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Abstract: Background: The aim of this study was to analyze the effects of the time of use (TU)
and sterilization cycles (SC) of endodontic reciprocating files on cyclic fatigue resistance. Methods:
One-hundred-and-twenty (120) Procodile NiTi endodontic reciprocating instruments were selected
at random and distributed into the following study groups: A: 0 sterilization cycles/0s time of use
(n = 10); B: 0/60 (n = 10); C: 0/120 (n = 10); D: 1/0 (n = 10); E: 1/60 (n = 10); F: 1/120 (n = 10); G: 5/0 (n = 10);
H: 5/60 (n = 10); I: 5/120 (n = 10); J: 10/0 (n = 10); K: 10/60 (n = 10); and L: 10/120 (n = 10). A dynamic
cyclic fatigue device was designed using computer-aided design/computer-aided engineering
(CAD/CAE) technology and created with a 3D printer to simulate the pecking motion performed
by the clinician. Failure of the endodontic rotary instrument was detected by a light-emitting
diode-light-dependent resistor (LED-LDR) system controlled by an Arduino driver complex and
management software. The results were analyzed using the ANOVA test. Results: All pairwise
comparisons presented statistically significant differences between the time to failure, number of
cycles to failure and number of cycles of in-and-out movement for the time of use study groups
(p < 0.001), but not in the number of sterilization cycles (p > 0.05). Conclusions: The time of use of
NiTi endodontic reciprocating files negatively affects dynamic cyclic fatigue resistance. Dynamic
cyclic resistance is not affected by the number of sterilization cycles.
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1. Introduction

Nickel–titanium (NiTi) endodontic rotary instruments and the subsequent development of
mechanical preparation has improved the prognosis of root canal treatment, as their increased taper
and automated motion enable more effective cleaning and shaping of the root canal system [1].
Many advances have been made in the last few years, including innovations in instrument design,
new NiTi alloys, thermal treating of NiTi alloys, and the addition of new movements to instrumentation
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systems. The changes produced in the martensitic phase of the NiTi alloy, led with little or no memory,
and the decrease in the tendency of the file to straighten during use, results in a more flexible file [2]
with greater resistance to both cyclic fatigue as a torsional fracture [3].

However, the possible separation of instruments remains a major concern during clinical use of
NiTi files. Failure due to cyclic fatigue or torsional fracture occurs unexpectedly, without any sign
of previous permanent plastic deformation. It is caused by alternating tension-compression cycles,
which are generated in the instrument when it is turned in a curved channel. Many variables that
can influence resistance to fracture due to cyclic fatigue and torsional stress of NiTi rotary files have
been investigated, including operating speed, instrument design, metal surface treatments, effect of
irrigation solutions, and the sterilization cycles to which rotary files are subjected [4].

NiTi rotary files are often reused in clinical practice for cost-saving reasons. The sterilization
procedure follows the steps of disinfection, cleaning, washing, drying, packaging, and heat
sterilization [5]. The disinfection and cleaning steps reduce the bacterial load and remove debris from
the blades of the instrument, and the sterilization step kills any form of microorganism, including
spores [6]. The most widely used method for sterilization in the dental field described in the scientific
literature is heat sterilization [7].

Repeated autoclave sterilization is necessary to prevent cross-contamination between patients [8].
The heat used during sterilization procedures may affect the mechanical and physical properties
of these files [9]. Previous research has found that autoclave sterilization resulted in an increase in
the surface roughness of NiTi rotary files, which affects the mechanical properties [10,11]. These
changes can affect the external surfaces in the form of micropitting and/or corrosion [12], reduction
in cutting capacity, and/or by impairing resistance to cyclic fatigue or torsional fatigue [4]. Other
studies hypothesize that after repeated clinical uses and sterilizations, there is a change in the austenite
finishing temperature closest to the clinical operating temperatures. This would alter the proportions
of austenite and microstructural phases of NiTi of martensite, ultimately affecting the mechanical
properties of the files [2,3,13].

On the other hand, other studies suggest that autoclaving could improve the mechanical properties
of instruments manufactured using a type of heat treatment, although this does not necessarily apply
to other heat treatment methods. NiTi as an alloy is very “sensitive” to both thermal and mechanical
(machining) tension that may occur during the raw material manufacturing processes and subsequent
use of endodontic instruments. Adequate control of transition temperatures is essential to ensure
optimum super-elastic properties. In addition, any other machining process will affect transition
temperatures. This may explain why the performance of NiTi rotary instruments is affected by
manufacturing quality processes and different thermal treatments [4,14].

Therefore, the most recent scientific literature does not always agree on the effects of sterilization.
These differences may be due to the heterogeneity of the instruments researched. The endodontic
instruments manufactured by various brands differ not only in diameter and the cone at the tip,
but also in shape of the sections and the characteristics of alloys [15,16]. The scientific literature
provides conflicting findings regarding the effects of heat sterilization on the properties of NiTi and
steel instruments used in endodontics.

However, there have been no published studies analyzing the influence of clinical use and
autoclaving cycles on the cyclic fatigue resistance of NiTi reciprocating files.

The aim of this study was to analyze and compare the effect of time of use and number of
sterilization cycles on the dynamic cyclic fatigue resistance of NiTi endodontic reciprocating files,
with a null hypothesis (H0) stating that the time of use and number of sterilization cycles would not
affect the resistance of NiTi endodontic reciprocating files to dynamic cyclic fatigue.
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2. Materials and Methods

2.1. Study Design

One-hundred-and-twenty (120) sterile 250 µm apical diameter and 6% taper (25.06) austenite NiTi
endodontic reciprocating files (Procodile®, Komet Medical, Lemgo, Germany) with a variable tapered
core, one-file system, 25 mm in length, counter-clockwise (CCW) reciprocating motion, and double-S
cross-section were utilized in this in vitro study. All NiTi endodontic reciprocating files were first
inspected under magnification (SZR-10, Optika, Bergamo, Italy), and all samples were included.
A randomized controlled experimental trial was performed at the Department of Endodontics of the
Faculty of Health Sciences at Alfonso X El Sabio University (Madrid, Spain), between September
and November 2019. The NiTi endodontic reciprocating files were randomized (Epidat 4.1, Galicia,
Spain) and categorized into the following study groups: A: 0 sterilization cycles and 0 seconds of
dynamic cyclic fatigue (n = 10); B: 0 sterilization cycles and 60 s of dynamic cyclic fatigue (n = 10);
C: 0 sterilization cycles and 120 s of dynamic cyclic fatigue (n = 10); D: 1 sterilization cycles and 0 s of
dynamic cyclic fatigue (n = 10); E: 1 sterilization cycles and 60 s of dynamic cyclic fatigue (n = 10);
F: 1 sterilization cycles and 120 s of dynamic cyclic fatigue (n = 10); G: 5 sterilization cycles and 0 s of
dynamic cyclic fatigue (n = 10); H: 5 sterilization cycles and 60 s of dynamic cyclic fatigue (n = 10);
I: 5 sterilization cycles and 120 s of dynamic cyclic fatigue (n = 10); J: 10 sterilization cycles and 0 s of
dynamic cyclic fatigue (n = 10); K: 10 sterilization cycles and 60 s of dynamic cyclic fatigue (n = 10);
and L: 10 sterilization cycles and 120 s of dynamic cyclic fatigue (n = 10).

2.2. Experimental Cycling Fatigue Procedure

Dynamic fatigue procedures were performed regarding the previously described cyclic fatigue
device (utility model patent number ES1219520) [17]. The structure of the dynamic cyclic fatigue
test device was planned by computer aided design/computer aided engineering (CAD/CAE) 2D/3D
software (Midas FX+®, Brunleys, Milton Keynes, UK) and created using 3D printing (ProJet® 6000 3D
Systems©, Rock Hill, SC, USA) (Figure 1A–F).

The Procodile 25.06 NiTi endodontic reciprocating file (Komet Medical, Lemgo) was assessed
using a microcomputed tomography scan (Skyscan 1176, Bruker-MicroCT, Kontich, Belgium) to design
an accurate standard tessellation language (STL) digital file. The STL file was used to generate a
replica of an artificial root canal of 60◦ angle and 3 mm radius of curvature using the CAD/CAE 2D/3D
software for inverse engineering technology (Figure 2A) [18]. The artificial root canal was created by
means of a highly accurate subtractive technique from a stainless steel piece (Cocchiola S.A., Buenos
Aires, Argentina). This process ensured intimate contact between the NiTi endodontic reciprocating
files (Procodile®, Komet Medical, Lemgo) and the artificial root canal walls (Figure 1H). The artificial
root canal was positioned on its own support (Figure 2B) and failure of the endodontic reciprocating
files was detected by analyzing the amount of light using emitted from a Light-Emitting Diode (LED)
(20000 mcd) (Ref.: 12.675/5/b/c/20k, Batuled, Coslada, Spain) (Figure 1G) by a Light-Dependent Resistor
(LDR) sensor (Ref.: C000025, Arduino LLC®, Ivrea, Italy) located opposite at 3 mm of the working
length, with a frequency of 50 ms to accurately detect the time of failure. The axial pecking movement
of the NiTi endodontic reciprocating files affects the measurement of the light signal received by the
LDR sensor, which were shown in real time on a Liquid Crystal Display (LCD) (Ref.: LCD-09568, Spark
Fun Electronics, Niwot, CO, USA). Therefore, the absence of variation in light values during three
cycles of light analysis was interpreted as the NiTi endodontic reciprocating file’s failure. The sensor
data was conditioned by a processor (Arduino UNO Rev. 3, Arduino LLC®, Ivrea, Italy), and the
hardware was managed by software that receives input signals from the Arduino board.
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Figure 1. (A–D) Different views of the dynamic cyclic fatigue hardware device, (E) detail of the 

artificial root canal inside the artificial root canal support with the LDR sensor placed at working 

Figure 1. (A–D) Different views of the dynamic cyclic fatigue hardware device, (E) detail of the artificial
root canal inside the artificial root canal support with the LDR sensor placed at working lenght, (F) detail
of the Arduino board, gear motor, (G) detail of the artificial root canal and LED at 3 mm from working
length, and (H) detail of the intimate contact between the artificial root canal and the NiTi endodontic
reciprocating file.
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Figure 2. (A) Stainless steel artificial root canal plates, (B) CAD/CAE 2D/3D design of the artificial root
canal support, and (C) CAD/CAE 2D/3D design of the LED-LDR detection complex.

The lineal displacement of the artificial root canal support on the lineal guide (Ref.: HGH35C
10249-1 001 MA, HIWIN Technologies Corp. Taichung, Taiwan) was generated by the gear motor
(Ref.: 1589, Pololu® Corporation, Las Vegas, NV, USA) and controlled by the driver (Ref.: DRV8835,
Pololu® Corporation, Las Vegas, NV, USA) through a roller bearing system (Ref.: MR104ZZ, FAG,
Schaeffler Herzogenaurach, Germany). The NiTi endodontic reciprocating files (Procodile®, Komet
Medical, Lemgo) were used with a 6:1 reduction handpiece (EndoPilot, Komet Medical, Lemgo) and
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reciprocating motion, according to the manufacturer’s instructions [19]. The endodontic handpiece
(EndoPilot, Komet Medical, Lemgo) was digitalized (3D Geomagic Capture Wrap, 3D Systems©,
Rock Hill, SC, USA) to enable accurate adjustment to the endodontic handpiece supports during the
dynamic cyclic fatigue tests. Initially, the NiTi endodontic reciprocating files (Procodile®, Komet
Medical, Lemgo) were randomly (Epidat 4.1, Galicia, Spain) unsterilized or pre-sterilized 1, 5 or 10 times
using the following parameters: 3 bar, 134 ◦C and 45 min. Next, the NiTi endodontic reciprocating
files (Procodile®, Komet Medical, Lemgo) were randomly (Epidat 4.1, Galicia, Spain) subjected to no
fatigue, fatigued for 60 s or fatigued for 120 s in the dynamic cycle fatigue device. The NiTi endodontic
reciprocating files (Procodile®, Komet Medical, Lemgo) were used until fracture occurred in order
to analyze the effect of sterilization cycles and the time of use on the resistance of NiTi endodontic
reciprocating files to cyclic fatigue.

All NiTi endodontic reciprocating files (Procodile®, Komet Medical, Lemgo) were used in the
dynamic cyclic fatigue device at a frequency of 60 pecking movements/min according to a previous
study [17]. To reduce the friction between the reciprocating files and the artificial canal walls, a special
high-flow synthetic oil designed for the lubrication of mechanical parts (Singer All-Purpose Oil; Singer
Corp., Barcelona, Spain) was applied.

All NiTi endodontic reciprocating files (Procodile®, Komet Medical, Lemgo) were used until
fracture occurred. The time to failure, the number of cycles to failure, the number of cycles of in and
out movements, and the length of the fractured file tip were measured and recorded.

2.3. Statistical Tests

Statistical analysis was performed by means of SAS 9.4 (SAS Institute Inc., Cary, NC, USA).
Descriptive analysis is described as mean and standard deviation (SD) for quantitative data.
Comparative statistics was carried out by comparing the time to failure (in seconds), the number of
cycles to failure, the number of pecking movements (cycles of in-and-out movements), and the length
of the fractured file tip (mm) using the ANOVA test. Furthermore, Weibull statistical analysis was also
calculated. Statistical significance level was established at p < 0.05.

3. Results

The mean and SD values for time to failure (in seconds) and the mean length of the fractured file
tip (mm) for each of the study groups are displayed in Table 1 and Figure 3.

Table 1. Descriptive analysis of the time to failure in relation to time of use and number of
sterilization cycles.

Time of Use Sterilization Cycles n Mean SD Minimum Maximum Fracture Length

0 s

0 a 10 235.29 45.07 153.20 282.83 3.06
1 a 10 239.55 35.54 176.75 276.66 3.10
5 a 10 225.26 32.04 164.10 265.31 3.17
10 a 10 235.30 32.83 182.28 276.91 3.04

60 s

0 b 10 195.59 45.56 112.84 242.92 3.13
1 b 10 191.45 31.82 136.77 234.89 3.06
5 b 10 182.64 28.97 132.47 216.00 3.01
10 b 10 191.18 29.71 145.94 234.33 3.04

120

0 c 10 88.58 12.39 61.82 102.35 3.11
1 c 10 80.85 9.70 61.91 92.87 3.08
5 c 10 86.90 9.56 72.16 102.01 2.99
10 c 10 97.62 10.40 82.09 121.11 3.02

a,b,c Statistically significant differences between groups (p < 0.05).

The ANOVA analysis showed statistically significant differences between time to failure and
the time of use of NiTi endodontic reciprocating files (p < 0.001) (Figure 3). However, no statistically
significant differences were observed between time to failure and the number of sterilization cycles
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applied to NiTi endodontic reciprocating files (p = 0.848) (Figure 3). The mean length of the fractured
file tip did not show statistically significant differences between time to failure of the time of use
(p > 0.05) and the sterilization cycles (p > 0.05) of the NiTi endodontic reciprocating files (Figure 3).Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 15 

 

Figure 3. Box plot of the time to failure for the time of use and the sterilization cycles study groups. 

The horizontal line in each box represents the respective median value. 

The ANOVA analysis showed statistically significant differences between time to failure and 

the time of use of NiTi endodontic reciprocating files (p  < 0.001) (Figure 3). However, no statistically 

significant differences  were observed between time to failure and the number of sterilization cycles  

applied to NiTi endodontic reciprocating files (p = 0.848) (Figure 3). The mean length of the fractured 

file tip did not show statistically significant differences between time to failure of the time of use (p > 

0.05) and the sterilization cycles (p > 0.05) of the NiTi endodontic reciprocating files (Figure 3). 

The scale distribution parameter (η) of Weibull statistics found statistically significant 

differences between time to failure and the time of use of NiTi endodontic reciprocating files (p >  

0.001) (Table 2, Figure 4A); however, there were no statistically significant differences in time to 

failure between the number of sterilization cycles applied to NiTi endodontic reciprocating files  (p >  

0.05) (Table 2, Figure 4B). The shape distribution parameter (β) of Weibull statistics found no 

statistically significant differences between time to failure in relation to time of use (p  > 0.05) (Table 2, 

Figure 4A), and the sterilization cycles applied to NiTi endodontic reciprocating files (p > 0.05) (Table 

2, Figure 4B). 

Table 2. Weibull statistics of time to failure for the time of use and the sterilization cycles study 

groups. 

Study group Weibull Shape (β) Weibull Scale (η) 

 Estimate St Error Lower Upper Estimate St Error Lower Upper 

0 s 8.3142 1.0833 6.4404 10.7332 248.5615 4.9655 239.0173 258.4868 

60 s 6.8989 0.8808 5.3716 8.8603 203.9091 4.9179 194.4944 213.7794 

120 s 8.0777 0.9119 6.4743 10.0782 93.5190 1.9349 89.8025 97.3892 

0 cycles 2.7040 0.4074 2.0127 3.6328 195.6014 13.9108 170.1516 224.8576 

1cycle 2.6640 0.4060 1.9761 3.5913 192.7207 13.8859 167.3392 221.9521 

5 cycles 2.9873 0.4529 2.2195 4.0208 185.5872 11.9333 163.6121 210.5138 

10 cycles 3.1770 0.4761 2.3685 4.2617 195.9868 11.8612 174.0652 220.6693 

 

0 60 120

T

50

100

150

200

250

T
im

e
 t

o
 f

a
il

u
re

10510Sterilization cycles

Figure 3. Box plot of the time to failure for the time of use and the sterilization cycles study groups.
The horizontal line in each box represents the respective median value.

The scale distribution parameter (η) of Weibull statistics found statistically significant differences
between time to failure and the time of use of NiTi endodontic reciprocating files (p > 0.001) (Table 2,
Figure 4A); however, there were no statistically significant differences in time to failure between
the number of sterilization cycles applied to NiTi endodontic reciprocating files (p > 0.05) (Table 2,
Figure 4B). The shape distribution parameter (β) of Weibull statistics found no statistically significant
differences between time to failure in relation to time of use (p > 0.05) (Table 2, Figure 4A), and the
sterilization cycles applied to NiTi endodontic reciprocating files (p > 0.05) (Table 2, Figure 4B).
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Table 2. Weibull statistics of time to failure for the time of use and the sterilization cycles study groups.

Study Group Weibull Shape (β) Weibull Scale (η)

Estimate St Error Lower Upper Estimate St Error Lower Upper

0 s 8.3142 1.0833 6.4404 10.7332 248.5615 4.9655 239.0173 258.4868
60 s 6.8989 0.8808 5.3716 8.8603 203.9091 4.9179 194.4944 213.7794
120 s 8.0777 0.9119 6.4743 10.0782 93.5190 1.9349 89.8025 97.3892

0 cycles 2.7040 0.4074 2.0127 3.6328 195.6014 13.9108 170.1516 224.8576
1cycle 2.6640 0.4060 1.9761 3.5913 192.7207 13.8859 167.3392 221.9521

5 cycles 2.9873 0.4529 2.2195 4.0208 185.5872 11.9333 163.6121 210.5138
10 cycles 3.1770 0.4761 2.3685 4.2617 195.9868 11.8612 174.0652 220.6693

The mean and SD values for number of cycles to failure and the length of the fractured file tip
(mm) of the study groups are displayed in Table 3 and Figure 5.

Table 3. Descriptive statistics of the number of cycles to failure of the time of use and the sterilization
cycles study groups.

Time of Use Sterilization Cycles n Mean SD Minimum Maximum Fracture Length

0 s

0 a 10 1176.35 225.32 766.00 1414.00 3.06
1 a 10 1259.40 162.90 989.50 1500.00 3.10
5 a 10 1120.85 156.52 820.50 1316.50 3.17
10 a 10 1176.44 164.09 911.35 1384.50 3.04

60 s

0 b 10 977.90 227.76 564.00 1214.50 3.13
1 b 10 954.80 157.00 684.00 1174.50 3.06
5 b 10 913.30 144.78 662.50 1080.00 3.01
10 b 10 955.80 148.54 729.50 1171.50 3.04

120

0 c 10 442.96 61.98 309.10 512.00 3.11
1 c 10 404.26 48.51 309.55 464.35 3.08
5 c 10 431.98 48.33 360.80 510.00 2.99
10 c 10 488.12 51.96 410.45 605.50 3.02
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Figure 5. Box plot of the number of cycles to failure for the time of use and the sterilization cycles study
groups. The horizontal line in each box represents the median value.
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The ANOVA test revealed statistically significant differences between the number of cycles to
failure and the time of use of NiTi endodontic reciprocating files (p < 0.001) (Figure 5). However,
no statistically significant differences were observed between the number of cycles to failure and the
number of sterilization cycles applied to NiTi endodontic reciprocating files (p = 0.848) (Figure 5).
The mean length of the fractured file tip did not show statistically significant differences between the
number of cycles to failure and the time of use (p > 0.05) and number of sterilization cycles (p > 0.05)
applied to the NiTi endodontic reciprocating files (Figure 5).

The scale distribution parameter (η) of Weibull statistics showed statistically significant differences
between the number of cycles to failure and the time of use of NiTi endodontic reciprocating files
(p < 0.001) (Table 4, Figure 6A); however, there were no statistically significant differences between
the number of cycles to failure and the number of sterilization cycles applied to NiTi endodontic
reciprocating files (p > 0.05) (Table 4, Figure 6B). The shape distribution parameter (β) of Weibull
statistics did not show statistically significant differences between the number of cycles to failure and
the time of use (p > 0.05) (Table 4, Figure 6A), nor the number of sterilization cycles applied to NiTi
endodontic reciprocating files (p > 0.05) (Table 4, Figure 6B).

Table 4. Weibull statistics of the number of cycles to failure for the time of use and sterilization cycles
study groups.

Study Group Weibull Shape (β) Weibull Scale (η)

Estimate St Error Lower Upper Estimate St Error Lower Upper

0 s 8.1790 1.0424 6.3712 10.4999 1257.379 25.5617 1208.264 1308.4906
60 s 6.9078 0.8808 5.3803 8.8690 1018.7335 24.5392 971.7553 1067.9829
120 s 8.0244 0.9069 6.4301 10.0141 467.0982 9.7300 448.4118 486.5633

0 cycles 2.7040 0.4074 2.0127 3.6328 195.6014 13.9108 170.1516 224.8576
1cycle 2.6640 0.4060 1.9761 3.5913 192.7207 13.8859 167.3392 221.9521

5 cycles 2.9873 0.4529 2.2195 4.0208 185.5872 11.9333 163.6121 210.5138
10 cycles 3.1770 0.4761 2.3685 4.2617 195.9868 11.8612 174.0652 220.6693Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 15 
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The mean and SD values for the number of cycles of in-and-out movement and the length of the
fractured file tip (mm) of the study groups are displayed in Table 5 and Figure 7.
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Table 5. Descriptive statistics of the number of cycles of in-and-out movement for the time of use and
sterilization cycles study groups.

Time of Use Sterilization Cycles n Mean SD Minimum Maximum Fracture Length

0s

0 a 10 235.29 45.07 153.20 282.83 3.06
1 a 10 239.55 35.54 176.75 276.66 3.10
5 a 10 225.26 32.04 164.10 265.31 3.17
10 a 10 229.30 46.31 122.28 276.91 3.04

60s

0 b 10 214.69 30.30 162.27 251.10 3.13
1 b 10 205.45 38.46 136.77 265.01 3.06
5 b 10 186.64 38.88 132.47 246.87 3.01

10 b 10 183.18 48.23 113.82 264.33 3.04

120

0 c 10 88.58 12.39 61.82 102.35 3.11
1 c 10 80.85 9.70 61.91 92.87 3.08
5 c 10 86.90 9.56 72.16 102.01 2.99

10 c 10 97.62 10.40 82.09 121.11 3.02
a,b,c Statistically significant differences between groups (p < 0.05).Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 15 
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Figure 7. Box plot of the number of cycles of in-and-out movement for the time of use and sterilization
cycles study groups. The horizontal line in each box represents the median value.

The ANOVA test revealed statistically significant differences between the number of cycles of in
and out movement and the time of use of NiTi endodontic reciprocating files (p < 0.001) (Figure 7).
However, no statistically significant differences were observed between the number of cycles of in and
out movement and the number of sterilization cycles applied to NiTi endodontic reciprocating files
(p = 0.848) (Figure 7). The mean length of the fractured file tip did not show statistically significant
differences between the number of cycles of in-and-out movement and the time of use (p > 0.05) or the
number of sterilization cycles (p > 0.05) applied to the NiTi endodontic reciprocating files (Figure 7).

The scale distribution parameter (η) of Weibull statistics showed statistically significant differences
between the number of cycles of in-and-out movement and the time of use of NiTi endodontic
reciprocating files (p < 0.001) (Table 6, Figure 8A); however, no statistically significant differences were
found between the number of cycles of in-and-out movement and the number of sterilization cycles
applied to the NiTi endodontic reciprocating files (p > 0.05) (Table 6, Figure 8B). The shape distribution
parameter (β) of Weibull statistics did not show statistically significant differences between the number
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of cycles of in-and-out movement and the time of use (p > 0.05) (Table 6, Figure 8A) or the number of
sterilization cycles applied to the NiTi endodontic reciprocating files (p > 0.05) (Table 6, Figure 8B).

Table 6. Weibull statistics of the number of cycles of in-and-out movements for the time of use and
sterilization cycles study groups.

Study Group Weibull Shape (β) Weibull Scale (η)

Estimate St Error Lower Upper Estimate St Error Lower Upper

0 s 7.8371 1.0332 6.0526 10.1478 247.8093 5.2331 237.7620 258.2813
60 s 5.9056 0.7502 4.6039 7.5752 213.5034 6.0177 202.0287 225.6298
120 s 8.0777 0.9119 6.4743 10.0782 93.5190 1.9349 89.8025 97.3892

0 cycles 2.8397 0.4369 2.1004 3.8391 202.3470 13.6633 177.2639 230.9795
1cycle 2.6486 0.4087 1.9573 3.5841 198.0170 14.3348 171.8235 228.2036

5 cycles 2.9091 0.4413 2.1610 3.9163 187.3384 12.3756 164.5872 213.2345
10 cycles 2.8747 0.4233 2.1540 3.8366 191.7153 12.8646 168.0889 218.6626Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 15 
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4. Discussion

The results obtained in the present study reject the null hypothesis (H0) that states that time of use
would have no effect on the dynamic cyclic fatigue resistance of NiTi endodontic reciprocating files.
However, it also accepts the null hypothesis (H0) that states that the number of sterilization cycles
applied to NiTi endodontic reciprocating files would have no effect on their resistance to dynamic
cyclic fatigue.

The cyclic fatigue resistance of NiTi endodontic rotary and reciprocating instruments has been
widely compared with regard to the NiTi alloy used, cross-section design, curvature angle, radius,
pecking motion frequency, etc., with both static and dynamic custom-made cyclic fatigue devices
having been used [20,21]. However, dynamic custom-made cyclic fatigue devices are the only ones that
faithfully simulate the pecking movement performed by the clinician, more accurately representing
the amount of time during which the NiTi endodontic rotary instrument remains in the artificial root
canal. In addition, the artificial root canal should be custom-designed for the specific NiTi endodontic
rotary instrument being tested in order to ensure immediate contact with the artificial root canal
(as happens in a clinical setting). This also ensures that compression and tensile stress cycles are
localized at the maximum flexure point [22], distributes the shear resistance homogeneously along
the NiTi endodontic rotary instrument surface, and leads to the formation of microcracks on the
instruments’ microstructure [23] without any signs of plastic deformation in the static model; the
area of these stresses spreads through the instrument shaft in the dynamic model [21]. Most of the
static and dynamic custom-made cyclic fatigue devices provided a non-instrument-based artificial root
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canal [24,25], so the results extracted from these studies should be carefully considered and not applied
to clinical practice. Di Nardo et al. reported statistically significant differences (p < 0.05) between the
time to failure of Wave One Gold NiTi endodontic reciprocating files (50.75 ± 20.06 s) and Reziflow
(30.13 ± 9.40) conventional NiTi endodontic rotary instruments [26]. Although this was a static cyclic
fatigue test with an artificial root canal of parallel walls and 90◦ and 5 mm curvature radius, Reziflow
has a similar design and manufacturing process as Procodile. In this study, a curvature angle of 60◦

was designed, because Topçuoğlu et al. reported that artificial root canals with a 45◦ angle of curvature
did not show statistically significant differences (p > 0.05) between the time to failure of WaveOne
Gold (412.4 ± 55.2 s) and R-Pilot (394.5 ± 45.3 s) glider files; however, artificial root canals with a
curvature angle of 60◦ showed statistically significant differences (p < 0.05) between the time to failure
of WaveOne Gold (368.3 ± 44.1 s) and R-Pilot (247.2 ± 36.2 s) endodontic instruments [27].

Kim et al. state that the endodontic reciprocating instruments must be disposed of after the first
use because the mechanical properties, metallurgical features and risk of failure of the endodontic
reciprocating instruments result from repeated usage [28]. Furthermore, Generali et al. reported that
the continued usage of Reciproc and Reciproc Blue endodontic reciprocating instruments reduced
resistance to cyclic fatigue, also reducing the martensite and R-phase in Reciproc Blue endodontic
reciprocating instruments and causing microcracks near the tip of both endodontic reciprocating
instruments after usage. In addition, there were statistically significant differences (p < 0.05) between
the cyclic fatigue resistance of new and used Reciproc Blue endodontic reciprocating instruments,
in keeping with the findings of the present study. However, no statistically significant differences
(p > 0.05) were observed between the cyclic fatigue resistance of new and used Reciproc endodontic
reciprocating instruments. Regardless of the NiTi alloy of the endodontic reciprocating system, the
double-S cross-section design of Reciproc and Reciproc Blue endodontic reciprocating instruments and
the reciprocating movement are similar to the Procodile NiTi endodontic reciprocating instruments;
even the DSC curves confirm that the Reciproc Blue endodontic reciprocating instruments are made
up of a mix of austenite and R-phase, as observed in XRD patterns [29]. However, this was a static
cyclic fatigue test with an artificial root canal machined on a quenched martensitic carbon steel plate.
The endodontic instruments are designed to cut dentin, but not materials with different cutting
resistance values, so the results of the present study can hardly be accurately extrapolated to a clinical
setting. However, in the present study, the NiTi endodontic reciprocating instruments were selected
in the austenite phase due to their physical and metallurgical properties in terms of hardness and
cutting capability in order to ensure the advance of the NiTi endodontic reciprocating instrument
inside the stainless steel artificial root canal. In addition, the automatic, objective detection of the NiTi
endodontic reciprocating instruments failure process using a LED-LDR system provided an accurate
and standardizable measurement procedure, regardless of the subjective measurement protocol used
in most studies to detect the precise moment of failure of the endodontic instrument tip. No statistically
significant difference was found between the mean lengths of fractured file tips, whose maximum area
of stress corresponded to the mid-point arc of the apical curvature, in keeping with the findings of
Pruett et al. [22]. This result confirms the correct and repeated positioning of the tested NiTi endodontic
reciprocating instruments within the artificial root canal.

Some researchers have postulated that the gamma-ray and autoclave sterilization processes
used for fully sterile packaged Hyflex EDM and TRUShape endodontic rotary instruments might
impact on the life span of NiTi martensitic endodontic rotary instruments in terms of their resistance
to fatigue [30]. Furthermore, the heat sterilization method can also cause changes in the physical
and mechanical properties of NiTi endodontic rotary instruments and even impact the torsional
properties of NiTi endodontic rotary instruments [31]. Yang et al. reported that the surface roughness
of K3XF R-phase NiTi endodontic rotary instruments increased after autoclaving, but this did not
affect the cyclic fatigue resistance after 30 sterilization cycles [32]. Pedullà et al. found that repeated
sterilization cycles did not impact resistance of NiTi endodontic rotary instruments to fatigue except
for Twisted Files R-phase NiTi endodontic rotary instruments, which showed a significant decrease
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in flexural resistance after three sterilization cycles (p < 0.05) [33]. Champa et al. showed that
multiple sterilization cycles significantly increased the cyclic fatigue resistance of Reciproc M-Wire
NiTi endodontic reciprocating instruments, but decreased the cyclic fatigue resistance of Wave One M
Wire NiTi endodontic reciprocating instruments in an artificial root canal (not anatomically modeled)
with 60◦ of curvature in a static cyclic fatigue device [34]. Özyürek et al. also reported that the
sterilization cycles significantly increased the cyclic fatigue resistance of Protaper Next M-Wire NiTi
endodontic rotary instruments (p < 0.05) and Protaper Gold alloy NiTi endodontic rotary instruments
(p < 0.05) [35]. Zhao et al. showed that the cyclic fatigue resistance of pre-sterilized HyFlex CM
CM Wire NiTi endodontic rotary instruments and K3XF R-phase NiTi endodontic rotary instruments
increased significantly (p < 0.05) after 10 sterilization cycles in an artificial root canal (not anatomically
modeled) with a curvature of 60◦ and a radius of 3 mm in a static cyclic fatigue device [36]. Most
of the martensitic endodontic rotary instruments (M-Wire alloys) have demonstrated an increase in
cyclic fatigue resistance after heat sterilization procedures. However, in the present study, the cyclic
fatigue resistance of austenite NiTi endodontic reciprocating files was not affected after 10 autoclave
sterilization cycles (p > 0.05). The thermal treating of M-Wire endodontic rotary instruments makes the
martensitic phase of NiTi alloy less subject to breakage during clinical use and stabilizes the NiTi alloy.
The thermal heating induced by heat sterilization procedures make it even more stable, increasing
cyclic fatigue resistance [31].

5. Conclusions

The conclusion derived from the present study is that the time of use of austenite NiTi endodontic
reciprocating files negatively affects their dynamic cyclic fatigue resistance; however, resistance to
dynamic cyclic fatigue is not affected by the number of sterilization cycles.
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