance with the declaration of Helsinki
as well as the General Data Protection Regulation. A total of 19 endoscopists optically diagnosed
60 colonoscopy images containing a single polyp acquired in WL, BLI, and LCI modalities (later referred
to as test data). Two person groups were derived from the medical professionals. The first group
consisted of six expert endoscopists from the international BLI-expert group, who were knowledgeable
in using BLI and BLI Adenoma Serrated International Classification (BASIC) [13,38] (Table 2) and
brought an experience of more than 2000 colonoscopies. The second group consisted of thirteen Dutch
novices with limited colonoscopy experience (<400 colonoscopies) and without prior experience in
using BLI or BASIC.

The benchmark study was divided in two stages. For both stages, only WL and BLI were present
as modalities. In the first stage, the experts and novices were instructed to classify the set of 60 polyps
between HP, SSA, or AD based on their intuition and expertise, with a time limit of 30 seconds.
After a washout period of four weeks, the medical group was further trained in using BLI and BASIC.
Following the instruction period, the same endoscopists were asked to classify the exact same dataset
of polyps based on the BASIC classification [13]. Moreover, each endoscopist had to report the level of
confidence for each CRP.
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Table 2. The BASIC classification comprises a list of visual BLI features, employed by endoscopists to
classify hyperplastic, sessile serrated, and adenomatous polyps. A more in-depth clinical analysis can
be found in the study of Subramanian et al. [38].

Hyperplastic Adenoma Sessile Serrated

Surface

Presence of mucus No No Yes
Regular/irregular Regular Regular or irregular Regular or irregular
Pseudodepression No Yes No

Depression No No No

Pit Pattern

Featureless Yes No No
Type Round Not round Round pits

with/without dark
spots

Distribution Homogenous Homogenous or
heteregenous without

focal loss

Homogenous or
heteregenous

Vessels

Present? Yes/No Yes Yes/No
Type if present Lacy Pericryptal Pericryptal

3. Evaluation and Results

The test set was evaluated using a single network that was simultaneously trained with all
acquisition modalities, which allowed the CNN to learn shared features across all domains. For the
single and combined modality, we computed the accuracy and the area under the curve (AUC).
Additionally, sensitivity, defined as the rate of correct pre-malignant polyps classified as such;
and specificity, defined as the correct rate of benign polyps classified as benign, were calculated
as well. The performance of the CADx system and all associated architectures was evaluated and
compared to outcomes of the experts and novices.

The best CADx system achieves an accuracy of 95.0% with specificity of 93.3%, sensitivity of 95.6%,
and AUC of 0.97. For each input image, the CADx system computes the region for decision-making
via Grad-CAM and the malignancy prediction. The average prediction of the three modalities offers
the endoscopists with the best possible diagnosis result. The end-to-end framework described above is
depicted in Figure 2.

GRAD-CAM

PREDICTION

BLI

WL

LCI

Encoder Network

FC 1024 x2

Figure 2. End-to-end framework of the proposed CADx system. The training batch contains
independent images of each modality (WL, BLI, and LCI) and at least a representative of each polyp
class. The output of the system is a prediction for each single image.
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4. Discussion

In clinical practice, endoscopists must perform visual inspection of all detected colorectal
polyps. Experience and expertise are factors that currently dictate decision-making during real-time
endoscopy. In this study, we have evaluated a CADx system against expert and novice endoscopists.
Firstly, in Table 1, a noticeable difference between novices and experts is observed for both intuition
and the BASIC classification. Experts showed a higher diagnostic accuracy compared to novices
(79.5% vs. 66.7%, p = 0.005) and (81.7% vs. 66.5%, p = 0.002), respectively. Both groups improved the
diagnosis of pre-malignant polyps during the second round of assessments, which positively reflects
on the training with the BASIC classification received after the first stage of the study. Following the
first point, our CADx system showed an overall better performance than both novices and experts
in all of the trained architectures. All our trained models contained information of three different
hospitals with WL, BLI, and LCI modalities, with a total of 2739 polyp images. Compared to the
endoscopists, our training stage utilized the benefits of deep learning, which allowed us to build
a robust diagnostic tool. Our final CADx system (EfficientNetB4) correctly assessed a total of 57 out
of 60 polyps. The CADx system erroneously classified only three polyps: two adenomas and one
hyperplastic polyp.

Table 3 presents the individual contribution of each modality to the overall test set. In this study,
the performance of the endoscopists was evaluated on the knowledge of WL and BLI. Moreover,
the BASIC classification only takes into account the latter modality, hence, comparison with all
combined modalities may lead to unreliable one-to-one comparison. Solely observing BLI, our CADx
system outperforms experts and novices for both intuition and BASIC. In contrast, WL and LCI do
not outperform both groups on classifying enough HP polyps. On the one hand, WL offers limited
visualization and enhancement, which makes it difficult to identify small benign polyps; while on the
other hand, LCI is not the most common modality in current clinical practice. This is reflected in our
training dataset, which contained far more WL and BLI images than LCI data. Lastly, when comparing
each single modality with the combined results, we did not find a statistically significant improvement
compared to combining modalities. This might indicate that for a further study, the sample size for the
test set should be increased.

Table 3. Individual modality results of our CADx system based on EfficienNetB4. The combined results
are obtained after averaging the CNN output probabilities for each modality. The results are presented
together with confidence intervals at 95%. AUC—Area under the curve.

Accuracy (%) Specificity (%) Sensitivity (%) AUC

WL 86.7 (78.1–95.3) 86.7 (78.1–95.3) 86.7 (78.1–95.3) 0.94 (0.86–0.99)
BLI 93.3 (87.0–99.6) 93.3 (87.0–99.6) 93.3 (87.0–99.6) 0.96 (0.88–1.00)
LCI 90.0 (82.4–97.6) 80.0 (69.9–90.1) 93.3 ( 83.2–100) 0.89 (0.79–0.97)

Combined 95.0 (89.5–100) 93.3 (87.0–99.6) 95.6 (89.2–100) 0.97 (0.92–1.00)

In Figure 3, we showcase the strength of our CADx system, where three predictions are
performed—one for each modality—to obtain a final prediction based on the three observations.
In the work of Murata et al. [30], the authors proposed a voting system from the predictions of
each combination. Although the voting system would be suitable, we prefer to adopt the same
methodology as our previous study [35], where the posterior probabilities acquired for each modality
are subsequently averaged to compute one unique probability per polyp. In addition, Grad-CAM
provides the endoscopists with visual information on the decision region. This has two benefits,
one is to provide the endoscopists with visual feedback on the CADx judgment, and the second is
to offer an alternative method for tracking polyps (either benign or pre-malignant) during real-time
video endoscopy. Our CADx system excels in cases where not all modalities are predicted as correct,
such as in the example of Figure 4, where a pre-malignant polyp is incorrectly predicted in the WL
modality. Furthermore, a visual informative inspection is supported by the results of Grad-CAM
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region, which focuses on the intestinal tract instead of the CRP. Therefore, the combined information
of BLI and LCI allows for a correct decision of malignancy, facilitating endoscopists with a better
diagnosis during colonoscopy.

Figure 3. Output generated from the CADx system where an image of a colorectal polyp (CRP) is
received from the endoscope. Two outputs are presented, (1) a prediction of whether the polyp is
benign (green) or pre-malignant (red), and (2) a GRAD-CAM map that allows the endoscopists to
judge the decisions of the CADx. From left to right, the three modalities employed in this study are
shown: White Light, Blue Light Imaging, and Linked Color Imaging. In the first row, a benign polyp is
predicted from the three modalities with the CADx system decision shown in the following row. In the
third and fourth rows, a pre-malignant polyp is predicted from the combined modalities.
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Figure 4. Example of misclassification due to a wrong decision in the CADx for the WL modality.
In this case, BLI and LCI correctly identified the pre-malignant polyp and the CADx system is capable
pf identifying it as such.

5. Conclusions

In this study, we have developed an end-to-end CADx system with a state-of-the-art deep
learning architecture to classify colorectal polyps between benign and pre-malignant, obtained with
three different image modalities (WL, BLI, and LCI). We evaluated our framework on an independent
test set of 60 patients and compared the results with the diagnosis of 19 endoscopists (6 experts
and 13 novices). Our CADx system was trained with a dataset of 2739 images collected from
three different hospitals. Anticipating clinical application, we employed EfficientNetB4, which is
a state-of-the art architecture for classification. The network demonstrates excellent performance
for our CADx system compared to most common networks found in polyp classification literature.
Besides its optimal performance, one of the most noticeable downsides we found during training is
that the complex computations for scaling and depth limited the batch size for training. We have
opened the path for endoscopists towards combining WL, BLI, and LCI to predict polyp histology,
and the results have shown that there is potential to enhance the prediction of individual polyps
from several modalities, but further studies should conclude the findings with a broader testing set.
Moreover, we have experimented with Grad-CAM to offer endoscopists an interpretable answer of
the CADx decisions. In further studies, we will investigate our system performance in real-time
colonoscopy. In conclusion, we present a CADx system that could be used in routine colonoscopy to
classify benign and pre-malignant colorectal polyps. If the CADx system successfully predicts CRP
histology, then potentially diminutive hyperplastic polyps could be left in the colon and the suggested
‘diagnose-and-leave’ strategy could be applied. The same principle can be applied to diminutive
adenomatous polyps as well, which then could be resected without performing histological evaluation
following the ‘resect-and-discard’ strategy. Overall, the presented study may allow for improved
diagnosis of CRC and decrease the current cost burden of histological examinations.
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