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Abstract: A robust output tracking controller is necessary for the safe and reliable operation of
aeroengines. This paper aims at developing an H2/H∞ output tracking approach for aeroengines.
In order to improve the tracking performance of the traditional robust tracker, the proposed
control structure is designed as a combination of a nominal controller and a compensator.
Concretely, an H2/H∞ nominal controller is derived from game algebraic Raccati equation (GARE),
which facilitates establishing a compensator for the system. Since the reference is usually unknown
in advance for practical application, the proposed compensator is calculated online according to
the nominal controller and the current reference. The solvability of the compensator and the stability
of the system is guaranteed for both stable and bounded unstable references. Simulation examples
for a turbofan engine are provided to demonstrate the effectiveness of the proposed algorithm.

Keywords: robust control; performance compensator; output tracking controller; linear quadratic performance

1. Introduction

An aeroengine is a complicated aerothermodynamic system working in harsh environments.
It is important to make aeroengines operate reliably in the presence of external disturbances,
measurement noises, and modeling uncertainties [1,2]. Therefore, robust performance of the closed-loop
system should be considered in the design of the controller. Robust control has been applied
to aeroengines since the 1970s since it can attenuate the effect of the uncertainties on system
performance without destabilizing the system [3–6]. As a sub-field of robust control, H∞ control
is an important, robust approach to attenuate the effect of external disturbances [7]. Due to the lack
of the consideration on the linear quadratic performance, H∞ control is usually combined with H2

control to obtain good transient behaviors for the system [8–10]. H2/H∞ control is an ideal approach
to maintain the balance between the transient tracking performance and the robust performance for
the control of aeroengines [11].

Most robust controllers are designed as a state regulator or a state tracker [12–14]. As for
the traditional state tracker, the desired thrust of aeroengines is obtained in an indirect way by
controlling the state. By contrast, it is more effective to design an output tracking controller [15,16].
The design of the tracking controller aims at minimizing the output tracking error. To achieve
this objective, there are two mainstream approaches: linear quadratic (LQ) tracker and robust tracker.
LQ tracker is a well-established traditional method based on optimal control, and the controller consists
of a feedback controller (i.e., nominal controller) and a feedforward controller (i.e., compensator),
see [17,18]. However, the solution is obtained by calculating the recursive algebraic Raccati equations
(ARE) and auxiliary differential equations, and thereby the reference is assumed to be known

Appl. Sci. 2020, 10, 4929; doi:10.3390/app10144929 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-2560-8747
https://orcid.org/0000-0003-0266-5850
https://orcid.org/0000-0002-6620-2399
http://dx.doi.org/10.3390/app10144929
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/14/4929?type=check_update&version=2


Appl. Sci. 2020, 10, 4929 2 of 13

in advance, which restricts its practical application [18,19]. A solution for this problem is to design an
online controller calculated without knowing the reference ahead of time.

Robust tracker is usually designed based on robust control for a certain known reference.
the output tracking error is augmented into the state of a new dynamic system, and thereby the output
tracking problem becomes the stabilization of the constructed dynamic system [20,21]. In control
design, the variation of the reference over time is regarded as a power-bounded uncertainty of
the system, and the robust performance and the stability of the system are guaranteed. However,
the robust tracker may have poor tracking performance when the reference is quite different from
the designed reference. Therefore, a compensator is required to deal with this problem.

Aiming at dealing with the above problems of LQ tracker and robust tracker, a novel H2/H∞

controller, which consists of a nominal controller and a compensator as LQ tracker does, is designed.
Concretely, based on H2/H∞ control theory, the nominal controller is designed at first for a step
reference. Different from the robust tracker in [21], the proposed nominal controller is derived from
the game algebraic Raccati equation (GARE) so as to obtain a compensator. Then, the compensator is
calculated online by the practical reference to improve the transient tracking performance. Meanwhile,
the solvability of the compensator is guaranteed for stable reference. Moreover, due to the robust
design, the proposed controller can deal with the tracking control for bounded unstable reference by
regarding the reference as a stable reference with a power-bounded disturbance.

The remainder of this paper is organized as follows. Section 2 formulates the robust tracking
problem. Section 3 presents the main theorem for the design of a robust nominal controller. Afterwards,
the performance compensator are introduced in Section 4. Numeric simulations are carried out
in Section 5 to illustrate the efficiency of the proposed approach. Finally, some conclusions are derived
in Section 6.

2. Problem Formulation

In this section, a new formulation for H2/H∞ tracking control is presented, and the basic problem
is described.

Consider the locally linearized system of an aeroengine in the following form:{
∆ẋp = Ap∆xp + Bp∆up + Bwpwp

∆yp = Cp∆xp + Dp∆up + Dwpwp
(1)

where Ap ∈ Rnx×nx , Bp ∈ Rnx×nu , Cp ∈ Rny×nx and Dp ∈ Rny×nu are known constant matrices;
wp ∈ Rnw is the disturbance with the influence matrices Bwp ∈ Rnx×nw , Dwp ∈ Rny×nw ; up ∈ Rnu

is the input, xp ∈ Rnx is the state, and yp ∈ Rny is the output; ∆ denotes the deviation between
the present operating point and the initial point.

Similar to [22], in order to make it easy to augment the system with the reference, an equivalent
representation of system (1) is obtained by making a differentiation in time as follows:{

ẍp = Ap ẋp + Bpu̇p + Bwpw
ẏp = Cp ẋp + Dpu̇p + Dwpw

(2)

where w = ẇp.
The output tracking error is as follows:

e(t) = yr(t)− yp(t) (3)

where yr is the desired output reference.
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Define a performance output z and a quadratic performance index JQR as follows:

z =
(

ẋT
p Q1 ẋp + eTQ2e + u̇T

p Ru̇p

)1/2
(4)

JQR =
∫ ∞

0
zTzdτ =

∫ ∞

0

(
ẋT

p Q1 ẋp + eTQ2e + u̇T
p Ru̇p

)
dτ (5)

where QT
1 = Q1 ∈ Rnx×nx , QT

2 = Q2 ∈ Rny×ny , and RT = R ∈ Rnu×nu are the given
weighting matrices for ẋp, e and u̇p, respectively. If ‖Q2‖ � ‖Q1‖, ‖Q1‖ ≈ 0 and ‖R‖ ≈ 0,
we obtain JQR ≈

∫ ∞
0 eTQ2edτ, which stands for the tracking performance.

Consider the following H2 and H∞ control performance index:

J2 = sup
w=δ(t)

∫ ∞
0 zTzdt = sup

w=δ(t)
JQR (6)

J∞ = sup
∫ ∞

0 zTzdt∫ ∞
0 wTwdt

= sup JQR∫ ∞
0 wTwdt

(7)

Equations (6) and (7) indicate that the tracking performance JQR is bounded when J2 and J∞ are
bounded. Similar to the definition of H∞ tracking problem in [23], the H2/H∞ robust tracking control
problem can be defined as follows:

Definition 1. (H2/H∞ Tracking Problem) Find a controller such that the following holds. Numbered lists can
be added as follows:

(1) the controlled system with w = 0 is asymptotically stable;
(2) are constant variables γ2 and γ∞ such that J2 < γ2 and J∞ < γ∞ hold.

3. Nominal Controller Design

The controller of H2/H∞ Tracking Problem in this paper is designed consisting of a nominal
controller and a compensator, and the nominal control is introduced in this section.

Assume the reference command yr is a unit step, and we have

ė(t) = δ(t)− ẏp(t) (8)

where δ(t) denotes a unit pulse.
Combining Equations (2) and (8), we have the following augmented system:

ẋ = Ax + Bu + Bww (9)

where u = u̇p , x =
[

ẋp e
]T

, A =

[
Ap 0
−C 0

]
, B =

[
Bp

−Dp

]
, Bw =

[
Bwp

−Dwp

]
, and the pulse

in Equation (8) is considered as a disturbance on the augmented system.
The a state feedback controller u = Kx =

[
K1 K2

]
x can be re-expressed as:

u̇p = K1 ẋp + K2e (10)

Integrating from both sides of Equation (10) yields the following equivalent controller:

∆up = K1∆xp + K2
∫ t f

0 edτ (11)
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The diagram of the closed loop control system is shown in Figure 1.

Figure 1. Diagram of output tracking control with a step reference.

Before we discuss the sufficient condition for achieving the solution for the H2/H∞ Tracking
Problem, we first introduce the following lemma.

Lemma 1. [24]. Consider the system as follows:{
ẋ = Ãx + B̃ww
z = C̃x

(12)

The following conditions are equivalent:

(a) J2 < γ2;
(b) there is P = PT > 0 such that ÃP + PÃT + C̃TC̃ < 0 and trace(B̃T

wPB̃w) < γ2
2.

Then, based on the lemma, we obtain the following theorem:

Theorem 1. Consider the system (9). If there is a symmetric positive define matrix Y satisfying the following
linear matrix inequalities (LMIs)[

YAT + AY− BR−1BT + γ2
∞BwBT

w Y
Y −Q−1

]
< 0 (13)

[
γ2

2 BT
w

Bw Y

]
> 0 (14)

where Q =

[
Q1 0
0 Q2

]
, the state feedback controller represented in Equation (10) with

[K1, K2] = −R−1BTY−1 is a solution for the H2/H∞ Tracking Problem.

Proof. (a) Assume the Lyapunov function as V = xT Px = xTY−1x. By applying the Schur
Complement Lemma into Inequality (13), we have

YAT + AY + YQY− BR−1BT + γ−2
∞ BwBT

w < 0 (15)

which is equivalent to

AT P + PA + Q− PBR−1BT P + γ−2
∞ PBwBT

wP < 0 (16)
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if w = 0, then

V̇ = xT
[
(A− BR−1BP)T P + P(A− BR−1BP)

]
x < −xT

[
Q + PBR−1BT P + γ−2

∞ PBwBT
wP
]

x <= 0 (17)

Therefore, V̇ < 0, which means the closed system is asymptotically stable.
(b) Let M = −[AT P + PA + Q − PBR−1BT P] > 0 and Q̃ = Q + M, and the following game

algebraic Riccati equation (GARE) is obtained:

AT P + PA + Q̃− PBR−1BT P + γ−2
∞ PBwBT

wP = 0 (18)

According to [18], the closed-loop is asymptotically stable with the controller

u̇p = u = −R−1BT Px

and

J̃∞ = sup

∫ ∞
0

(
xTQ̃x + uT Ru

)
dτ∫ ∞

0 wTwdt
= sup

JQR +
∫ ∞

0 xT Mxdτ∫ t f
0 wTwdt

< γ∞ (19)

Because M ≥ 0, J∞ ≤ J̃∞ < γ∞ holds.
Meanwhile, because γ−2

∞ BwBw
T ≥ 0, the following inequality is obtained:

AT P + PA + Q− PBR−1BT P < 0 (20)

Let Ã = A − BR−1BT P, B̃w = Bw, C̃ =

[
Q1/2

−R−1/2BT P

]
, and the Inequality (20) is

re-expressed as ÃP + PÃT + C̃TC̃ < 0. Meanwhile, applying the Schur Complement Lemma into
Equation (14) yields

trace(B̃T
wPB̃w) = trace(BT

wPBw) < γ2
2 (21)

According to Lemma 1, we have J2 < γ2.
Therefore, according to (a) and (b), the state feedback controller u = [K1, K2] x = −R−1BTY−1x is

a solution for the H2/H∞ Tracking Problem

Remark 1. LMIs (13) and (14) provide a controller derived from the GARE expressed in Equation (18) for
the tracking problem. When M = 0, the solution of the GARE expressed in Equation (18) is equivalent to
the following multio-bjective optimization problem (MOP):

γ2=min
γ∞ ,Y

γ2

s.t.



[
YAT + AY− BR−1BT + γ2

∞BwBT
w Y

Y −Q−1

]
< 0[

γ2
2 BT

w
Bw Y

]
> 0

(22)

Different from the GARE approach, this LMI approach can be combined with other LMI
constraints, such as input saturation [25].

4. Compensator Design

Base on the nominal controller, the compensator for the nominal controller is introduced
in this section.
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4.1. Compensator for Nominal Controller

Assume yr is a bounded Lipschitz continuous reference such that

ÿr = hẏr (23)

where h = diag
([

λ1, . . . , λny

])
, λi, i = 1, . . . , ny is the eigenvalue of the i-th output of the above linear

system. The reference is stable when h < 0, or equivalently, λi < 0, i = 1, . . . , ny.
If h is a known constant matrix, applying the Laplace transfer into Equation (23), we obtain

Gyr (s) =
yr(0)

s
+

ẏr(0)
s(s− h)

where the initial reference yr(0) is assumed to be zero. Three classic references are shown in Table 1.
It indicates that the step reference is a special case of reference (23).

Table 1. Three classic linear references.

Reference Image Function Primitive Function ẏr(0) h

step 1
s 1(t) ∞ −∞

ramp 1
s2 t 1 0

exponential a
s(s+a) 1− e−at a −a

By combining system (2) with the tracking reference (23), we obtain the following
augmented system:

ẋa = Aaxa + Bau + Bwaw (24)

where u = u̇p , xa =

[
ẋ
ẏr

]
, w = ẇp , Aa =

[
A AI
0 h

]
, AI =

[
0
I

]
0, Ba =

[
B
0

]
,

Bwa =

[
Bw

0

]
.

The state feedback controller u =
[

K1 K2 K3

]
xa of system (24) can be re-expressed as

∆up = K1∆xp + K2

∫ t

0
edτ + K3∆yr (25)

Then, the diagram of the closed loop control system is shown in Figure 2.

Figure 2. Diagram of output tracking control with a constant h.

Different from the controller structure (10), a new term K3, namely compensator, is obtained
in (25).



Appl. Sci. 2020, 10, 4929 7 of 13

4.2. Compensator Design for Stable Reference

If h is a constant matrix, it seems that a robust controller for system (24) can be easily obtained
according to Theorem 1. However, in practical application, h is time-variant and usually unknown
in advance. According to Equation (23), we can obtain h(t) online as follows:

h(t) =
ÿr(t)
ẏr(t)

(26)

With this real-time h(t), it is still difficult to calculate the controller (25) online because
the solvability of LMIs (13) and (14) in Theorem 1 is hard to be guaranteed. To deal with this problem,
a real-time compensator for the proposed nominal controller is introduced in the following theorem:

Theorem 2. Suppose there exist a matrix Y satisfying LMIs (13) and (14), and the controller for system (9) is
u = Kx =

[
K1 K2

]
x. Consider the system (24) with h = h(t) < 0. A real-time compensator

K3(t) = −R−1BT P2(t)

makes the controller u =
[

K1 K2 K3(t)
]

xa a solution for the H2/H∞ Tracking Problem, where P2(t)
is calculated by:

AT
I Y−1 + h(t)P2(t)T + P2(t)T (A + BK) = 0 (27)

Proof. Let a symmetric positive define matrix P =

[
P1 P2

PT
2 P3

]
be a solution for the GARE as follows:

[
AT 0

AT
I h(t)

]
P + P

[
A AI

0 h(t)

]
− P

[
B

0

]
R−1

[
B

0

]T

P +

[
Q + M1 0

0 0

]
+ γ−2

∞ P

[
Bw

0

] [
Bw

0

]T

P = 0 (28)

where Q̃ = Q + M1 and M1 = −[AT P1 + P1 A + Q− P1BR−1BT P1] > 0.
Equation (28) is equivalent to three equations as follows:

AT P1 + P1 A− P1BR−1BT P1 + Q̃ + γ−2
∞ P1BwBT

wP1 = 0 (29)

AT
I P1 + h(t)PT

2 + PT
2

(
A− BR−1BT P1

)
= 0 (30)

AT
I P2 + P2 AI + h(t)P3 + P3h(t)− PT

2 BR−1BT P2 = 0. (31)

If Equations (29)–(31) are solvable, then the controller u = −R−1BT
a Pxa is a solution for

the H2/H∞ Tracking Problem according to the proof of Theorem 1.
Because Y = P−1

1 satisfies LMIs (13) and (14), Equation (29) is apparently solvable,
and the system (9) is asymptotically stable, which indicates A + BK = A− BR−1BT P1 < 0.

Equations (30) and (31) are equivalent to the following two equations:(
h(t)⊗ I + I ⊗

(
A− BR−1BT P1

)T
)

vec
(

PT
2

)
= −vec (AI P1) (32)

(h(t)⊗ I + I ⊗ h(t)) vec (P3) = PT
2 BR−1BT P2 − AT

I P2 + P2 AI (33)
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where vec(·) denotes the column vector obtained by stacking the columns of the matrix,

e.g., vec(

[
x11 x12

x21 x22

]
) =

[
x11 x21 x12 x22

]T
, and ⊗ denotes the Kronecher product

multiplicator.
Due to h < 0 and A − BR−1BT P1 < 0, we have

(
h⊗ I + I ⊗

(
A− BR−1BT P1

)T
)

< 0
and (h⊗ I + I ⊗ h) < 0, and thereby Equations (30) and (31) are solvable.

Therefore, the controller u =
[

K1 K2 K3(t)
]

xa is a solution for for the H2/H∞ Tracking
Problem of system (24).

The controller u =
[

K1 K2 K3(t)
]

xa can be re-expressed as:

∆up=
∫ t f

0
u̇pdτ = K1∆xp + K2

∫ t f

0
edτ +

∫ t f

0
K3(τ)ẏrdτ. (34)

The structure diagram is shown in Figure 3.

Figure 3. Diagram of output tracking control for a bounded reference.

4.3. Compensator Design for Bounded Reference

The reference is usually given by the power level angle, which is controlled by the pilot in real
time, and thereby h(t) < 0 does not always hold in practical application. When h(t) > 0, t ∈ [ta, tb],
there may be no solution for Equations (29) and (31). The reference expressed in Equation (23) can be
seen as a bounded subsystem, and thereby the instability is a power-bounded disturbance imposed on
the following system

ẋ =

[
A− BR−1BT P1 AI+K3

0 0

]
x (35)

In order to ensure the solvability of Equations (29)–(31), for any t > 0, K3(t) can be calculated
as follows:

K3(t) =

 R−1BT
(
(A + BK)T

)−1
P1 AT

I , h(t) > 0

−R−1BT P2(t), h(t) ≤ 0
(36)

where P2(t) is calculated according to Equation (32).
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5. Simulation Results

In order to validate the effectiveness of the proposed approach, it was applied to a locally linear
system of a turbofan engine in [26]. The linear model is as follows:

[
∆ṅL
∆ṅH

]
=

[
−6.68 4.45
−0.82 −2.29

] [
∆nL
∆nH

]
+

[
1.15 0.90
0.72 0.24

] [
∆W f
∆A8

]
+

[
0.1
0.1

]
wp[

∆nH
∆EPR

]
=

[
0 1

0.78 1.04

] [
∆nL
∆nH

]
+

[
0 0

0.25 −0.57

] [
∆W f
∆A8

]
+

[
0.2
0.2

]
wp

where nL, nH , W f , A8, and EPR denote the low-pressure speed, high-pressure speed, the fuel flow,
the area of the nozzle throat, and the engine pressure ratio, respectively.

Here, control strategy 1 (CS1) is H2/H∞ nominal tracking control with a compensator, control
strategy 2 (CS2) is nominal tracking control introduced in MOP (22), and control strategy 3 (CS3) is a
robust tracking controller proposed in [21].

Considering both tracking performance and robust performance, we choose Q = diag(0.01, 0.01, 10, 14),
R = 0.01 · I, γ∞ = 1. For CS1 and CS2, according to Theorem 1 and MOP (22), we obtian γ2,min = 0.43 and

K1 =

[
−0.03 −6.78
1.03 −1.7

]
, K2 =

[
29.01 17.22
14.8 −33.24

]

The compensator K3(t) in CS1 is calculated by the current output reference in an online mode
according to Equation (36).

Figure 4 shows the tracking performance of the three controllers for a linear reference with a ramp
as follows:

yr(t) =


0, 0 ≤ t < 1
0.02t− 0.02, 1 ≤ t ≤ 2
0.02, t > 2

0 0.5 1 1.5 2 2.5 3 3.5 4

time(s)

0

0.005

0.01

0.015

0.02

0.025

0.03

n
H

 -CS1

n
H

 -CS2

n
H

 -CS3

reference

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

time(s)

0

0.005

0.01

0.015

0.02

0.025

0.03

EPR -CS1
EPR -CS2
EPR -CS3

reference

(b)

Figure 4. Output response for the ramp reference. (a) ∆nH tracking curve; (b) ∆EPR tracking curve.

As can be seen from Figure 4, the tracking performance of CS2 is better than that of CS3. It indicates
that the nominal controller derived from GARE is more conservative than CS3 proposed in [21].
However, the system output response of CS1 is closer to the tracking reference than that of CS2
and CS3, which indicates that the compensator designed for the nominal controller CS2 can evidently
improve the tracking performance. An instantaneous disturbance Dwpwp = [0.005, 0.005]T is added to
the output at t = 3s. When the disturbance disappears, all of the controllers can drive the output close
to reference very quickly, which indicates that the proposed controller CS1 has a strong robustness
as well as CS3 does.
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The next simulation is carried out for an exponential reference to compare the control quality of
the three control strategies in Figure 5. The reference is as follows:

yr(t) =

{
0, 0 ≤ t < 1
0.02(1− e−2.5(t−1)), t ≥ 1

As is demonstrated in Figure 5, the tracking performance of CS1 is better than those of CS2 and CS3.
A continuous disturbance Dwpwp = [0.005, 0.005]T is added to the output at t = 2s. The proposed
controller can still track the reference due to its strong robustness.

0 0.5 1 1.5 2 2.5 3 3.5 4

time(s)

0

0.005

0.01

0.015

0.02

0.025

n
H

 -CS1

n
H

 -CS2

n
H

 -CS3

reference

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

time(s)

0

0.005

0.01

0.015

0.02

0.025

EPR -CS1
EPR -CS2
EPR -CS3

reference

(b)

Figure 5. Output response for the exponential reference. (a) ∆nH tracking curve; (b) ∆EPR tracking curve.

Figure 6 shows output response for a sine reference:

yr(t) = 0.02sin(πt)

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.04

-0.02

0

0.02

0.04

0.06
EPR -CS1
EPR -CS2

EPR -CS3
reference

(a)
0 0.5 1 1.5 2 2.5 3 3.5 4

-0.04

-0.02

0

0.02

0.04

0.06
EPR -CS1
EPR -CS2

EPR -CS3
reference

(b)

Figure 6. Output response for sine reference. (a) ∆nH tracking curve; (b) ∆EPR tracking curve.

A Gaussian white noise Dwpwp ∼ N(0, 0.002) is added to the output. From Figure 6a,b, we can see
that the output curve of CS1 has better tracking performance than those of CS2 and CS3. The variation
of the elements in the matrix K3(t) over time is shown in Figure 7.
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0 0.5 1 1.5 2 2.5 3 3.5 4

time(s)

-5

0

5

10

15

20
k

11
k

21

k
12

k
22

Figure 7. The elements of K3(t).

The root mean square error (RMSE) values of responses of different references are listed in Table 2,
which is defined to evaluate the tracking performance, as follows:

RMSE =

√√√√( n

∑
i=1

e2
i

)
/ (n− 1), (37)

where ei denotes the tracking error in the i-th discrete time step, and the sampling time is 0.01 s.

Table 2. RMSE of responses of different references.

Ramp Exponential Sine

CS1 CS2 CS3 CS1 CS2 CS3 CS1 CS2 CS3

RMSE(10−3)− nH 0.75 3.12 2.05 1.78 3.29 2.17 7.33 15.45 10.41
RMSE(10−3)− EPR 0.32 0.49 0.72 0.25 0.52 0.71 2.31 3.33 4.48

As can be seen from Table 2, the bold numbers stand for the best tracking performance among the
three approaches, and thereby the tracking performance of CS1 is evidently more accurate than that of
CS2 and CS3, which indicates that compensator K3(t) enables the output trajectory of CS1 to be closer
to the sine reference.

6. Conclusions

In order to improve the tracking performance of the traditional robust tracker, a novel H2/H∞

output tracking control approach is proposed by combining a nominal controller and a compensator.
Firstly, a nominal output tracking controller was developed for a step reference. Subsequently,
a compensator is calculated online according to the nominal controller and the current reference.
The sovability of the compensator is ensured for both stable and bounded unstable references.

The proposed approach is compared with the traditional robust tracking approach through
numerical simulations. Compared to the traditional robust tracker, the proposed controller can enable
the output to track the reference better for both stable and unbounded unstable references. Meanwhile,
from the simulation results, the proposed controller can track the reference well under three kinds of
disturbances, which indicates that it has strong robustness.

Due to the positive effect of the verification, further researche is encouraged: (a) The performance
of the proposed approach will be studied in the presence of more uncertainties, such as model mismatch
and the saturation of the actuator. (b) The algorithm will be verified on a hardware in the loop platform.
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