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Abstract: For the very first time, a study on the crystallization growth of zinc silicate glass and
glass-ceramics was done, in which white rice husk ash (WRHA) was used as the silicon source. In this
study, zinc silicate glass was fabricated by using melt–quenching methods based on the composition
(ZnO)0.55(WRHA)0.45, where zinc oxide (ZnO) and white rice husk ash were used as the raw materials.
The control crystallization technique was used in which the sample was sintered at 700–950 ◦C;
then, the physical, structural, and optical properties of the glass and glass-ceramics were investigated
by using a densitometer, linear shrinkage, X-ray diffraction (XRD), Fourier transform infrared
radiation (FTIR), field-emission scanning electron microscopy (FESEM), and photoluminescence
spectroscopy (PL). The density and linear shrinkage increased as the crystallinity increased and the
XRD results showed the progression of the crystal formation, in which the sample was still in an
amorphous state at 27 ◦C and 700 ◦C; the crystalline phase started at 750 ◦C. Based on the FTIR
spectra, all samples showed sharpened absorption bands as the sintering temperature was increased,
and the FESEM image showed the progression of crystal growth, indicating the formation of zinc
silicate glass-ceramics. Lastly, the PL spectra emitted three emission peaks, at 529, 570, and 682 nm
for the green, yellow, and red emission, respectively.
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1. Introduction

Over the past years, in countries that produce rice, like India, China, Bangladesh, Brazil, USA,
Cambodia, Vietnam, Myanmar, and the rest of Southeast Asia, a massive amount of agricultural waste
was obtained and sometimes had been discarded as waste product [1]. The production of rice in
paddies all over the world is approximated to be 600 million tons a year, where 20% of the crop yield
is the husk-to-paddy ratio, and 18% is the ash-to-husk ration, making the overall ash production
21 million tons per year [2]. However, nowadays, people found a path to use the rice husk (RH) in
a more beneficial way, instead of it being a waste product. Several research studies have focused
on the properties of rice husk, finding that, among all the countries around the world that produce
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rice, their factories had started to use the rice husk (RH) as an energy source, especially in milling
operations and also for household lighting in the countryside areas [3]. This is because rice husk ash
has several properties that, depending on the combustion method, makes it beneficial in many ways.

Burning of the RH at higher temperatures produces white rice husk ash (WRHA). In previous
studies, it has been found that combusted WRHA contains 95.60% SiO2 [4]. This finding of a huge
amount of silica in the combusted WRHA makes it a precious material, since it can be used as the
silica precursor to produce silicate glasses and many other products, such as ceramic tiles. In fact,
it had been proven by Bondoli and co-researchers that by using the wasted WRHA as the silica source,
an exact same product of industrial glass that has the same glassy characteristic can be produced [2].
Apart from that, silicate glass from WRHA had recently been researched as a potential luminescence
material. In previous research, Khaidir and co-researchers conducted research regarding the europium
oxide-doped zinc silicate glasses derived from WRHA. From the result obtained, when doping zinc
silicate glass with europium oxide, the photoluminescence revealed red emission at ~722 nm and
the emission occurred due to the 4f-4f transition of the europium ions [5]. Besides, another study
regarding the luminescence properties of zinc silicate glass doped with cobalt oxide derived from
WRHA also had been carried out by Wahab and co-researchers. In 2018, Wahab and co-researchers
had found that zinc silicate glass and glass-ceramics from WRHA doped with cobalt oxide emitted a
red emission under UV light. The peak was attributed to the d-d transition of the cobalt oxide ions [6].
However, a luminescence study of undoped zinc silicate glass and glass-ceramics derived from WRHA
is rare to be found. Hence, for this high composition of silica in the WRHA and its potential as a
luminescence material, a comprehensive study regarding the fabrication and characterization of zinc
silicate (willemite) will be reported.

Zinc silicate (Zn2SiO4) or willemite is well known among researchers as a supreme and most
suitable host matrix for glass phosphor and other optoelectronic materials, since it has a quite huge band
gap around 5.5 eV, high chemical compound stability, and a great glass transparency [7]. Besides, it also
has another special feature—a large excitation binding energy—allowing it to be used as an enhancer
for triggering the luminescence inside the neon discharged lamps, fluorescent lamps, black-and-white
televisions, colour televisions, oscilloscopes, laser technology, optical communications, optical fibre
amplifiers, waveguides, and light emitting diodes (LED) [8–10]. Nowadays, the production of low-cost
zinc silicate glass and glass-ceramics is a topic of interest among researchers. In this present work,
the fabrication of a novel zinc silicate glass and glass-ceramics fabricated from WRHA by using
conventional melt and quenching methods is reported. The best part of this work is the utilization of
WRHA as the silicon source instead of using pure silica, which is very expensive. Thus, this will reduce
the cost of production of zinc silicate glass and glass-ceramics; it is also very environmentally friendly,
economically safe, and has low energy consumption. In this context, the major purpose of this work is
to produce, characterize, and study the luminescence of zinc silicate glass and glass-ceramics that had
been produced from waste materials (WRHA), as a potential material to be used in optical application.

2. Materials and Methods

The RH used was collected from a local rice factory located at Tanjung Karang, Selangor, Malaysia,
where the species of the RH is recognized as Oryza sative (Asian rice) [4]. At an earlier state, after being
milled, the RH was kept indoor inside the factory to reduce the chances of contamination from
the surroundings. The RH was washed numerous times by using pipe water to remove stains and
impurities. By using a large basin, the RH was soaked in water and the sands and soils submerged to
the bottom of the basin. After that, only the RH that floated on the surface of the water was collected.
Then, the washed RH was dried in an oven at 120 ◦C for 8 h. The dried RH was then burned in the
electrical furnace at 1000 ◦C for 2 h at a heating rate 10 ◦C/min to obtain the WRHA. Subsequently,
the obtained WRHA was ground by using a mortar and pestle. In order to obtain the fine powder,
the WRHA was then sieved into the size of 45 µm. The obtained WRHA was then mixed with ZnO.
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A zinc silicate glass with a weight composition of (ZnO)0.55(WRHA)0.45 was prepared by using the
solid state method [2]. In this research, the raw material used was zinc oxide (ZnO) (99.9%, Sigma Aldrich,
Subang Jaya, Malaysia) and WRHA was extracted as mentioned previously. The ZnO and WRHA were
weighed by using an electronic balance for about ~16.5 g and ~13.5 g, respectively, to give the total
amount of ~30 g of the whole mixture. The mixture was then dry milled by using a milling machine at
80 rpm for one hour to ensure that the composition was well mixed together. Right after the mixture
was milled together, it was carefully poured into a cylindrical alumina crucible of 47 mm in height and
with a wall thickness of 2.5 mm, which has the ability to withstand high temperatures of up to 1600 ◦C;
then, the mixture was melted in a closed electrical furnace at 1450 ◦C for 3 h. In the meantime, a pail
of water with a glass collector at the bottom of the pail was prepared. After the melting process was
done, a flowy molten glass was obtained inside the alumina crucible and it was poured into the pail of
water. As a result, transparent glass frits were formed. The collected glass frits were left to dry at room
temperature and ground by using a plunger, mortar, and pestle to obtain the fine powder, and then
sieved at 45 µm. In order to get the pallet for the purpose of ceramization, a palleting procedure was
carried out. The powder was mixed with polyvinyl alcohol (PVA) to bind it together and later was put
into the stainless-steel mould that was 13 mm in diameter and 2 mm in thickness. Lastly, the powder
was pressed by using a uniaxial pressing pallet with an applied load of 3 tons for 10 min. The pallet
was then subjected to the sintering process at various sintering temperatures, ranging from 700 to
950 ◦C, with an increment of 50 ◦C for each sample in a 4 h duration. The zinc silicate glass and
glass-ceramics were characterized for their physical, structural and optical properties.

The densities of the zinc silicate glass and glass-ceramics were measured by using an MD-300S
densitometer in which Archimedes’ principle was applied. The results obtained were compared with
true density that was measured by using a micromeritics AccuPyc II 1340 Gas Pycnometer. For bulk
density by using Archimedes principle, at the beginning stage, the samples were weighed by using the
weighing machine in the air, giving their weight in air (Wa). Then, it was followed by the submersion
of the sample into liquid, to obtain the weight of the displaced fluid. Then, the density of the sample
was calculated by using the following formula:

ρsample =
wa

wa −wb
× ρdistilled water (1)

where ρsample is the density of the sample, wa is the weight of the sample measured in the air, and wb is
the weight of the sample measured in the reference liquid (distilled water was used in this experiment).
On the other hand, the true density was determined by using Boyle’s law:

P1V1 = P2V2 (2)

where P1 is the pressure 1, V1 is the volume 1, P2 is the pressure 2, and V2 is the volume 2. When the
testing was carried out, the calculation of the sample’s volume was calculated by the program in the
machine by using the rearranged Boyle’s law as below:

Vs = Vc −
VE

P1P2− 1
(3)

where Vs is the volume of the sample, Vc is the volume of the sample’s cell, and VE is the volume of the
expansion cell. After that, the true density of the sample was calculated by using the formula below:

ρt = m/Vs (4)

where ρt is the true density and m is the mass of the sample. As for the true density, it measures
just the volume of the solid materials and exclude the volume of all open pores. Contrarily, in bulk
density (using Archimedes’ principle), it includes the volume of all pores both open and close within
the sample. Meanwhile, linear shrinkage was determined by calculating the change in the percentage
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of the diameter of the sample by using an electronic vernier calliper. The structural properties of the
zinc silicate glasses were examined by X-ray techniques, with an X’pert PRO MPD diffractometer
(PANalytical, Philips, Amelo, the Netherlands and Malvern (UK), carried out with Ni-filtered Cu-Ka
radiation = 1.5405◦ positioned from 20◦ to 80◦. The molecular vibrations of the precursor glasses
were observed by using a Fourier transform infrared spectrometer (FTIR Spectrum 100, Perkin Elmer,
Waltham, MA, USA), ranging from 400 to 2000 cm−1. The microstructure of the sample was performed
by using field-emission scanning electron microscopy (FESEM), using a FEI NOVA NanoSEM 230,
Hillsboro, OR, USA. Lastly, the photoluminescence spectra of the zinc silicate glass were measured by
using a spectrometer, in this case the Perkin Elmer LS 55 Fluorescence Spectrometer instrument.

3. Results

3.1. Density and Linear Shrinkage

The Archimedes density (density that is measured by using Archimedes’ principle) accompanied
by the linear shrinkage as a function of the sintering temperature was plotted as portrayed in Figure 1.
Then, the Archimedes density was also compared with the true density as in Table 1. From Figure 1,
the densities of the samples were increased from 2.9118 to 3.4138 g/cm3 as the sintering temperature
increased. Meanwhile, the true density also increased as the sintering temperature increased from
2.3734 to 3.4472 g/cm3. Besides, from Figure 1, it can be observed that the zinc silicate glass and
glass-ceramics shrinkage increased from 0% to 7.5%.
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Figure 1. Density accompanied by the linear shrinkage of the zinc silicate glass and glass-ceramics 
that were heat treated at various sintering temperatures. 
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3.2. X-ray Diffraction 

The XRD patterns of the zinc silicate glass and glass-ceramic heat treated at different 
temperature ranging from 700 to 950 °C for 4 h are discretely presented in Figure 2. At room 
temperature and 700 °C, the XRD patterns showed a broad amorphous characteristic, indicating that 

Figure 1. Density accompanied by the linear shrinkage of the zinc silicate glass and glass-ceramics that
were heat treated at various sintering temperatures.

Table 1. Comparison of the values measured from the Archimedes density and true density.

Sintering Temperature (◦C) 27 700 750 800 850 900 950

Archimedes density (g/cm3) 2.9118 3.2186 3.2413 3.2581 3.3001 3.3225 3.4138
True density (g/cm3) 2.3745 2.5482 3.4036 3.4164 3.4240 3.4329 3.4472

3.2. X-ray Diffraction

The XRD patterns of the zinc silicate glass and glass-ceramic heat treated at different temperature
ranging from 700 to 950 ◦C for 4 h are discretely presented in Figure 2. At room temperature and
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700 ◦C, the XRD patterns showed a broad amorphous characteristic, indicating that the samples are
still glass in nature. However, as the sintering temperature increased to 750 ◦C, a sharp peak started to
appear and the β phase of the zinc silicate (β-Zn2SiO4) with a JCPDS no. of 14-0653 was detected to be
formed. β-Zn2SiO4 is known to be the thermodynamically metastable phases of zinc silicate (willemite)
that has an orthorhombic crystal system (from a recent study) [11,12]. In Figure 2, thirteen major
diffraction peaks of β-Zn2SiO4 at 2θ = 22.04◦, 25.23◦, 27.10◦, 31.20◦, 36.23◦, 37.84◦, 42.44◦, 44.90◦, 47.84◦,
56.19◦, 61.22◦, and 65.38◦, corresponding to planes (210), (020), (12-1), (112), (221), (022), (231), (420),
(40-2), (322), (511), (332), and (33-3), respectively, were detected and indexed as shown in Figure 2.
This β-Zn2SiO4 continued to exist until the sintering temperature reached 850 ◦C.
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Figure 2. X-ray diffraction patterns of the zinc silicate glass and glass-ceramics that were heat treated 
at various sintering temperatures.  

Figure 2. X-ray diffraction patterns of the zinc silicate glass and glass-ceramics that were heat treated at
various sintering temperatures.

Meanwhile, when the sintering temperature of the sample increased to 900 ◦C, the β-Zn2SiO4

phase transformed into α-Zn2SiO4 phases (JCPDS no. 37-1485). The α-Zn2SiO4 phase is a nesosilicate,
or previously known as an orthosilicate, consisting of isolated SiO4

4- tetrahedrons and ZnO4
6- [13,14].

It is the most common practical crystalline phase of zinc silicate. At 900 ◦C, there were still a few of the
β-Zn2SiO4 phases being traced. However, as the temperature increased to 950 ◦C, only a single phase
of α-Zn2SiO4 was seen. There were twelve major diffraction peaks found, as indicated in Figure 1,
where the diffraction peaks positioned at 2θ = 22.12◦, 25.59◦, 31.53◦, 34.07◦, 38.88◦, 45.10◦, 46.84◦,
49.01◦, 57.85◦, 59.77◦, 65.73◦, 68.77◦, and 70.45◦ corresponded to planes (330), (220), (113), (410), (223),
(060), (431), (333), (8-70), (006), (8-73), (636), and (416), respectively. Therefore, it can be concluded
that, as the sintering temperature increases, the glass gradually changes into glass-ceramics, where the
crystallization of the β-Zn2SiO4 occurred first at the lower temperature, and then gradually was
converted into the thermodynamically stable state of α-Zn2SiO4.



Appl. Sci. 2020, 10, 4938 6 of 11

3.3. Field-Emission Scanning Electron Microscopy (FESEM)

The FESEM micrographs of the zinc silicate glass and glass-ceramics sintered at 700–950 ◦C with
10,000x magnification are presented in Figure 3. There was no grain growth observed at 27 ◦C and
700 ◦C. Then, upon further sintering, the sample started to aggregate, showing the growth effect of the
sintering temperature.
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3.4. Fourier Transform Infrared Radiation (FTIR)

Figure 4 shows the transmittance IR spectra of the zinc silicate glass and glass-ceramics in the
region from 400 to 2000 cm−1. The band assignation of the IR spectra is tabulated in Table 2.
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Table 2. FTIR assignment bands for the zinc silicate glass and glass ceramic after sintering [8].

Wavenumber (cm−1) Assignment of Vibrational Mode

450–700 ZnO4 symmetric starching vibrations
460 SiO4 asymmetric deformation
576 Zn-O symmetric stretching vibration
615 Zn-O asymmetric stretching vibration
697 Si-O bond vibration
865 Si-O symmetric stretching vibration

900–980 Si-O asymmetric stretching vibration

3.5. Photoluminescence (PL)

Figure 5 shows the emission intensity of the zinc silicate glass and glass-ceramics that were
heat treated at 700, 750, 800, 850, 900, and 950 ◦C, respectively. The samples were excited at a
wavelength of 375 nm. Based on Figure 5, it was evident that three broad emission peaks at 529, 570,
and 682 nm appeared.
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4. Discussion

Density and shrinkage of the zinc silicate glass and glass-ceramics were investigated to observe the
physical changes that occurred when the sintering process was carried out. From Figure 1, the density
increased from 2.9118 to 3.4138 g/cm3 as the sintering temperature increased, suggesting a rapid
densification. The observation of this densification occurred due to the structure compactness and
enhancement of the crystallization phase as the sintering temperature increased. When the structure
of the sample became compact, the sample’s shrinkage became clear; this can be observed from
Figure 1, where the shrinkage increased from 0% to 7.5%. Apart from that, at a higher temperature,
the microstructure and grain size of the sample increased to obtain a denser packing. Consequently,
this will lead to the decrement of the total fractional porosity; hence, causing the density to increase.
Besides, as the heat was subjected to the sample, it applied pressure on the sample. When pressure
was applied, it resulted in a decrease in the volume of the sample. Volume is subjected to be inversely
proportional to the density of a material. The lower the volume, the higher the density. In conclusion,
the higher the sintering temperature, the higher the density and linear shrinkage of the zinc silicate
glass and glass-ceramics.

By looking at the diffraction peaks in Figure 2, it can be observed that, as the sintering temperature
increases, the intensity of the XRD peak also increases. The effect of sintering has improved the
crystallinity of the zinc silicate [15]. Besides, with the progression of the sintering temperature,
the diffraction peaks of the zinc silicate glass-ceramics become sharper and the full width at half
maxima (FWHM) is decreased. In the XRD analysis, generally the smaller the crystallite sizes,
the broader the peaks; in turn, the larger the crystallite sizes, the sharper the peaks [11,12,15]. This is
because at a higher sintering temperature, the diffusion of the ions increased, hence making the crystal
growth of the sample accelerated, resulting in a larger crystal being produced [12]. This supports the
result that was obtained, where it can be observed that the diffraction peak becomes sharper as the
sintering temperature increased. The formation of zinc silicate glass and glass-ceramics was further
confirmed by using the FESEM and FTIR analysis.

In order to determine the size of the crystal, the type of crystal, and the surface morphology of the
zinc silicate glass and glass-ceramics samples, the FESEM analysis was done. From our observations,
at the lower temperatures of 27 ◦C and 700 ◦C there were no grain growth, showing a clear glassy
surface that tallies with the XRD result where at 27 ◦C and 700 ◦C the sample was still in an amorphous
phase [16]. Meanwhile, as the sintering temperature increased to 750 ◦C and 800 ◦C, the microstructure
of the sample still did not show a regular shape (irregular) and started to aggregate among each other.
The formation of crystal growth on the surface of the zinc silicate glass and glass-ceramics proved
that at 750 ◦C and 800 ◦C, the crystallization started to occur as in the XRD result. Then, after further
sintering, the glass-ceramics appeared to have a greater grain size, indicating an increase in crystallinity.
At the highest temperature, the glass-ceramics become densely packed, with strong necking between
each other.

Other than that, by carrying out FTIR analysis, the functional groups of the respective zinc silicate
glass and glass-ceramics that could appear in the corresponding materials can be obtained. At a lower
sintering temperature, there were four broad SiO4 and ZnO4 bands, whose presence was attributed to
the bending modes of the O-Si-O and Si-O-Si bonds, Zn-O stretching vibrational bond, vibrations of
Zn-O in the ZnO4 tetrahedral, the decreasing of the Si-O stretching bonds, and the stretching vibrations
of the SiO4 and ZnO4 tetrahedron [17]. This four broad SiO4 and ZnO4 bands indicated that there was
no formation of zinc silicate glass-ceramics, which agrees with the XRD pattern, where all samples were
in an amorphous form at 27 ◦C and 700 ◦C. While, for the IR spectrum of the zinc silicate glass-ceramics,
there were eight types of absorption bands located at the 459 cm−1 asymmetric deformation of the SiO4,
symmetric stretching of ZnO4 at 576 cm−1, asymmetric stretching of ZnO4 at 615 cm−1, bond vibration
of SiO4 at 697 cm−1, symmetric stretching of SiO4 at 865 cm−1, and asymmetric stretching of SiO4 at
905 cm−1, 932 cm−1, and 978 cm−1, respectively [18]. From Figure 4, after the sintering temperature
reached 750 ◦C up to 950 ◦C, a sharp band at 456 cm−1 was spotted at the IR region, showing the
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asymmetric deformation of the Si-O bond in the SiO4 units. Then, a band at 574 cm−1 associated with
the Zn-O symmetric stretching vibration in the ZnO4

− was also spotted. While, for the asymmetric
stretching of the Zn-O during vibration of the ZnO4 group was located at 615 cm−1. The bands
positioned at 779 cm−1 are accredited to the Si-O bond vibration and the bands at 876 cm−1 are
subjected to Si-O symmetric stretching vibration [6,19]. Lastly, the band that appeared at 980 cm−1 was
transmitted due to the Si-O asymmetric stretching vibration. The band assignation of the IR spectra
was tabulated in Table 2. Considering all the IR spectra, it was found that, at first, there were only four
broad bands present, proving the formation of the zinc silicate glass. Later, as the sintering temperature
increased, there was an additional, sharp band at the IR region, indicating the formation of zinc silicate
glass-ceramics, which supports the XRD result.

The photoluminescence spectrometer was cast-off to analyse and prove the luminescence properties
of the zinc silicate glass and glass-ceramics by looking at the emission spectra of the sample as in
Figure 5, where three broad emission peaks at 529, 570, and 682 nm appeared. The glass-ceramics
reveals green, yellow, and red emission. It was found that the origin of these emission peaks might
originate from the intrinsic or native defects in ZnO [20]. According to Lima and co-researchers,
these emissions can be attributed to the following transitions: Zni

+
→ Vzn− at 529 nm, Vzn−→ Vzn−

at 570 nm, and CB → Vo
+ / Vo

+
→ VB at 682 nm [21]. The green emission happened due to the

electron-hole recombination, in which the electron was trapped at the singly ionized oxygen vacancy
(Vo) centre; then, it recombined with the hole in the valance band (VB) [22]. The recombination process
between the electron and hole releases the green emission. Moreover, based on study by Ramanachalam
and co-researchers, it has been concluded that the centre/origin of the green luminescence in ZnO
can be either the zinc interstitial (Zni) and/or Vo [20]. Apart from that, it has been discussed that the
Zn2+ ions are the ones that caused the green emission to occur and appear in zinc silicate glass and
glass-ceramics [22–24]. The green emission of the zinc silicate glass and glass-ceramics was attributed to
the radiative decay of the electronic defect that happened in the forbidden band. Meanwhile, the broad
yellow emission at 570 nm was probably due to the intrinsic or excess of oxygen [25]. Previously, a few
researchers had proposed that the centre origin of yellow luminescence could be the zinc vacancy (Vzn)
oxygen interstitial (Oi) and other defects [20,26–28]. According to Lui and co-researchers, the yellow
luminescence of high purity ZnO may happen due to the intrinsic and excess of oxygen. Moreover,
Ramanchalam and co-researchers had discussed that the Oi may be the yellow luminescence centre of
the pure ZnO and ZnO varistor [20]. In the meantime, the red emission at 682 nm may be emitted due
to the Oi or Vo. Based on the study by Alvi and co-researchers, it has been found that the origin of the
ZnO-nanotubes red emission in the range of 620 nm to 690 nm was attributed to the Oi; meanwhile,
red emission in the range of 690 nm to 750 nm was due to Vo [29]. Therefore, since the emission occurred
at 682 nm, there might be a chance that the emission occurred due to Vo. Other than that, from Figure 5,
it was also observed that the emission peak intensity increased as the sintering temperature increased.
This increment occurred as a result from the improvement of the crystallinity inside the zinc silicate
glass and glass-ceramics sample [30]. When heat is applied to the zinc silicate sample, this will cause
changes in the donor and the acceptor levels of the electron, in which it is interrelated with the number
of electronic defects. The presence of the zinc interstitial defect lead to the increase in the emission
intensity. Besides, according to Fujihara and co-researchers, the photoluminescence intensity of the
materials depends on the amount of ZnO provided due to the oxygen defect, and is dependent on the
heat given to the sample [22]. Hence, as was discussed above, it can be concluded that the sintering
temperature also affects the intensity of the zinc silicate glass and glass-ceramics emission.

5. Conclusions

In conclusion, the effect of sintering on the structural and optical properties of zinc silicate glass and
glass-ceramics derived from WRHA by the melt and quenching technique is demonstrated. The density
is increased as the sintering temperature increased and linearly increased with the sample shrinkage.
Meanwhile, from the XRD result, it was obtained that the crystallinity of the zinc silicate glass-ceramics
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increased as the sintering temperature increased. Besides, the β-Zn2SiO4 phase of the zinc silicate was
formed at 750 ◦C until 850 ◦C. Then it thermodynamically changed into the α-Zn2SiO4 phase of zinc
silicate as the temperature reached 900 ◦C and 950 ◦C. The surface morphology has revealed the glass
and glass-ceramics formations; thus, the FTIR spectra showed the formation of the zinc silicate glass
and glass-ceramics, supporting the finding from the XRD analysis. Lastly, the photoluminescence
spectroscopy revealed a green, yellow, and red emission indicating the luminescence zinc silicate glass
and glass-ceramics. The luminescence properties of the zinc silicate portrayed in this study suggest
that this zinc silicate is suitable for optical applications.
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