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Abstract: Model updating plays an important role in dynamics modeling with high accuracy, which
is widely used in mechanical engineering. In this paper, a model updating method using frequency
response function (FRF) is proposed based on Sherman–Morrison formula, in which only the initial
FRFs and parameter perturbations are employed to calculate the sensitivity avoiding repeated finite
element (FE) analyses and improving the computational efficiency. Firstly, the sensitivity of FRFs to
the design parameters is calculated by Sherman–Morrison formula based on the QR decomposition
of the system dynamic stiffness matrix variation after parameter perturbations, then the influence of
damping on the amplitude of FRFs is considered to select an appropriate frequency range, and finally
conduct the model updating according to the sensitivity of the FRFs. By employing simulation
examples of a truss and a solar wing and the experiment of an aluminum frame, the updating error is
still within ±1.00% in the condition of 5% random white noise, which shows the proposed method
has high accuracy and a certain anti-noise capability. When only a few numbers of frequency points
are selected near the resonance peak of the FRFs, the result shows that selecting the appropriate
frequency range and points can reduce the computational cost. The results of the experiment study
show that the proposed method can effectively identify the structural parameters. The above results
verify the feasibility and effectiveness of proposed model updating method using FRFs.

Keywords: model updating; Sherman–Morrison formula; frequency response functions; sensitivity
analysis

1. Introduction

Finite element model with high accuracy plays an important role in structural dynamics design,
which is the premise of dynamic response prediction, vibration control, and structural optimization [1–3].
Due to the idealization hypothesis of structural simplification, the errors of structural parameters,
and the errors of finite element (FE) discretization, the FE models may not accurately reflect the
dynamics performance of the structures [4–6]. With the rapid development of numerical simulation in
engineering applications, model updating methods gradually revealed its importance, which makes
the dynamic characteristics of the theoretical model as consistent as possible with the actual structure.

As a bond between FE models and actual structures, model updating has become a powerful tool
and which has been paid extensive attention [7,8]. Many types of approaches have been developed
for a variety of problems. Shabbir et al. [9] proposed a method based on particle swarm optimization
to update the FE model by using sequence niche technology, which greatly improved the reliability
of finding the global minimum; Behmanesh et al. [10] proposed a new probabilistic FE model
updating method based on hierarchical Bayesian modeling for identification of structural parameters
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under varying environmental conditions. Taking the strain mode as the target response, Zhan and
Guo et al. [11] constructed the target function to be updated by using the strain mode frequency and
modal confidence errors, the parameters were updated by using the Genetic Algorithm. Aiming at
the model updating of the nonlinear structure, Wang and Ren et al. [12] took the instantaneous
characteristics, including instantaneous frequency and instantaneous amplitude, as the objective
function of the nonlinear model updating, and used the annealing global optimization method to
obtain the optimal value of the nonlinear parameters. Zang et al. [13] proposed a model updating
method that separated the non-linear characteristics of subsystem from the parameter uncertainties
to establishing a representative linear mathematical model and applied it to a structural dynamics
verification problem which developed by Sandia National Laboratory. The above methods focus on
the recent hot spots to carry out research, frequency response function (FRF)’s based model updating is
an alternative method with some advantages, FRFs can adequately reflect the dynamic characteristics
of a structure, using which as the feature will get rid of modal identification.

Model updating based on FRFs avoids the error caused by modal fitting, and match of the predicted
modal shapes with the measured data are not necessary, so it is suitable for structural updating with
relatively dense modal distribution. Shadan et al. [14,15] proposed a new structural damage detection
method based on FRFs data and natural frequencies, adopted pseudo-linear sensitivity equation to
accurately identify the location and severity of damage; Esfandiari et al. [16,17] proposed an estimation
method for structure mass and stiffness considering damping effect and using the FRF data for FE model
updating; Pradhan et al. [18] proposed a FE model updating method that can identify and update the
damping matrix of the system, and studied the updating capability of different damping levels through
three different experimental beam structures; Li et al. [19] proposed an iterative method combining
model updating method with model reduction technology, effectively improved the efficiency of the
updating; Hong et al. [20] successfully updated the stiffness, mass and damping parameters between
the analytical and the experimental FRFs through the laboratory test of the four-story shear frame
structure; Wang et al. [21,22] conducted the model updating of local nonlinear structure based on the
initial FE model of the structure and the primary harmonic response data obtained from low amplitude
and high amplitude excitation. The above scholars have done a lot of research on the model updating
based on FRFs. However, the selection of parameters plays a significant role in the progress of model
updating. The sensitivity of the FRFs has great potential for a vibration analysis, which is not involved
in the above methods. Reasonable selection of parameters can effectively improve the quality and
efficiency of model updating, which is inseparable from the sensitivity analysis of the parameters,
so model updating method based on the sensitivity of FRFs has more important significance.

The model updating based on the sensitivity of FRFs attracted wide attention in the early 1990′s [23].
Sipple et al. [24] proposed a new FE model updating method that uses numerical sensitivity instead
of analytical sensitivity to solve inverse problems, which does not need model reduction and data
extension, and has good robustness, stability and fault tolerance; Weng et al. [25] proposed a new iterative
substructuring method to accurately obtain the characteristic solution and characteristic sensitivity of
the structure, which is suitable for model updating of large and complex structures; Jiang et al. [26]
expressed the thermal dependent elastic constants and thermal expansion coefficients as intermediate
function by temperature independent variables, and used the perturbation method to calculate the
sensitivity for parameter identification; On the basis of the basic concept of unconstrained optimization
problem and three regularization solutions, Mohammad et al. [27] proposed a novel sensitivity based FE
model updating method, and simultaneously updated the element mass matrix and stiffness matrix
of the FE model; Esfandiari et al. [28] proposed a FE model updating method using incomplete strain
data in frequency domain to detect variations in stiffness and mass parameters. The common sensitivity
analysis methods using FRFs are the finite difference method [29] or the combined approximations (CAs)
method [30]. These methods are based on obtaining the stiffness matrix, damping matrix, and mass
matrix of the structures. The disadvantage of these methods is that repeated analysis is required
in the process of structural parameter identification, and they are not applicable under the premise
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of unknown dynamic stiffness matrix. For example, the modal parameters of the structure can be
obtained through experiments, but the complete information of the dynamic stiffness matrix is difficult
to obtain. The Sherman–Morrison formula was first proposed by Sherman and Morrison and it can
be used to represent the varying of matrix; Turan et al. [31] used the Sherman–Morrison formula of
singular value decomposition to calculate the optimal perturbation of the sensitivity value of the extreme
value and the design variable, thus achieving the response change that is difficult to obtain with the
response derivatives; Zhu et al. [32–35] used the Sherman–Morrison formula for mass elimination of
multi-transducers, and the revised FRFs results were in good agreement with the target values.

In this study, a model updating method using FRFs based on Sherman–Morrison formula is
proposed, only the initial FRFs and parameter perturbations are employed to calculate the sensitivity
avoiding repeated FE analyses and calculations, which improves the computational efficiency of
model updating. The detail formulation of sensitivity analysis and model updating based on
Sherman–Morrison formula is introduced in Section 2, the implementation procedure of the model
updating is described in Section 3, and the numerical examples of a planar truss and a solar wing and
the experiment of aluminum solar panel frame are used to verify the proposed method in Section 4.
The conclusions are summarized in Section 5.

2. Theoretical Analysis

This section verifies that the model updating method using FRFs based on Sherman–Morrison
formula can obtain the sensitivity of the FRFs to the parameters only by initial FRFs and parameter
perturbations, which can avoid repeated finite element analyses and calculations.

2.1. Sensitivity Analysis Based on SMW

The dynamic equation of the multi-degrees-of-freedom system in the frequency domain can be
expressed as (

−ω2M + jωC + K
)
x(ω) = F(ω) (1)

where M is the mass matrix, K is the stiffness matrix, C is the damping matrix, x(ω) and F(ω) are the
Fourier transformation of displacement response and excitation force, respectively.

The dynamic stiffness matrix Z(ω) of the system is

Z(ω) = −ω2M + jωC + K (2)

The relation between FRFs H(ω) and dynamic stiffness matrix Z(ω) is

H(ω) = Z−1(ω) (3)

If the FRFs data H(ω) of the system is a function of a design parameter Pm, then the sensitivity S
of the FRFs data H(ω) of the system is the first partial derivative of the FRFs with respect to the design
parameter is ∂H

∂Pm
, which be expressed as

S =
∂H
∂Pm

= −H
∂Z
∂Pm

H (4)

According to the formula, the variation of FRFs is the variation of dynamic stiffness. For a specific
frequency ωr, it can be obtained from Equation (4) that the first derivative of dynamic stiffness with
respect to a variable Pm is:

∂Z
∂Pm

=

(
∂K
∂Pm

+ jωr
∂C
∂Pm

−ωr
2 ∂M
∂Pm

)
(5)
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Equation (5) can be expressed in differential form as

δZ =
(
δK + jωrδC−ωr

2δM
)

(6)

where δZ, δM, δC, and δK represent the variations of dynamic stiffness matrix, mass matrix, damping
matrix, and stiffness matrix, respectively.

However, the damping of the structure is related to the material performance of individual
members and the difference of FE modeling. The influence of damping on the FRF amplitude is
significant in resonance and decreases rapidly as the damping moves away from resonance. Therefore,
the selection of appropriate frequency range can mitigate the impact of damping on the model
updating results.

We assume that a system of n-degrees of freedom is subject to mass perturbation δmi at the
ith-degree of freedom, and stiffness perturbation δki at the jth-degree of freedom [32], the perturbations
of the mass matrix δM and the stiffness matrix δK can be expressed as

δM =



0 · · · 0 · · · 0
...

. . .
...

...
...

0
... δmi

... 0
...

...
...

. . .
...

0 · · · 0 · · · 0


(7)

δK =



0 · · · 0 · · · 0
...

. . .
...

...
...

0
... δk j

... 0
...

...
...

. . .
...

0 · · · 0 · · · 0


(8)

We can rewrite the perturbations of the mass matrix δM and the stiffness matrix δK as{
δM = GuvGuv

T

δK = XuvXuv
T (9)

Where u and v represent the nodes on each side of the unit. Guv and Xuv are expressed as

Guv =
√
δmi



0 · · · 0 · · · 0
...

. . .
...

...
...

0
... 1

... 0
...

...
...

. . .
...

0 · · · 0 · · · 0


(10)

Xuv =
√
δk j



0 · · · 0 · · · 0
...

. . .
...

...
...

0
... 1

... 0
...

...
...

. . .
...

0 · · · 0 · · · 0


(11)
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Therefore, the variation of the system dynamic stiffness matrix δZ can be expressed as

δZ = −ωr
2GuvGuv

T + XuvXuv
T (12)

The inverse for the variation of dynamic stiffness matrix δZ which is the variation of FRFs δH is
obtained by applying the Sherman–Morrison formula

δH = δZ−1 = H∗(ωr) −H(ωr)

= −H
[
−ωrGuv Xuv

]
L−1

[
ωrGuv

T

Xuv
T

]
H

(13)

where L is a 2N × 2N matrix given by

L =

[
IN×N −ωr

2Guv
THGuv ωrGuv

THXuv

−ωrXuv
THGuv

T IN×N + Xuv
THXuv

]
(14)

By substituting Equation (13) into Equation (4), the sensitivity of the FRFs with respect to
perturbation parameters can be obtained. Therefore, the sensitivity of FRFs to the perturbation
parameters can be directly solved by only the initial FRFs and parameter perturbations to avoid
repeated FE analyses and calculations.

The FRFs H*(ω) of the system changed by parameter perturbation can be obtained according to
Sherman–Morrison formula:

H∗(ω) = Z∗−1(ω) = (Z(ω) + ∆Z(ω))−1

= Z−1
−Z−1U

(
I + VTZ−1U

)−1
VTZ−1

= H−HU
(
I + VTHU

)−1
VTH

(15)

Therefore, the sensitivity of FRFs based on Sherman–Morrison formula can be expressed as

S =
−HU

(
I + VTHU

)−1
VTH

∆P
(16)

where Z*(ω) is the dynamic stiffness matrix changed by parameter perturbation, ∆Z(ω) is the variation
of the dynamic stiffness matrix, which is caused by the change quantity ∆P, and ∆Z(ω) can be
decomposed into two matrices U(ω) and VT(ω), I is the n-order identity matrix.

2.2. Frequency Response Function (FRF)’s Model Updating Based on Sensitivity Analysis

The purpose of the model updating is to minimize the difference of FRFs between the experimental
and the FE model. The difference between the FRFs of experimental model H*(ω) and the FRFs of FE
model H(ω) are used to construct the objective function as follows:

min‖δ‖2 (17)

δ = H∗(ω) −H(ω) (18)

where δ is the difference between the experimental FRFs and the corresponding analysis values, which
is called the residual vector.

Equation (4) is rewritten as:

S =
∂H
∂Pm

= lim
∆P→0

∆H(ω)

∆P
= lim

∆P→0

[
−H∗(ω)

∆Z
∆Pm

H(ω)
]

(19)
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and
δ = ∆H(ω) = −H∗(ω)

(
∆K + jωr∆C−ωr

2∆M
)
H(ω) (20)

where the changes of the total mass matrix ∆M and the total stiffness matrix ∆K of the structure can be
expressed by the sum of partial derivatives of each updating element:

∆M =
nm∑
i=1

∂M
∂PM

i

∆PM
i (21)

∆K =
ns∑

j=1

∂K
∂PS

j

∆PS
j (22)

where nm and ns are the total number of mass and stiffness updating units, and ∆Pi
M represents

the change of the ith mass updating parameter, ∆Pj
S represents the change of the jth stiffness

updating parameter.
By substituting Equations (21) and (22) into Equation (20), and setting ∆C = 0, which means

ignoring the updating of damping parameter

δ =
nm∑
i=1

−H∗(ω)

−ωr
2 ∂M
∂PM

i

H(ω)

∆PM
i +

ns∑
j=1

−H∗(ω)

 ∂K
∂PS

j

H(ω)

∆PS
j (23)

Equation (23) is rewritten as follows

δ =
[

SM SS
][ ∆PM

∆PS

]
= S∆P (24)

where SM and SS are the sensitivity matrix of mass and stiffness, respectively, S is the sensitivity
matrix. ∆PM and ∆PS are the variation of mass and stiffness parameters, and ∆P is the vector of all the
variation of stiffness and mass parameters.

The model updating of parameters is an iterative process of convergence, and the regularization
process is required to solve Equation (24). Generally, the following estimation criteria are obtained by
adding constraint information for the variation of updating parameters:

min
{
‖S∆P− δ‖22 + λ2

‖∆P‖22
}

(25)

where λ2 is the regularization parameter whose value can be determined by the L-curve method.
It can be obtained that the estimated variation of the updating parameters according to

Equation (25):

∆P =
[
STS + λ2I

]−1
STδ (26)

Therefore, the iterative formula of the updating parameters is:

Pn+1 = Pn +
[
Sn

TSn + λ2I
]−1

Sn
Tδn (27)

where n and n + 1, respectively, represents the values corresponding to the analysis model in the
iteration of step n and n + 1.

Therefore, the core of the model updating is how to establish the sensitivity matrix S. It is not
difficult to find from Equations (4) and (5) that for multi-degree-of-freedom systems, the solution of
the sensitivity matrix problem finally boils down to the sensitivity of the system mass and stiffness to
the design parameters.
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Conducting the model updating progress by the obtained sensitivity S, and the FRFs was iteratively
updated by using Equation (27) to obtain the finite element model consistent with the actual structure.
A simulation example of a truss and a solar wing is used to verify the effectiveness of this method in
this paper.

2.3. Frequency Range Selection

The FRFs of the real experimental model and the FE model around the nth natural frequency is
shown in Figure 1. The modeling errors will cause the FRFs of the same mode order to move along the
coordinate axis to a certain extent, but the basic shape does not change significantly.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 23 

 
Figure 1. The frequency response function (FRF)’s of the real experimental model and the finite 

element (FE) model around the nth natural frequency. 

The approximate estimation of the FRFs Hd(ω) near the resonance region can be expressed as 

( ) ( ) , , ,≅ + =    1 d nω ω ω n mδH H  (28) 

where 

, , ,= − =     1n n dnω ω ω nδ m  (29) 

where, ωn and ωdn are the nth natural frequency of the real experimental model and the FE model, 
respectively, δωn is the frequency variation of the real experimental model and the FE model, and m 
is the order of the natural frequency taken by simulation. 

The frequency range of model updating is expressed as ‘ω ’. According to Equations (28) and 
(29), Hd(ω) on ‘ω ’ can be approximately expressed as 

( ) ( ) ( ) ( ) ( )( )( )
−

= =

≅ + = − + + + + + + +
1

2

1 1
 H H M M C C K K
m m

d n n n
n n

δ δ δω ω ω ω ω j δω δ δω

 
(30) 

After repeated iterative calculations, the structural parameters of the FE model will be constantly 
updated and gradually approach to the parameters of the real experimental model. Therefore, in 
Equations (28) and (29), the initial frequency ωn and FRFs H(ω) will be constantly updated iteratively 
and converge to the natural frequency and FRFs of the real experimental model. 

At present, most of the damping models cannot accurately simulate the actual damping effect 
but will increase the model errors and affect the result of model updating. Therefore, the damping 
parameter is not updated in this paper, so the influence of structural damping on the result of model 
updating should be reduced. From the analysis in Section 2.2, the damping has little effect on the 
frequency response amplitude when far away from the resonance peak. Therefore, the selection of 
appropriate frequency range can alleviate the influence of damping on the results of model updating, 
and the influence of damping can be ignored when the model is updated based on FRFs. The 
frequency close to resonance would be affected by damping, so the small region of about 4Hz around 
resonance was not considered in the model updating process [14]. 

If the two adjacent resonant peaks are too close to each other, the variation of FRFs in the 
frequency band between them cannot be guaranteed to decrease monotonically in the updating 
process, so this region is excluded to avoid the amplitude nonlinear problem. In each iteration, the 
frequency range also needs to be adjusted according to the change of the resonance point. 

3. Implementation Procedure 

δωn

δωn

ωnωdn

M
ag

ni
tu

de
/d

B

Frequency/Hz

 Experimental data
 Numerical result

Figure 1. The frequency response function (FRF)’s of the real experimental model and the finite element
(FE) model around the nth natural frequency.

The approximate estimation of the FRFs Hd(ω) near the resonance region can be expressed as

Hd(ω) � H(ω+ δωn), n = 1, · · · , m (28)

where
δωn = ωn −ωdn, n = 1, · · · , m (29)

where, ωn and ωdn are the nth natural frequency of the real experimental model and the FE model,
respectively, δωn is the frequency variation of the real experimental model and the FE model, and m is
the order of the natural frequency taken by simulation.

The frequency range of model updating is expressed as ‘ω’. According to Equations (28) and (29),
Hd(ω) on ‘ω’ can be approximately expressed as

Hd(ω) �
m
∪

n=1
H(ω+ δωn) =

m
∪

n=1

(
−(ω+ δωn)

2(M + δM) + j(ω+ δωn)(C + δC) + K + δK
)−1

(30)

After repeated iterative calculations, the structural parameters of the FE model will be constantly
updated and gradually approach to the parameters of the real experimental model. Therefore,
in Equations (28) and (29), the initial frequencyωn and FRFs H(ω) will be constantly updated iteratively
and converge to the natural frequency and FRFs of the real experimental model.

At present, most of the damping models cannot accurately simulate the actual damping effect
but will increase the model errors and affect the result of model updating. Therefore, the damping
parameter is not updated in this paper, so the influence of structural damping on the result of model
updating should be reduced. From the analysis in Section 2.2, the damping has little effect on the
frequency response amplitude when far away from the resonance peak. Therefore, the selection of
appropriate frequency range can alleviate the influence of damping on the results of model updating,
and the influence of damping can be ignored when the model is updated based on FRFs. The frequency
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close to resonance would be affected by damping, so the small region of about 4Hz around resonance
was not considered in the model updating process [14].

If the two adjacent resonant peaks are too close to each other, the variation of FRFs in the frequency
band between them cannot be guaranteed to decrease monotonically in the updating process, so this
region is excluded to avoid the amplitude nonlinear problem. In each iteration, the frequency range
also needs to be adjusted according to the change of the resonance point.

3. Implementation Procedure

Figure 2 is a flowchart of the model updating method using FRFs based on Sherman–Morrison
formula, with the steps described below:

1. Establish the FE analysis model, and extract the mass matrix M1 and the stiffness matrix K1 of the
original model to obtain the dynamic stiffness matrix Z(ω) of the system, and calculate the FRFs,
that is H(ω);

2. Select several parameters that have an impact on the dynamic characteristics of the structure
as the initial variables P1, and P1 become P2 by perturbations, and the variation is ∆P; extract
the mass matrix M2 and the stiffness matrix K2 of the changed model to obtain the variation
of dynamic stiffness matrix of the system, that is ∆Z(ω), and recalculate the FRFs H*(ω) after
parameter perturbations by using Sherman–Morrison formula;

3. Select the appropriate frequency range which is away from the resonance for model updating
and obtain the sensitivity S of the FRFs to the designed parameters.

4. Conduct the model updating by the obtained sensitivity S, and the FRFs was iteratively updated
by using Equation (27), obtain the variation Pn+1 − Pn, if the variables Pn are converged, stop;
otherwise set n = n + 1, go to step (2); the stop criterion is ‖Pn+1 −Pnn‖ ≤ 10−6;
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4. Case Study

The simulation examples of the truss and the solar wing and the experiment of aluminum solar
panel frame are used to verify the feasibility of the model updating method using FRFs based on
Sherman–Morrison formula in this section.

4.1. Truss Structure

In this section, the FE model of truss structure is used for model updating, and considering the
results under the interference of noise at the same time, so as to verify the feasibility of the model
updating method using FRFs based on Sherman–Morrison formula.

4.1.1. Finite Element (FE) Modeling

The truss structure model is shown in Figure 3, numerically modeled by the ‘Matlab’ programming
software. To simply to verify the feasibility of the method, each beam is discretized into a beam
element, there are 21 discrete beam elements and 12 nodes, each node contains translational degrees of
freedom (DOFs) in X direction and Y direction. Due to the Node 1 is fixed and Node 12 is fixed on
the hinge support, so the translational DOFs x1 and y1 in X direction and Y direction of Node 1 and
translational DOFs y12 in Y direction of Node 12 are locked, so the total DOFs of the truss structure is
21. It is assumed that the DOFs of the target model that need to be updated and the FE model are
matched, so there is no problem of model reduction and modal expansion. Therefore, the degrees of
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freedom of both the FE model and the target model is 21. The elastic modulus of all beam elements
in the initial FE analysis is E = 70 Gpa, the density of the truss-element material is ρ = 2700 kg/m3,
the length of each beam is L = 1 m, and the cross-sectional area of each truss element is A = 1 × 10−4 m2.
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and the excitation point and response point in the target model is the same one. Using the above data
for FE analysis, the frequencies of the first 7 order and FRFs of Node 4 and Node 10 are selected as the
target value for model updating. Because the planar truss system is modeled in undamped mode,
the influence of damping on FRFs at resonance peak need not be considered in the updating progress.
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The following error index O is used to quantify the accuracy of the sensitivity of the FRFs:

O =

∑ N
i=1

(∣∣∣∣SExact
i − SProposed

i

∣∣∣∣/SExact
i

)
N

× 100% (31)

where N is the number of points on the curves. Si
Exact and Si

Proposed are the sensitivities of the FRFs
obtained by analytical derivatives method of Equation (4) and the proposed method, respectively.
A smaller O indicates a more accurate result.

The results in Figure 4 show that under different perturbations, the sensitivity calculated by
the proposed method compares reasonably well with that calculated by the analytical derivatives.
The small figure in the blue dashed box in Figure 4 is a local magnification comparison of the sensitivity
curves calculated by the proposed method and the analytical derivatives method under different
perturbations. With the decrease of the perturbation value, the sensitivity calculated by the proposed
method is closer to that of the analytic derivatives method.

As shown in Table 1, the error is only 0.01% for the perturbation of 10−3, which shows that the
proposed method can carry out sensitivity analysis sufficient accurately for small variations in the
design parameters. It can also be found that although the sensitivity calculated by the two different
methods is basically the same, the calculation efficiency of the proposed method in this paper is higher
than that of the analytic derivatives method as is shown in Table 2. This advantage will be of great use
for model updating of large-scale engineering structures, which can save much computation time.

Table 1. Errors between Proposed Method and Analytical Derivatives.

Perturbation Error/%

10−3 0.01
10−2 0.24
10−1 1.78

Table 2. Comparison of the Time Cost.

The Analytic Derivatives Method The Proposed Method

Time Cost/s 0.842 0.653

4.1.3. Parameter Updating

Due to the inevitable interference of various noises in the real experiment, in order to simulate the
real experiment state and test the anti-noise interference ability of the method proposed in this paper,
5% random white noise was added to the target value which was obtained in Section 4.1.1 in the form
of H**(ω) = H*(ω) (1 + 0.05 µ), where the µ is a random number of −1~1, H*(ω) is the target value
obtained in Section 4.1.1, and H**(ω) is the FRFs after adding random white noise. Then, the parameter
updating formula shown in Equation (27) was used for 15 iterative computations. The frequency
comparison between the FE model and the target model before and after modal updating is shown in
Table 3, and the comparison results of the updated parameters are shown in Table 4. The convergence
process of updated parameters is shown in Figure 5. The comparison of FRFs before and after updating
is shown in Figures 6 and 7.
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Table 3. Comparison of Frequency Values between FE Model and Target Model Under 5% White Noise.

Mode No. Target
Value/Hz

Before
Updating/Hz Errorb/%

After
Updating/Hz Errora/%

1 76.58 75.68 −1.18 76.20 −0.50
2 140.88 140.11 −0.55 141.25 0.26
3 214.29 211.18 −1.45 214.13 −0.07
4 301.78 296.74 −1.67 300.44 −0.44
5 361.41 353.91 −2.08 359.87 −0.43
6 430.42 422.08 −1.94 429.76 −0.15
7 460.18 445.16 −3.26 462.16 0.43

Table 4. Comparison of Parameters Before and After Model Updating Under 5% White Noise.

Element ID Target
Value/Gpa

Before
Updating/Gpa Errorb/%

After
Updating/Gpa Errora/%

1 77.00 70.00 10.00 77.66 0.85
6 84.00 70.00 20.00 84.62 0.74
11 84.00 70.00 20.00 83.61 −0.47
14 84.00 70.00 20.00 83.29 −0.85
21 77.00 70.00 10.00 76.64 −0.47
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The model updating process uses the frequencies of the first 5 order of the target value and their
corresponding FRFs, while the fifth and sixth frequencies and their corresponding FRFs do not directly
participate in the updating, but are used to evaluate the accuracy of the model updating method which
is proposed in this paper.

Where Errorb and Errora is the relative error between the frequency values of the FE model before
and after the updating and the target value, respectively.

As can be seen from Table 3, under the excitation of 5% random white noise, there is a significant
difference between the frequency of the FE model and the target model before the modal updating,
and the maximum frequency error has reached −3.26%. This indicates that the reliability of the FE
model is questionable, so it is necessary to update the initial FE model to improve the accuracy and
reliability. After using the Sherman–Morrison formula proposed in this paper, the maximum error of
the frequency of the first 7 order after modal updating is only −0.50%, which verifies that the model
updating method using FRFs based on Sherman–Morrison formula has a good anti-noise performance.

Where Errorb and Errora is the relative error between the elastic modulus of the FE model before
and after the updating and the target value, respectively.

The model updating results of elastic modulus are shown in Table 4, under the excitation of 5%
random white noise, the maximum relative error of the corrected elastic modulus is changed from
20.00% to −0.85%. Compared with the result in noiseless environment, the maximum error of the
elastic modulus is within 1%, which greatly improves the reliability of the FE model and verifies the
feasibility of the model updating method in this paper.

It can also be seen from the iterative convergence diagram of elastic modulus E of the truss in
Figure 5, under the excitation of 5% random white noise, after 15 iterative computations, each parameter
tends to converge, and the maximum error of each parameter is within ±1.00% after convergence.
Therefore, the results verify that the model updating method using FRFs based on Sherman–Morrison
formula is still applicable in noisy environment.

As shown in Figures 6 and 7, the FRFs before and after updating are compared with the target
value under 5% random white noise. There is obviously a big gap between the FRFs of the FE model
before updating and the target model under 5% random white noise, and the FRFs data of the FE model
almost completely coincides with the target value after updating, which shows that the model updating
method using FRFs based on Sherman–Morrison formula can effectively reduce noise interference.

Each iteration is based on the sensitivity of the response at all the frequency points involved in the
model updating. However, too many frequency points involved in the updating will greatly increase
the computation and affect the efficiency of model updating. The change of FRFs is often discontinuous
at the resonance peak, which especially happens in the low-damping structure. Therefore, the iterative
process will not converge when the response of the frequency points close to the resonance peak
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are used for updating. So, it is generally necessary to select the frequency point carefully before
model updating.

Taking the FRFs of Node 10 under 5% random white noise as an example, three frequency points
selection cases are presented are given as follows, and the influence of them on the results of model
updating is compared by observing the convergence of the elastic modulus of each element.

• Case 1: Select one frequency point every 10 Hz in the frequency band from 0 to 400 Hz and select
40 points in total.

• Case 2: Select 40 points randomly in the frequency band from 0 to 400 Hz.
• Case 3: Select 8 frequency points at the interval of 0.5 Hz from 10 Hz to the left of each resonance

peak in the frequency band from 0 to 400 Hz and select 40 points in total.

Figure 8 shows the comparison of elastic modulus updating results of three cases. Since the
frequency points selected by Case 1 and Case 2 do not avoid the resonance peak, so the FRFs are
discontinuous which causes the elastic modulus of the two cases is not convergent. While only after 7
iterations, the elastic modulus of Case 3 is convergent. However, due to the noise pollution of 5% in
the FRFs data, the result does not converge to 0%, but the maximum error is within ±1.5%.
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By comparing the results of model updating using all the FRFs data, it can be seen that only
a small amount of FRFs data is needed to complete the model updating, which indicates that the
correct selection of frequency points can effectively improve the computational efficiency of model
updating, and further proves that the proposed method has high computational efficiency and accuracy.
Furthermore, only a small amount of FRFs data can be selected to complete the model updating quickly,
the result is not very perfect compared with the result of using all frequency points, which indicates
that increasing the frequency point can correspondingly increase the information contained in the FRFs
data, which is an effective means to improve the quality of model updating.

4.2. Solar Wing

In this section, the FE model of solar wing is used for model updating to verify the feasibility of
the model updating method using FRFs based on Sherman–Morrison formula.

4.2.1. FE Modeling

A complete FE model of the solar wing was modeled by the FE analysis software ‘Nastran’ based
on the size diagram of the solar wing model as shown in Figure 9. The solar wing is an up-down
axisymmetric structure, consisting of two plates with identical materials and geometric shapes. Each
plate is divided into 12 shell elements numbered 1~24, and the two plates are connected by beam
elements numbered 25~34. The solar wing model consists of 34 elements and 47 nodes, each node
contains translational and rotational DOFs in the direction of X, Y, and Z. Since Node 44, 45, and 46 are
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fixed, and the rest are hinged, the translational and rotational DOFs in the X, Y, and Z directions of these
three nodes are all locked. Therefore, the total DOFs of the solar wing structure is 264. The material
parameters of the finite element model are as follows: the elastic modulus of the beam is E1 = 200 Gpa,
the density is ρ1 = 7850 kg/m3, the cross-sectional area of the beam is A1 = 4 × 10−4 m2, and the poisson
ratio is µ1 = 0.32. The elastic modulus of the solar wing is E2 = 70 Gpa, the density is ρ2 = 2700 kg/m3,
the thickness is t = 4 × 10−3 m, and the poisson ratio is µ2 = 0.34. To simulate the actual damping of
the model, the Rayleigh proportional damping model is adopted, as is shown below

C = aM + bK (32)

where C represents the damping matrix of the system, M represents the mass matrix of the system,
K represents the stiffness matrix of the system, a and b represent the damping coefficients. In this case,
the actual damping coefficients are assumed to be a = 0.2 and b = 0.0005.
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The comparison of frequency values between the FE model and the target model under 5% white
noise is shown in Table 5. The modeling errors of the target model that needs to be updated and the
FE model are shown in Table 6. There are initial errors of 30.00%, 20.00%, 15.00%, and 20.00% in E1,
E2, ρ1, and A1, respectively. It is assumed that the simulation experiment is a single point excitation,
and the excitation point and response point in the target model is the same one. The frequency of the
first 7 order and FRFs of Node 13 and Node 26 are obtained as the target value to conduct the model
updating progress.

Table 5. Comparison of Frequency Values between FE Model and Target model Under 5% White noise.

Mode No. Target
Value/Hz

Before
Updating/Hz Errorb/%

After
Updating/Hz Errora/%

1 0.25 0.24 −4.00 0.25 0
2 0.91 0.86 −5.49 0.90 −1.10
3 2.09 1.99 −4.78 2.08 −0.48
4 4.44 4.24 −4.50 4.38 −1.35
5 5.69 5.43 −4.57 5.68 −0.18
6 8.63 8.23 −4.63 8.59 −0.46
7 9.35 8.93 −4.49 9.29 −0.64
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Table 6. Comparison of Parameters Before and After Model Updating Under 5% White noise.

Parameters Target Value Before
Updating Errorb/%

After
Updating Errora/%

E1/Gpa 273.00 210.00 30.00 272.35 −0.24
E2/Gpa 84.00 70.00 20.00 84.23 0.27
ρ1/kg/m3 9027.50 7850.00 15.00 9002.22 −0.28

A1/m2 4.80 × 10−4 4.00 × 10−4 20.00 4.82 × 10−4 0.42

4.2.2. Parameter Updating

The elastic modulus of the connecting beams and the solar wing, and the density and the
cross-sectional area of the connecting beams are updated in turn with the strategy of step by step.
Meanwhile, 5% random white noise was added to the target value of the FRF data obtained in
Section 4.2.1 to simulate the real experimental situation in the form of H**(ω) = H*(ω) (1 + 0.05µ), where
the µ is a random number of −1~1, H*(ω) is the target value obtained in Section 4.2.1, and H**(ω) is
the FRFs after adding random white noise. Then, the parameter updating formula shown in Equation
(27) was used for 20 iterative computations.

The model updating process uses the frequencies of the first 5 order of the target model and their
corresponding FRFs, while the fifth and sixth frequencies and their corresponding FRFs do not directly
participate in the updating, but are used to evaluate the accuracy of the model updating method which
is proposed in this paper. Combined with the rules in Section 2.3, the frequency of the model updating
is selected as the frequency point near the resonance region that is shown in Figure 10. Remove the
low frequency band containing the first two resonance regions, and to avoid the problem of amplitude
nonlinearity, the frequency points between the fourth and fifth resonances are ignored.Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 23 
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Where Errorb and Errora is the relative error between the frequency values of the FE model before
and after the updating and the target value, respectively.

As can be seen from Table 5, under the excitation of 10% random white noise, the maximum
relative error of the frequency is changed from −5.49% to −1.10%, which verifies the effectiveness and
anti-noise performance of the proposed method in this paper.

Where Errorb and Errora is the relative error between the parameters of the FE model before and
after the updating and the target value, respectively.

The model updating results of parameters are shown in Table 6, under the excitation of 10%
random white noise, the maximum relative error of the updated parameters is changed from 30.00% to
−0.24%, which greatly improves the reliability of the FE model and verifies the feasibility of the model
updating method in this paper.
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As shown in Figures 11 and 12, due to modeling errors between the target model and the FE
model, there is obviously a big gap between the FRFs of the FE model before updating and the target
model under 5% random white noise. While after 20 iterative computations, the error between the
obtained FRFs and the target value is quite close, which shows that the model updating method using
FRFs based on Sherman–Morrison formula can effectively reduce noise interference. At the same time,
the influence of damping on the amplitude of FRFs is effectively reduced by choosing the appropriate
frequency range. Therefore, the results verify that the model updating method using FRFs based on
Sherman–Morrison formula has a good anti-noise performance.
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4.3. Experimental Verification

4.3.1. Modal Test

To investigate the applicability of the proposed method in practical engineering, a simplified
aluminum solar panel frame is designed at the dimensions shown in Figure 13. This only considers
the frame components and ignores the influence of supporting structure and hinge. The connection
between plate and plate is directly integrated.
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The piezoelectric accelerometers were adopted in this modal test, which with a mass of 20 g,
charge sensitivity of 6.05 pC/ms2, and frequency range from 0.5 Hz to 5 kHz. The CL-YD-303 hammer
was also adopted, the reference sensitivity is 3.99 pC/N. CRAS V7.0, a vibration and dynamic signal
acquisition and analysis system developed by Nanjing AnZheng Software Engineering Company,
was used as the analytical instrument, and MaCras was used as the modal analysis software.

The layout of test site is shown in Figure 14a. The end of the solar panel frame is fixed with a
support, and the two accelerometers are installed on Position 1 and Position 2, where the mass of
Accelerometer 1 is m1 = 20 g and the mass of Accelerometer 2 is m2 = 20 g. Then make a single point
excitation at Position 3 with the hammer to measure the FRFs within 0~30 Hz of the solar panel frame.
The FRFs obtained after 5 excitations are fitted by MaCras.Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 23 
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The FE model of the solar panel frame was modeled by the FE analysis software ‘Nastran’ as
shown in Figure 14b, which consists of 86 shell elements and 148 nodes. The mass points were
established at Node 1 and Node 2 to conduct the model updating and both the mass identification of
the two accelerometers through mass perturbation of the mass points.

4.3.2. Parameter Updating

Take the FRFs h13 measured by Accelerometer 1 as an example. Combined with the rules in
Section 2.3, the frequency of the model updating is selected as the frequency point near the resonance
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region, and to avoid the problem of amplitude nonlinearity, the frequency points of the third resonances
are ignored as is shown in Figure 15.
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Where Errorb and Errora is the relative error between the frequency values of the FE model before
and after the updating and the experimental value, respectively.

As can be seen from Table 7, after several iterative computations, the maximum relative error of
the frequency is changed from 9.13% to 2.99%. Although the error between the second order frequency
and the experimental value increased slightly after updating, the average error of the first four orders
decreased from 7.03% to 1.72%, which verifies the effectiveness of the proposed method in this paper.

Table 7. Comparison of Frequency Values between FE Model and Experimental Model.

Mode No. Experimental/Hz Before
Updating/Hz Errorb/%

After
Updating/Hz Errora/%

1 2.15 2.34 8.84 2.15 0
2 7.81 7.92 1.41 7.62 −2.43
3 12.71 13.87 9.13 13.09 2.99
4 26.76 29.10 8.74 27.15 1.46

The identification results of accelerometer mass are shown in Table 8. Since the accelerometer is
attached with wires, the identification results will be affected to some extent, so it can be considered
that the identification results are within the ideal range, which greatly improves the reliability of the
FE model and verifies the feasibility of the model updating method proposed in this paper.

Table 8. The Identification Results of Accelerometer Mass.

Parameters Experimental Identification

m1/g 20.00 17.78
m2/g 20.00 17.32

As shown in Figure 16, due to the additional mass of the accelerometers between the real
experimental model and the FE model, there is obviously a big gap between the FRFs of the FE model
before updating and the experimental structure. While after several iterative computations, the error
between the obtained FRFs and the real experimental value h13 is quite close, which shows that the
proposed method has a good model updating capability and engineering application.
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At the same time, the experimental modal shapes are measured to compare with the FE modal
shapes, to further verify the accuracy of the proposed method. Due to the limitation of test conditions,
it is difficult to measure the displacement of all nodes. Therefore, 24 points as shown in Figure 17a are
selected to measure the displacement in the Z direction by the hammer. The first 4 modal shapes of the
experiment model are obtained by MaCras. Meanwhile, 24 nodes of the FE model corresponding to
the measured points of the experimental model are selected, as shown in Figure 17b. The first 4 modal
shapes of the FE model before and after updating are obtained through FE analysis.Appl. Sci. 2020, 10, x FOR PEER REVIEW 20 of 23 
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Using modal assurance criteria (MAC) to verify the mutual independence and consistency of the
modal shapes between the first 4 order of the FE model before and after updating and the corresponding
experimental model:

MAC =

∣∣∣φu
Tφv

∣∣∣2
φuTφuφvTφv

(33)

The φu, φv are the modal vector of the FE model and the experimental model, respectively, which
are all the column vector, u, v is the modal order.

Theoretically, if the two models are the same physical modal, the MAC value is 1, if the two
models are not the same physical modal or if the modal vectors are independent of each other, the
MAC value is 0. The MAC value will be affected due to the nonlinearity of the structure, external noise
interference of the measured data and improper data processing. It is generally believed that if MAC
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value is greater than 0.9, the two models are related, and if MAC value is less than 0.05, the two models
are unrelated.

Table 9 shows the comparison of modal shapes between the first 4 order of the FE model before
and after updating and the corresponding experimental model. The first modal of the solar panel
frame is first-order bending around X axis; the second modal is first-order torsion around Y axis; the
third modal is second-order bending around X axis; the fourth modal is second-order torsion around Y
axis. The blue line in the modal shape diagram represents the fixed side.

Table 9. Comparison of Modal Shapes Before and After Model Updating.

Mode No. Experimental Before Updating After Updating

1
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5. Conclusions

A model updating method using FRFs based on Sherman–Morrison sensitivity is proposed in
this paper. The sensitivity of FRFs is calculated using Sherman–Morrison formula which avoids
recalculation of FE dynamic analysis. The simulation examples of truss and solar wing and the
experiment of aluminum solar panel frame are implemented to verify the accuracy of the proposed
method. The following conclusions can be drawn:

1. Only the initial FRFs and parameter perturbations are employed for the acquisition of sensitivity,
which avoids recalculation of FE dynamic analysis, and improves the efficiency of analysis and
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calculation at the same time. Only a small amount of FRFs data is needed to complete the model
updating process.

2. With the effect of 5% random white noise, the parameter error after updating is within ±1.00%,
which shows that the proposed method has a certain anti-noise capability. The experiment study
shows that the proposed method can effectively identify the structural parameters.

3. Selecting appropriate frequency range and points can effectively improve the stability and
efficiency of model updating. In addition, the method can consider multiple parameters
simultaneously and has great potential for engineering application.
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