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Featured Application: The work uses a patch-based inpainting method that is capable of filling
the missing areas or removing unwanted objects in a digital image.

Abstract: Patch-based image inpainting methods iteratively fill the missing region via searching
the best sample patch from the source region. However, most of the existing approaches basically
use the fixed size of patch regardless of content features nearby, which may lead to inpainting
defects. Also, global match is needed for searching the best sample patch, but only to fill one target
patch in each iteration, resulting in low efficiency. To handle the issues above, we first evaluate the
nonuniformity in an image, by which the patch size is adaptively determined. Moreover, we divide
the source region into multiple non-overlapping subregions with different nonuniformity levels,
and the patch match proceeds in every subregion, respectively. This strategy not only saves the match
time for single target patch, but also reduces the mismatch, and enables the simultaneous filling of
multiple target patches in a single iteration. Experimental results show that in comparison to previous
patch-based works, our method has achieved further improvement both in quality and efficiency.
We believe our method could provide a new way for patch match with better accuracy and efficiency
in image inpainting tasks.

Keywords: image inpainting; nonuniformity; adaptive patch size; subregion search;
multi-patch match

1. Introduction

Digital image inpainting is one of the research hotspots in the field of image restoration, which fills
the missing areas with plausible content or replaces the unwanted objects with background utilizing
the neighborhood information in digital images. Typical applications are such as restoration of
damaged photos and ancient paintings, filling the holes in a virtual-view image [1], and removing the
watermark or text in a picture. The purpose is to make the restored image seem as natural as possible,
without noticeable traces of inpainting.

There are mainly two categories of traditional approaches for image inpainting: diffusion-based
methods and patch-based methods. The general principle of the diffusion-based methods is to diffuse
the known information into the missing regions in an iterative process, modeled by partial differential
equation (PDE). Inspired by the propagation of heat flow, Bertalmio et al. [2] introduced the first
diffusion-based method, and proposed the strategy of propagating the linear structure (i.e., isophote)
from the source region (i.e., known region) into the missing region. Chan et al. [3] applied the total
variational to the image inpainting for the first time (a.k.a. TV model), which converted the image
inpainting into a mathematical problem that using the Euler-Lagrange equation to solve the extreme of
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an energy functional established by the incomplete image. The TV model only relies on the gradient
value of the isophote, rather than the geometric information, and always tends to use the shortest
straight line to connect broken linear structures, which cannot satisfy the principle of visual connectivity.
Later, based on TV model, Shen et al. [4] developed an improved curvature driven diffusion model
(a.k.a. CDD model) to control the diffusion intensity, the CDD model has made up for the shortcomings
of the TV model. Oliveira et al. [5] filtered the missing areas with Gaussian convolution kernel to
diffuse the known pixel information into the unknown region.

Inpainting algorithms based on PDE could maintain the linear structure properly.
However, these methods can only fill a very small number of pixels each iteration, and it still
takes a long time even if to fill a small missing area. Although Gaussian-convolution based method is
simple and fast, it fails to hold the linear structure. Generally, diffusion-based methods can only obtain
better effect when the missing area is small, when it comes with a larger missing area, these methods
may introduce visual blurring defects as the filling progresses, resulting in low inpainting quality.

In order to solve the problem that diffusion-based methods are more likely to introduce blurring
defects when dealing with larger missing area, another category, the patch-based methods were
proposed on the basis of the related research of texture synthesis and stitching [6–9]. The central idea
is to select an appropriate sample texture patch from the source region to fill the unknown region
under the certain rules. Because these algorithms use the texture patch as the filling unit rather than
the single pixel, they could capture the local texture features better; therefore, patch-based methods
can extend the linear structure without introducing blurring defects, and fill more pixels per iteration.

Generally speaking, patch-based methods outperform diffusion-based methods in both quality
and efficiency, and are commonly used in image inpainting. One of the most representative pioneer
works of patch-based methods is the exemplar-based image inpainting algorithm proposed by
Criminisi et al. [10], which has also become the baseline work of other related patch-based methods.
These methods mainly focus on two issues: One is to improve the filling order [11–14], the other is
to find a better patch match criterion [15–17] (see Section 2 for details)—and these two issues are
almost tackled. In addition to this, Zhou et al. [18] used dynamic patch size rather than the original
fixed one to make the inpainting more flexible with different textures, but significantly increased the
computational complexity. Moreover, all of the above methods (except [17]) still need to traverse the
entire source region to find the best sample patch, and only to fill a single target patch in a single
iteration, which requires lots of iterations and match time. In fact, low efficiency caused by iterative
match process is known as a common problem for the patch-based methods. Although Liu et al. [17]
tried to narrow the match area by picking out those candidates whose sum of the pixel values is
close to the target patch’s, this strategy is not an effective way to filter out those bad sample patches.
Barnes et al. [19] limited the match area to the neighborhood of the target patch—this method is likely
to miss the optimal patch if it is not located nearby. How to speed up the inpainting process while
maintaining the quality remains a challenge.

Our work also uses a similar framework as Criminisi’s [10], with several improvements that have
successfully tackled the aforementioned issues. Our novel solution not only adopts the dynamic size
of the patch to improve inpainting quality, but also narrows down the match area effectively and
harmlessly, and reduces the total iterations by enabling multi-patch match strategy to achieve further
inpainting efficiency. More specifically, our main novelties and contributions are:

(1) We first propose a metric to evaluate the nonuniformity in an image, and;
(2) To achieve a more accurate and flexible inpainting, the patch size is adaptively determined

according to its nonuniformity;
(3) To save the match time, our subregion search strategy allows the match only between patches

with similar content. This trick not only helps to narrow down the match area to a large extent
while without missing the optimal sample patch, but also skips those bad sample patches to
avoid mismatch;
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(4) To reduce the total number of iterations, our multi-patch match strategy enables the patch match
to proceed in multiple subregions with different nonuniformity levels, so that multiple target
patches can be filled in a single iteration;

The rest of the paper is organized as follows: Section 2 will briefly introduce the classical
Criminisi’s algorithm, the baseline of our work. Section 3 shows the details of our improvements,
including the nonuniformity model, determination of adaptive patch size, strategy of subregion search,
and multi-patch match. Experimental results and analysis will be given in Section 4, and we compare
our results with related patch-based methods proposed in recent years. Section 5 draws the conclusion
and presents future work.

2. Related Work

We choose Criminisi’s algorithm [10] as the baseline of our work since it is the pioneer work and has
the most representative framework in patch-based inpainting methods. In this section, we first briefly
introduce how it works, and then give some analysis about its shortcomings and the improvements in
other related works.

For the convenience of expression, we define some notations first. As shown in Figure 1,
I represents the entire incomplete image, the missing area (target region) is represented by Ω, Φ is
the known area (source region) and is defined as Φ = I −Ω. δΩ is 1-pixel-wide outer boundary of Ω
(δΩ ⊂ Φ), which is called the filling front, other symbols will be introduced later.
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Figure 1. Notation diagram for Criminisi’s algorithm.

The central idea of Criminisi’s algorithm is that in each iteration, find the point with the highest
priority on the filling front, and establish a target patch centered at the point, then globally search for
the best sample patch; finally, the best sample patch is copied to the target patch to fill its unknown part.
Repeat the above steps iteratively until the missing area is completely filled. Specifically, the algorithm
consists of the following three steps:

1. Calculate the priorities along the filling front

In order to determine the filling order, the priorities need to be computed for all pixels along the
filling front δΩ. Given a pixel p (p ∈ δΩ), the priority P(p) is defined as follows:

P(p) = C(p)D(p) ∀p ∈ δΩ, (1)

where C(p) is the confidence term and D(p) is the data term, they are defined as follows:

C(p) =

∑
q∈Ψp∩Φ C(q)∣∣∣Ψp

∣∣∣ , (2)

D(p) =

∣∣∣∇I⊥p · np
∣∣∣

255
, (3)
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where Ψp is a 9 × 9 patch centered at p, and
∣∣∣Ψp

∣∣∣ is the area of Ψp,∇Ip represents the gradient at p and
⊥ is the orthogonal operator, so ∇I⊥p denotes the isophote vector. np is a unit vector orthogonal to
the filling front δΩ at the point p (see Figure 1). It can be seen that C(p) represents the amount of
known information contained in patch, while D(p) shows how strong a linear structure contained in
Ψp. The priority model encourages those areas with more known pixels and strong linear structures to
be filled first. The initial value of C(p) is set to C(p) = 1 (∀p ∈ Φ), C(p) = 0 (∀p ∈ Ω).

2. Search for the best sample patch to fill one target patch

After calculating the priorities of all pixels on the filling front δΩ, find the pixel p̂ with the highest
priority, establish a target patch Ψp̂ centered at p̂, use a sample patch Ψq of the same size as Ψp̂ to
traverse the entire source region Φ to search the best sample patch Ψq̂ that is most similar to Ψq̂.
The similarity metric is the sum of squared difference (SSD) between the known pixels in Ψp̂ and
corresponding pixels in Ψq̂. The best sample patch Ψq̂ satisfies the following equation:

Ψq̂ = argmin
Ψq

SSD(Ψp̂, Ψq), (4)

then the Ψq̂ is copied to the unknown part of the Ψp̂ so that one target patch is filled.

3. Update information

After Ψp̂ is filled, the update rule of confidence term for new pixels p′ in Ψp̂ is as follows:

C(p′) = C(p̂) ∀p′ ∈ Ψp̂ ∩Ω, (5)

the data term of p′ is directly copied from its source pixel. Finally, update the source region Φ,
the missing region Ω, and the filling front δΩ. So far, a single iteration is finished. Repeat the above
steps until Ω is completely filled.

Criminisi’s algorithm has obtained relatively satisfactory results in filling large-area holes or
removing objects in a picture, although shortcomings exit, some of them have been fixed by related
works, they are listed as follows:

(1) The confidence term in the priority model may encounter a sharp decline after multiple iterations,
while the fluctuation of the data term is relatively stable. Thus, the priority is more likely
to be restricted by lower confidence term and become unreliable, leaving incorrect filling
order and structural error propagation. Later, Zhou et al. [11] demonstrated that different
weighted-priority should be chosen for specific structures to get better inpainting results. Liu [12]
and Cao et al. [13] changed the priority formula into the exponential and addition form respectively
to prevent the confidence term from falling too quickly. Xi et al. [14] eliminated the dependence
on the shape of the target region and preserved the stability of confidence term by introducing
the gray entropy;

(2) The similarity criterion between sample patch and target patch used in Criminisi’s algorithm
is the sum of squared differences (SSD) of corresponding pixels in two patches, which only
takes the pixel value into account and does not make full use of the structural information.
Martínez-Noriega et al. [15] added the Hellinger distance to measure the similarity of the
probability distribution between two patches. Ran [16] introduced a metric of the structural
similarity between two patches. Liu et al. [17] also defined a new match rule by taking structure
tensor into consideration. These works have successfully reduced the rate of mismatch;

(3) Criminisi et al. chose a fixed patch size of 9×9 pixels, which is unreasonable, since the patch size
directly affects its capability to capture the local texture features and has an important influence on
inpainting quality. Different sizes of patch should be applied on regions with different uniformity
levels. Generally, smaller patches should be applied on high-frequency areas with more textures
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and structures to achieve a finer filling, while larger patches are appropriate for flatter areas
to speed up the filling process, this idea was also demonstrated in Reference [1]. There are
relatively few researches about this issue. Zhou et al. [18] determined the patch size automatically
with gradient histograms involved, and this was implemented as an optimization problem that
requires extra continuous iterations. However, this process is computationally expensive and
takes a longer time;

(4) Global search in source region is required in Criminisi’s method in order to find the best sample
patch for the target patch, which needs a large amount of calculation and match time. Liu et al. [17]
narrowed the match area by picking out those candidates whose sum of the pixel values is close
to the target patch’s, but this cannot guarantee that the bad candidates are excluded;

(5) Criminisi’s and related patch-based inpainting techniques require a large number of iterations to
completely fill the unknown area, since only one target patch can be filled in a single iteration.
At present, there is no related research to handle this deficiency.

Compared with problems 1 and 2, there are relatively fewer studies on problems 3 and 4. Aiming at
problems 3–5 mentioned above, we provide a novel solution: We first introduce the nonuniformity
model, by which the patch size will be determined adaptively to address problem 3. Besides, the strategy
of subregion search is proposed to address problem 4 in an effective way. Moreover, the strategy of
a multi-patch match is proposed to handle problem 5 for the first time.

3. Proposed Approach

Our method uses a similar framework as Criminisi’s [10]. Based on that, we add a step to evaluate
the nonuniformity in an image at the beginning of the process. Based on nonuniformity and filling
priority, multiple centers of the target patches are located on the filling front, patch sizes are determined
by the nonuniformity, and each target patch’s search area is limited from the global source region to
particular subregion with similar content. After an iteration, these target patches will be filled with the
content borrowed from the source region. Figure 2 briefly illustrates the basic framework of our work.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 18 

 190 
Figure 2. The overall framework of the proposed method. Our improvements are depicted in bold. 191 

3.1. Evaluate the Nonuniformity 192 
Evaluating the nonuniformity is the dependency of the other parts in our work, including the 193 

patch size determination, subregion search and multi-patch match. Therefore, the nonuniformity 194 
needs to be quantified first. Given a patch of pixels that under a certain distribution, the standard 195 
deviation in statistics can effectively characterize the nonuniformity of pixel values, also can be seen 196 
as a measure of the texture feature [20]. Our nonuniformity is exactly based on the local standard 197 
deviation. Concretely, let pS  denote a square window centered at point ∈ ( Φ)p p , sw is the width 198 

of pS  determined by the image size ×H W , by default,  = +  
min( , )

100max(2 1,3)H W
sw , where [ ]⋅  is 199 

the rounding operator. The local standard deviation at p is obtained by computing the standard 200 
deviation of all the known pixels in pS : 201 

∈ ∩ −
=

∩

 2
Φ ( )

( )
Φ

q Sp

p

q μ
σ p

S
, (6) 

where ( )σ p is the local standard deviation at p,μ  is the mean value in pS . Appling Equation (6) for 202 
all the pixels in source region, we obtain a map of local standard deviation  (Φ)σ , then  (Φ)σ  is 203 
normalized to the interval [0,1] as the following equation: 204 

−=
−

 (Φ) min( (Φ))(Φ)
max( (Φ)) min( (Φ))
σ σσ
σ σ

, (7) 

where (Φ)σ  is the normalized local standard deviation map. We find that in most cases if we directly 205 
use (Φ)σ  as the descriptor of the content without post-processing, its data distribution will be very 206 
uneven: The lower part is over-crowded and less distinguishable, while the higher part is too sparse 207 
(see Figure 3b for example). In Section 3.2, we intend to evenly divide the interval [0,1] into 208 
subintervals so that every pixel can be categorized and be treated accordingly. Intuitively, it is better 209 
to stretch the crowded data to a relatively even distribution to fit the evenly-divided subintervals. 210 

Figure 2. The overall framework of the proposed method. Our improvements are depicted in bold.

3.1. Evaluate the Nonuniformity

Evaluating the nonuniformity is the dependency of the other parts in our work, including the
patch size determination, subregion search and multi-patch match. Therefore, the nonuniformity
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needs to be quantified first. Given a patch of pixels that under a certain distribution, the standard
deviation in statistics can effectively characterize the nonuniformity of pixel values, also can be seen
as a measure of the texture feature [20]. Our nonuniformity is exactly based on the local standard
deviation. Concretely, let Sp denote a square window centered at point p (p ∈ Φ), ws is the width

of Sp determined by the image size H ×W, by default, ws = max(2
[

min(H,W)
100

]
+ 1, 3), where [·] is the

rounding operator. The local standard deviation at p is obtained by computing the standard deviation
of all the known pixels in Sp:

σ(p) =

√√√∑
q∈Sp∩Φ (q− µ)2∣∣∣Sp ∩Φ

∣∣∣ , (6)

where σ(p) is the local standard deviation at p, µ is the mean value in Sp. Appling Equation (6) for all
the pixels in source region, we obtain a map of local standard deviation σ(Φ), then σ(Φ) is normalized
to the interval [0, 1] as the following equation:

σ̃(Φ) =
σ(Φ) −min(σ(Φ))

max(σ(Φ)) −min(σ(Φ))
, (7)

where σ̃(Φ) is the normalized local standard deviation map. We find that in most cases if we directly
use σ̃(Φ) as the descriptor of the content without post-processing, its data distribution will be very
uneven: The lower part is over-crowded and less distinguishable, while the higher part is too sparse
(see Figure 3b for example). In Section 3.2, we intend to evenly divide the interval [0, 1] into subintervals
so that every pixel can be categorized and be treated accordingly. Intuitively, it is better to stretch the
crowded data to a relatively even distribution to fit the evenly-divided subintervals. We find that the
widely-used histogram equalization is a simple and effective way to achieve this purpose, without
any parameter to be set manually. Therefore, we equalize the σ̃(Φ) to make full use of the space [0, 1].
Let histeq(.) be the operation of histogram equalization:

T(Φ) = histeq(̃σ(Φ)), (8)

where T is the value equalized from σ̃ and we define it as the nonuniformity. For instance, Figure 3c
shows the nonuniformity map computed from Figure 3a.
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As shown in Figure 3c, each pixel p in Φ has a certain value of nonuniformity T(p), which reflects
the number of details contained in neighborhood of p. Intuitively, areas with more details (such as
textured regions and line structures) will obtain a higher nonuniformity, whereas flatter areas (such as
the background) will get a lower nonuniformity. For unknown areas, the nonuniformity makes no
sense. If the unknown areas are filled with new pixels during the filling process, the nonuniformity of
the new pixels is directly updated from their source pixels.

3.2. Adaptive Target Patch Size

Criminisi’s algorithm utilizes a fixed patch size during the whole process. However, given
an image, some areas contain rich textures and details, others may have little texture distribution.
If a larger patch is used in rich-textured areas, stitching cracks are often easy to occur, thus losing the
consistency of the texture structure. Therefore, the smaller patch should be used to achieve a smoother
and natural texture propagation. Moreover, for those relatively flat regions, a larger patch is applied to
prevent the staircase effect and speed up the filling process. It is more reasonable to apply different
sizes of patch for different regions.

Denote n as the number of the sizes of patch used in our work. For a certain target patch Ψp̂,
its size wΨp̂ ×wΨp̂ is specified by the nonuniformity T(p̂), as the following equation:

wΨp̂ = −2
⌊
nT(p̂) + 1

⌋
+ 2n + 3, (9)

where b•c is downward rounding operator. The purpose of Equation (9) is to evenly divide the
interval [0, 1] into n subintervals with the step of 1

n . Suppose T(p̂) falls in the kth subinterval
[ k−1

n , k
n ), (k = 1, 2, . . . , n

)
, as k decreases from n to 1, wΨp̂ increases from 3 to its maximum size (2n + 1)

with the step of 2 (the size should be odd), namely, the patch size is inversely proportional to the
nonuniformity. Note that n should not be too small, or the choices of patch will be too limited to
adaptively fit the different situations; neither too large, otherwise the max size of patch will also grow
too large. If we paste an oversized patch into the target region, it is more likely to cause the stitching
inconsistency even if in flat areas. We empirically let n change along with the image size H ×W as

n = max([min(H,W)
100 ], 1), since we did not find the obvious evidence to show that there exists an optimal

value of n.

3.3. Subregion Search

In Criminisi’s algorithm, the global search for the best sample patch is required for every target
patch, which is computationally expensive and unnecessary. In fact, it is more appropriate to let
the target patch selectively match those sample patches that have similar content to the target patch,
and skip those sample patches that are far different from the target patch. By doing so, firstly the search
area will be narrowed from the entire source region to its subregion with the similar content to the
target patch, so that the match time and the computation could be reduced. Moreover, a large number
of unsatisfactory sample patches can be filtered out to reduce the mismatch, thereby improving the
inpainting accuracy to a certain extent. Our “subregion search” strategy comes as follows.

Considering if the target patch center p̂ is in a rich-textured area or strong edge, it is nearly
impossible for those sample patches Ψq from poor-textured or flat area to serve as the ideal sample
patches, instead, desired sample patches are supposed to have the similar content to Ψp̂ and similar
content means the similar nonuniformity level. Based on the above consideration, we narrow down
the search area of Ψp̂ from the entire source region to its subregion according to the nonuniformity
map T(Φ) obtained by Equation (8). Specifically, the set of pixel q that satisfies the following equation
is defined as the restricted subregion φ , which serves as the search area of the target patch Ψp̂:

φ =
{
q

∣∣∣ ∣∣∣T(p̂) − T(q)
∣∣∣ ≤ α, q ∈ Φ

}
, (10)
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where α is a parameter adjusts the strictness of limiting the search area. Smaller α means:
(1) The subregion for search shrinks, the algorithm will be very careful with choosing the possible
ideal candidates (see Figure 4a); (2) Lower fault-tolerance during the patch match (related to item 1),
the method is more likely to miss the optimal candidate if search area is too small; (3) There will be
more patch matches in an iteration because the space saved for each subregion makes room for more
subregions (target patches) to get involved (see Section 3.4). By default, α = 0.1. Figure 4b shows
how subregion search works, the subregion φ for search is colored with respect to its target patch
Ψp̂ (blue patch, the size is magnified for clearer visualization). Only those sample patches whose
center falls into subregion φ are considered potentially ideal (green patches), since they have the
similar content to Ψp̂, while those patches whose center outside the subregion φ are considered
undesirable (red patches) and will be ignored during match process for they are far different from Ψp̂.
Intuitively, this strategy only allows the match between Ψp̂ and a small portion of similar sample
patches, which greatly saves the match time while maintaining the match accuracy.
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3.4. Multi-Patch Match

During a single iteration of the existing patch-based methods, including Criminisi’s, only one
target patch can be filled after the match process, so that a large number of iterations are required to
completely fill the missing area. To reduce the total number of iterations, we also propose the strategy
of “multi-patch match”: In each iteration, we appropriately select multiple pixels p̂i (i = 1, 2, 3, . . .)
with “the highest priority” on filling front, then generate multiple target patches Ψp̂i centered at p̂i,
and multiple best sample patches Ψq̂i are also searched to fill Ψp̂i correspondingly.

Criminisi et al. addressed that the filling order based on the priority model is crucial to prevent
error inpainting. We also let the filling priority keep working in our approach. At first, the filling
priority P(δΩ) on δΩ should be calculated by Equation (1). Based on this, we then select multiple pixels
p̂i with “the highest priority” on δΩ by considering its nonuniformity distribution T(δΩ). According to
the idea that “target patch and its ideal sample patch should have similar content” mentioned in
Section 3.3, and nonuniformity can be used as a scalar descriptor of content in a patch, match process of
the two target patches with different nonuniformity levels can be considered independent, because the
patch match in rich-textured regions or strong edges may not disturb the patch match in poor-textured
or flat regions, and vice versa. Thanks to this, our multi-patch match is feasible. To reach this goal,
a reasonable idea is to divide δΩ into multiple subsections with different nonuniformity intervals, let p̂i
be the highest priority pixel on each subsection, and multiple target patches Ψp̂i are generated centered
at p̂i. Specifically, we present the following algorithm shown in Algorithm 1 to show how to generate
multiple target patches on filling front δΩ.
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Algorithm 1. Determination of Multiple Target Patches on Filling Front.

1. Initialization: let i = 1, find the filling front δΩ, calculate its filling priority P(δΩ) using Equation (1).
2. Find the highest priority pixel p̂i on δΩ.

3. Define the subsection δΩi of δΩ as: δΩi =
{
p
∣∣∣ ∣∣∣T(p) − T(p̂i)

∣∣∣ ≤ 2α, p ∈ δΩ
}
, then reset the priorities to

zero for all pixels on δΩi.
4. If there exits any non-zero priority pixels on δΩ, let i = i + 1, back to step 2. Otherwise, go to step 5.
5. Generate target patches Ψp̂i centered at p̂i (i = 1, 2, 3, . . .), patch sizes are determined by Equation (9).

Note that we do not directly divide the filling front into subsections all at once, but in a progressive
way that the current patch center p̂i determines the current subsection δΩi and the next patch center
p̂i+1 will be born outside the union of existing subsections δΩ1 ∪ . . .∪ δΩi, namely, both subsections
and patch centers are generated synchronously. This comes from the idea that the filling priority model
always comes the first, then followed by subsection division. Illustration for above steps is shown
in Figure 5. Figure 5f shows the final state, the nonuniformity of target patches Ψp̂i are in different
intervals, and each patch center also owns the highest filling priority on its subsection. As explained
above, the order of Ψp̂i may not be consistent with the descending order of their nonuniformity,
but follows the order of filling priority.
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Figure 5. Illustration for determination of multiple target patches on filling front: (a) Filling front δΩ;
(b) find p̂1 with maximum priority, define the subsection δΩ1 on δΩ that has similar content to p̂1;
(c) reset priorities on δΩ1 to 0, find the next pixel p̂2 with maximum priority, define δΩ2 that has
similar content to p̂2; (d,e) continue to find all p̂i and δΩi on δΩ until there is no non-zero priority
pixel on δΩ; (f) generate target patches Ψp̂i centered at p̂i.

After generating multiple target patches, the strategy of “subregion search” mentioned in
Section 3.3 is also involved. For each target patch Ψp̂i , subregion φi with the similar content is
assigned by Equation (10). As shown in Figure 6, during a single iteration, the patch match between
Ψqi and Ψp̂i can proceed in their corresponding subregion φi , respectively, and each subregion φi
will produce a best sample patch Ψq̂i to fill its target patch. In this way, multiple patches can be filled
in one iteration. By combining the subregion search and multi-patch match strategies, the speed of
algorithm can be effectively improved.
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It must be stressed out that step (2) in Algorithm 1 ensures that ∀p̂i, p̂ j ∈ δΩ (i , j), the relation∣∣∣T(p̂i) − T(p̂ j)
∣∣∣ ≥ 2α always hold, in addition, Equation (10) guarantees that ∀q ∈ φ i , there always exists

that
∣∣∣T(q) − T(p̂i)

∣∣∣ ≤ α. These two equations will avoid the overlap of the nonuniformity interval and
spatial scope between any two subregions, i.e., T(φi)∩ T(φ j) = ∅, φi ∩φ j = ∅ (i , j), ensuring that
the match process in every subregion is independent of each other.

The description of our overall algorithmic steps is shown in Algorithm 2.

Algorithm 2. Overall Steps of Our Algorithm.

1. Initialization: compute the nonuniformity map T(Φ) as Equation (8).
2. Determine the filling front δΩ, compute its priorities P(δΩ) as Equation (1).
3. Generate multiple target patches Ψp̂i on δΩ , as shown in Algorithm 1.
4. Assign subregion φ i as the search scope for every Ψp̂i as Equation (10).
5. Match the best sample patch Ψq̂i for Ψp̂i in φi using Equation (4).
6. Fill the unknown part of Ψp̂i with corresponding pixels in Ψq̂i .
7. Update the data term for new pixels as Equation (5), confidence term and nonuniformity term are

directly copied from their source pixels.
8. Update region Ω and Φ, if Ω = ∅, exit the whole process. Otherwise, back to step 2.

4. Experimental Results

In this section, we evaluate the performance of the proposed method by conducting two types of
experiments: Image restoration and object removal. The experiment is conducted on a computer with
2.2GHz CPU and 4 GB RAM, and implemented via MATLAB.

4.1. Image Restoration

4.1.1. Instance Test

We first show our inpainting results qualitatively and quantitatively by making a few instance
tests. To make a comparison, several previous patch-based methods are also applied to our experiment,
including Criminisi’s exemplar-based inpainting method [10], Liu’s method based on structure
tensor [17], and Zhou’s method using adaptive size based on gradient histograms [18]. One of the most
representative diffusion-based methods, CDD model [4] proposed by Shen et al., is also involved in our
test (3 k iterations employed). These instances include a portrait: Lena (512 × 512); two natural scenes:
House (512 × 512), Sculpture (256 × 256); along with two pure texture images: Irregular pattern Texture
I (640 × 640) and regular pattern Texture II (640 × 640) from Brodatz dataset [21,22]. These images are
masked with black color that represents for missing areas. Both subjective and objective evaluation
are compared among the proposed and previous methods mentioned above, where the subjective
evaluation is the visual effects of completed images, as shown in Figures 7–11.
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Figure 10. Comparison of inpainting results for irregular pattern Texture I (640 × 640): (a) Ground
truth; (b) incomplete image; (c) CDD model [4]; (d) Criminisi’s method [10]; (e) Liu’s method [17];
(f) Zhou’s method [18]; (g) proposed method.
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Subjective visual effects in Figures 7–11 show that compared with other methods, our results
have obtained the least defects, and are most similar to the ground truth. As for the Lena (Figure 7),
especially in those areas with rich textures and strong linear structures, such as the corner of eyes
and the edge of the hat, our method will automatically generate a smaller target patch, ensuring that
structures and textures are better preserved. In Reference [10], the fixed size of patch may not work
well especially for areas with rich details, since the patch size can easily exceed the scale of the texture
element, which could easily lead to stitching error and structure discontinuity. Reference [17] also
uses a fixed size of patch, although a few of flaws still occur, benefiting from its improved priority
model based on structure tensor, the algorithm has also achieved relatively good inpainting results.
Reference [18] utilizes an adaptive size of patch based on gradient histogram; however, this method
will generate a larger patch when connecting strong edges, as discussed above, this may lead to
incorrect propagation of structures. Different from patch-based methods, Reference [4] does not copy
patches from elsewhere, and performs better when dealing with such slim scratches by diffusion.
As for the House (Figure 8), previous patch-based methods have occurred mismatch marked in red
circles. This is because in the process of finding the best sample patch, both References [10] and [18]
search the sample patch from the entire source region without filtering, and they are easier to match an
inappropriate candidate if the match metric does not work well. In Reference [17], although the search
area is limited by picking out those sample patches whose sum of pixel values falls within a certain
range near its target patch’s, however, this strategy does not always work well because the sum in
a patch may reflect very limited information, those unsatisfactory sample patches may not be well
excluded. Moreover, Reference [4] starts to show some diffusion artifacts as the scratches become
thicker. In contrast, the proposed method searches for sample patch only in those areas that have
similar content to the target patch, even if the similarity metric function loses its effect, it can still avoid
selecting wrong sample patches to reduce mismatch. The Sculpture and Texture I, the rich-textured
images with thick scratches in Figures 9 and 10, show that the structures and textures are well preserved
in our results, whereas Reference [4] introduces noticeable blurring artifacts in such case and this is also
known as the common issue for diffusion-based methods. Texture II (Figure 11) is a regular pattern,
therefore, we believe additional steps are required to automatically perceive the scale of texture element
for this periodically arranged textures to decide the optimal patch size before further improvements
are made. Unfortunately, none of these methods has solved this challenging task yet.

The objective performance of algorithms will be assessed from two aspects: quality and efficiency.
Peak signal to noise ratio (PSNR) and structural similarity index (SSIM) [23] are used to evaluate the
similarity between the completed image and the ground truth, the higher PSNR and SSIM value means
the higher quality of a completed image. Running time of the algorithm is used to measure inpainting
efficiency. The objective evaluation for the above images under each algorithm is shown in Tables 1–3:
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Table 1. Peak signal to noise ratio (PSNR) (dB) comparison of Figure 7, Figure 8, Figure 9, Figure 10
and Figure 11.

Image CDD [4] Criminisi’s [10] Liu’s [17] Zhou’s [18] Proposed

Lena (512 × 512) 38.4142 35.0791 34.8686 35.5572 37.8445
House (512 × 512) 33.7388 34.4852 35.289 35.089 38.3214

Sculpture (256 × 256) 23.6974 24.0135 23.2412 23.3735 27.2959
Texture I (640 × 640) 22.4238 22.4142 22.4722 21.0718 24.1134
Texture II (640 × 640) 27.0897 28.4736 28.5973 26.2799 29.2464

Table 2. Structural similarity index (SSIM) comparison of Figure 7, Figure 8, Figure 9, Figure 10 and
Figure 11.

Image CDD [4] Criminisi’s [10] Liu’s [17] Zhou’s [18] Proposed

Lena (512 × 512) 0.9873 0.9775 0.9752 0.9752 0.9845
House (512 × 512) 0.9664 0.9807 0.9813 0.9823 0.9856

Sculpture (256 × 256) 0.8976 0.8928 0.8828 0.8808 0.9010
Texture I (640 × 640) 0.8686 0.8326 0.8323 0.7958 0.8780
Texture II (640 × 640) 0.8566 0.8930 0.8969 0.8347 0.9030

Table 3. Running time (s) comparison of Figure 7, Figure 8, Figure 9, Figure 10 and Figure 11.

CDD [4] Criminisi’s [10] Liu’s [17] Zhou’s [18] Proposed

Lena (512 × 512) 113.66 306.49 238.91 574.85 81.02
House (512 × 512) 103.85 252.46 235.54 369.99 93.80

Sculpture (256 × 256) 44.38 24.02 22.93 39.70 9.56
Texture I (640 × 640) 371.84 955.24 721.95 1629.87 273.60
Texture II (640 × 640) 486.34 1373.26 1588.28 3204.63 421.28

From the perspective of objective evaluation, the inpainting quality reflected by PSNR and SSIM
is basically consistent with the subjective visual perception. Restored areas with more coherent and
natural textures and structures may present better visual effects, and will also obtain higher PSNR and
SSIM values. As for inpainting efficiency, our method has successfully reduced the time consumption
thanks to our subregion search and multi-patch match strategies. Although our method is able to fill
a maximum of six target patches in a single iteration, the running time is not shortened by six times as
expected. This is because when the target patch size adaptively gets smaller, the inpainting progress
will be slowed down. We also notice that if the image size gets larger, the acceleration becomes more
obvious, since the average patch size will also increase. While Reference [17] tries to limit the search
area by picking out those candidates whose sum is close to the target patch’s, this does not significantly
reduce the calculation and obtains limited acceleration. References [10] and [18] both adopt global
search; and Reference [18] converts the determination of optimal patch size into an extra optimization
problem, that requires additional iterations and decreases the overall efficiency.

4.1.2. Batch Test

In order to evaluate the performance of these algorithms on a broader level, our next experiment is
conducted with more test samples. We randomly select 100 images from the public dataset Places2 [24]
and resize them to 512 × 512. Then we make 20 masks to randomly generate missing areas on those
sample images. The aforementioned methods are tested, and their objective quantitative evaluation
indicators: PSNR, SSIM, and running time are plotted in Figures 12a, 13a and 14a, respectively.
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We also study the performance of these methods in relation to the percentage of the masked
area from above 100 samples. These samples are divided into five categories with respect to their
mask ratios. Mask ratios are divided into five intervals vary from 0% to 25% with the step of 5%.
Figures 12b, 13b and 14b show how the mask ratios affect the mean PSNR, SSIM, and running time of
each method.

It can be learned from Figures 12a and 13a that PSNR and SSIM curves are very close that are not
so distinguishable. The reason is that the differences between the restored images are those masked
areas only, which are much smaller than the source region that is exactly the same as the original
image. However, it still can be seen that, for most images, the proposed method has obtained relatively
higher PSNR and SSIM values than other methods. In fact, our method achieves the highest PSNR
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value in 78 samples out of 100, the highest SSIM value in 67 samples out of 100, and the shortest
running time in 97 samples out of 100. Figures 12b and 13b suggest that the CDD model could obtain
relatively better performance when handling smaller mask size, but once as the mask size increases,
this diffusion-based method may struggle at restoring the expected content and begin to fall behind
the patch-based methods, whereas the proposed method achieves the best average performance in
most cases. In order to make a clearer comparison of the overall performance of five algorithms from
a quantitative perspective, the overall average values of those curves in Figures 12a, 13a and 14a are
recorded in Table 4.

Table 4. Average values in Figures 12–14.

Method Mean PSNR (dB) Mean SSIM Mean Running Time (s)

CDD [4] 26.5482 0.9218 152.81
Criminisi’s [10] 28.9099 0.9321 324.79

Liu’s [17] 28.4467 0.9290 229.21
Zhou’s [18] 27.5921 0.9193 591.42
Proposed 30.3950 0.9408 117.49

Compared with Criminisi’s algorithm [10], the average PSNR and SSIM in our algorithm are
improved by 5.14% and 0.93% respectively, and the efficiency is improved by 276%. Our results also
outperform the results in References [4,17,18].

In summary, the proposed approach has made effective improvements in dealing with the
deficiencies of the previous patch-based inpainting algorithm, both subjectively and objectively.

4.2. Object Removal

Object removal is another typical application of image inpainting, by replacing the unwanted
object with a plausible background in an image. Figure 15 shows examples where we attempt to
remove unwanted objects from the existing images by using our method. Different from damaged
image restoration, this task does not have ground truth as the reference, and there also might be
multiple possible filling solutions. Thus, the objective quality evaluation is no longer applicable, here,
we only provide the visual results. Note that as the masked area increases, some artifacts may still
occur, such as the unnatural water texture in Figure 15f, and the discontinuity of the curved edge of
the lawn in Figure 15g.
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5. Conclusions and Future Work

In this paper, a novel multi-patch-based image inpainting algorithm is proposed for filling missing
areas in a more accurate and efficient way. Aiming at the shortcomings that traditional patch-based
methods use a fixed size of patch and a global search for finding the best sample patch, and only
one target patch can be filled in a single iteration, which is computationally expensive, we provide
a novel solution: We first introduce a measurement model to quantify the nonuniformity in an image,
then different sizes of patches are adaptively determined for regions with different nonuniformity
levels, making the restored textures and structures more coherent and natural so that inpainting quality
is improved. Moreover, by fully utilizing the nonuniformity, the source region is divided into multiple
non-overlapping subregions with different nonuniformity levels; and in each subregion, the best
sample patch is matched for target patch. This has successfully reduced the match time in a single
iteration and the total number of iterations, as well as the rate of mismatch. Experimental results show
that our improved algorithm has obtained better inpainting quality, both subjectively and objectively
with less time-consuming.

In addition, in terms of the inpainting quality, if related works are combined, such as improved
priority model and match criterion, the results may become better. In terms of inpainting efficiency,
further improvements can be achieved based on the acceleration strategy mentioned in this article.
For example, the scalar value of nonuniformity used in this article may contain limited information,
other features, such as texture directions, colors, etc., can also be introduced in the process of narrowing
the search area to achieve further acceleration.

Finally, there are also limitations in our algorithm and other patch-based inpainting algorithms.
These methods assume that the texture in the missing region can be found elsewhere in the source
region. However, this assumption does not always hold—once the missing information is locally
unique, similar structures cannot be found, these methods may struggle at reconstructing satisfactory
results. Fortunately, in recent years, deep learning techniques have been introduced, and hopefully
they are capable of making up for this deficiency. For example, Nazeri et al. [25] utilized two-stage
GAN that has achieved impressive results. Image inpainting based on deep learning techniques might
be a novel and robust way—especially in those complex cases and are worth further study.
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