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Abstract: Brain tumor classification is a challenging task in the field of medical image processing.
Technology has now enabled medical doctors to have additional aid for diagnosis. We aim to
classify brain tumors using MRI images, which were collected from anonymous patients and
artificial brain simulators. In this article, we carry out a comparative study between Simple
Artificial Neural Networks with dropout, Basic Convolutional Neural Networks (CNN), and Dilated
Convolutional Neural Networks. The experimental results shed light on the high classification
performance (accuracy 97%) of Dilated CNN. On the other hand, Dilated CNN suffers from the
gridding phenomenon. An incremental, even number dilation rate takes advantage of the reduced
computational overhead and also overcomes the adverse effects of gridding. Comparative analysis
between different combinations of dilation rates for the different convolution layers, help validate
the results. The computational overhead in terms of efficiency for training the model to reach an
acceptable threshold accuracy of 90% is another parameter to compare the model performance.
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1. Introduction

Tumors are a mass of abnormal tissue that ascends without palpable cause from body cells and
have no crucial function. The uncontrollable growth of cells results in an increment of the size of the
tumor. Brain tumor detection at the early stage and availing proper treatment can save the patient
from any adverse damage to the brain [1]. Recently, computer-assisted techniques such as using deep
learning for feature extraction, and classification techniques are being used intensively to diagnose
the patients’ brains to check if there are any tumors. The introduction of information technology
and the e-healthcare system in the area of medical diagnosis has assisted clinical professionals in
offering considerably better health care for patients. Different classification techniques, especially
convolutional neural networks, have been proposed in recent years [1–6] however, these proposed
techniques have failed to acquire high accuracy. Therefore, there is a need to develop new techniques
for the detection of brain tumor. In this article, we have proposed the classic problem of detecting
tumors from MRI images using a dilated deep convolutional neural network (CNN). Simultaneously
we have bench-marked the performance of the proposed model with those of existing models such as
Artificial Neural Network (ANN) and Convolutional Neural Network (CNN).

In convolutional neural networks (CNN) [2] the receptive field is too small to result in high
accuracy. The fixed size of the sliding window in CNN fails to take advantage of the very architecture
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of the CNN, such as convolution, pooling, and flattening techniques, hence considering a sizeable
receptive field of the convolution kernel would help to increase the accuracy of the classification
techniques. The parameters in the proposed model have the capability of learning features from
the images.

A CNN with C× C layers of convolution with the exclusion of pooling can be represented as
l ∗ (C− 1) + C which is nothing but linear increments of the receptive field with number of layers l.
This linear growth restricts CNN’s performance on input images. Let G is a discrete function such
that [7] G : Z2 −→ R; where Z is the set of all natural numbers and R is the set of all real numbers.
Also by assuming a range φr = [−r, r]2 ∩ Z2 and the discrete filter k that is mapped to the real numbers
defined as k : φr −→ R which is a filter of size (2r + 1)2. The operator ∗ is known as convolution
operator. The convolution operator ∗ is defined in Equation (1), where 1-D dilated convolution with
dilation rate l = l convolves input image F with kernel or filter k. This 1-D convolution is called standard
convolutional neural network. When the value of the dilation l increases then the network is referred
as dilated convolutional neural network.

(F ∗ k)(p) = ∑
s+t=p

F(s)× k(t) (1)

Now we can introduce a dilation factor called l, and by generalizing this factor l that can be defined as,

(F ∗l k)(p) = ∑
s+lt=p

F(s)× k(t) (2)

Here l is referred to as the dilation rate of the convolution neural network. The value of l = 1 is a basic
convolutional neural network.

Researchers have developed deep learning and other techniques to detect brain tumors.
Developing a model with a high accuracy is a challenging task. Recent version of CNN models [8–10]
have hardly focused on hyper parameters whereas we do so; the collection [2] of features that are
locally available to the CNN are also a critical issue; moreover bluntly increasing the dilation rate
may add to the failure of feature collections due to the sparseness of the kernel, affecting small object
detection [11]. High dilation rates may affect small object detection. Therefore, in our proposed
model, a gradual increase in the dilation rate (even-numbered arithmetic progression) has been carried
out. This has helped to decrease sparsity on the dilated feature map which is able to extract more
information from the area under analysis. Hence keeping all these in mind, the main contribution of
this work include,

1. We propose a dilated convolution neural network with even-numbered increments of the dilation
rate for the brain tumor classification along with data preparation (image pre-processing, data
augmentation) and hyper-parameter tuning.

2. We critically discuss with the help of the proposed experimental results on why a small receptive
field of CNN with dilation rate causes the poor accuracy in brain tumor classification.

3. We carry out an in-depth analysis of how the architecture of proposed dilated convolution
with an enlarged receptive field of the kernel improves the efficiency of computation while also
maintaining a high accuracy.

4. We analyze the relationship between the rate of dilation and image classification accuracy.
5. We also carry out a detailed comparative study between basic CNN and ANN; in both cases,

the proposed dilated neural network has surpassed the other two.

Related Work

Medical image analysis is a vast area of research, and many researchers have added to the
vast variety of subfields of it [12]. We have taken a look at past work on brain tumor classification.
The majority of the work that has been carried out is based on the automatic segmentation of brain
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tumors from MRI images [13,14]. Post segmentation of the tumor, it needs to go through different
gradations of the classification; however, in the early research studies [15–17] the classification strategy
is primarily for benign and malignant tumors. Kharrat et al. [15], have introduced a genetic algorithm
and support vector machine (SVM), whereas Abdolmaleki et al. [16] have proposed a here-level
backpropagation neural network for tumor classification. These two proposed methods have obtained
a classification accuracy of 91% and 94% respectively for the classification of malignant and benign
tumors from MRI images of 165 patients. Papageorgiou et al. [17] have implemented a fuzzy cognitive
map (FCM) for hundred instances and obtained 90.26% accuracy for low-grade tumors of the brain.
In addition to that, the multigrade classification of brain tumors was conducted by Zacharaki et al. [18].
A computer-assisted diagnosis (CAD) model was also proposed by Hsieh et al. [19] this CAD system
has been applied to the malignancy of gliomas of 107 high and low-grade MRI images. It has obtained
an accuracy of about 83%. Other works have also been carried out such as Sachdeva et al. [20],
Cheng et al. [21] and Afshar et al. [4] which propose methods such as CAD model with GA
(SVM+ANN), Bag-of-words (BoW) method, and capsule networks (CapsNets), respectively. These
three methods have achieved an accuracy greater than 90%. Very recently, Özyurt et al. [22] has
introduced a state of the art machine learning and deep learning application that consists of a Fuzzy
C-Means and CNN merged with Extreme Learning Machine. Recent models include a symmetric
neural network [23] by Chen et al. (2019), CNN combined with neutrosophic expert maximum fuzzy
sure entropy by Özyurt et al. [24], and a big-data model brain tumor detection using deep CNN
proposed by Amin et al. [25]. Zia et al. [26] proposed a generic classification model for the same with
the wavelet transform as a feature extraction plus a PCA (principal component analysis) and SVM
method to reduce the dimensionality and classification task. This kind of binary classification is not
enough for the radiologist to make a solid decision on treatment for the patients. However, the essential
work of brain tumor classifications remains focused on the binary classification of brain tumors. Also,
the scarcity of data is a concern relating to these kinds of work. Very recently, deep learning-based
techniques [10,27] have been adopted to address these issues. Techniques such as transfer learning [28]
have also been implemented to improve model performance. We, therefore, proposed a model based
on dilated deep convolutional networks that is better at detecting brain tumors.

2. Materials and Methods

2.1. Proposed Methodology

Our proposed model (Figure 1) makes use of Dilated CNNs hence adding another
hyper-parameter to the mix, the dilation rate. Dilation is implemented by introducing zeros between
filter elements. Dilation allows the network to cover more relevant information by increasing the
receptive field of the filters. The CNN is designed to extract the most information out of the images
per convolution layer. In our case, applying a 3× 3 convolution layer allows the network to capture
more detailed characteristics as 3× 3 is the smallest filter to capture left/right, up/down, and center
from the image. Instead of using large convolution filters (used in the underlying CNN architectures)
such as 5× 5 to detect coarse features such as the shape and contours, we make use of dilations in the
convolution layers, and this allows the model to detect such coarse features without the additional
computational overhead of using larger filters such as 5× 5.

To analyze the performance in comparison to Basic CNN and Simple ANN, we make use
of the same CNN architecture as depicted in Figure 1, but without applying any dilations
(set dilation_rate = 1) to the convolution layers. The simple ANN is made up of fully connected
(dense) layers of artificial neurons. Layer 1 consists of 1024 units and a dropout of 50%, Layer 2
contains 512 units and a dropout of 25%. The third layer contains 128 units and a dropout rate of 25%
and the next layer consists of 32 units with a dropout of 15%. All the layers make use of the Rectified
Linear Unit (ReLU) activation function. The final layer consists of a single unit and uses the Sigmoid
activation function.
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Figure 1. Proposed model architecture of Dilated CNN depicting the various Convolutional, Pooling,
Flatten and Dense layers along with the shapes of their respective input and output tensors. The Input
consists of a single image of shape 32× 32 with 3 channels for colors RGB. Figure generated using
NN-SVG [29].

2.1.1. Convolutional Layers

The proposed model architecture depicted in Figure 1 is trained on an input of RGB images.
Each input tensor has a dimension of (32, 32, 3). Three separate convolution layers use the same 3× 3
filters, and the feature maps are generated wholly based on the dilation rate of each layer. The interior
architecture is as simple as possible to test the effects of dilation rate on model performance and
understand the gridding effect caused by the dilation technique. The layer Conv1 generates 16 feature
maps by applying a 3× 3 filter and a dilation rate d1, layer Conv2 generates 16 feature maps again
by applying the same 3× 3 filter and dilation rate d2 and the final convolution, and layer Conv3
generates 36 feature maps using a 3× 3 filter and dilation rate d3. The last convolution layer generates
a more significant number of filters as the final layer must select more delicate features for higher-level
reasoning for the upcoming layers. All three convolution layers make use of the ReLU activation
function. The dilation rates d1, d2, and d3 are also used in the nomenclature for the Dilated CNNs
such as DilatedCNN(4, 2, 1) stands for a Dilated CNN model with dilation rates corresponding to
(d1 = 4, d2 = 2, d3 = 1).

2.1.2. Pooling Layers

The pooling layers are used to reduce the resolution of the generated feature maps. These layers
are generally placed between convolution layers. To keep the model architecture simple and make the
model more dependent on the dilation rate parameter, we have made use of simple MaxPooling layers
with a pool size of 2× 2. The three pooling layers namely MaxPool1, MaxPool2 and MaxPool3 depicted
in Figure 1, all use the same pool size of 2× 2.

2.1.3. Flattening and Dense Layers

Once the feature maps are generated, the model needs to be trained on high level reasoning.
The feature maps are flattened into a 1 dimensional vector of size (576). A fully connected layer of
shape (512) is added along with a dropout of 15% of the nodes. The dense layers can easily get biased
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and dropout prevents the model from overfiitting on the dataset. To provide non linearity to the results,
the ReLU activation function is used. Figure 1 shows the 2 fully connected layers FC1 and FC2 along
with the output layer. For the final output, a dense layer of shape (1) is used with the Sigmoid activation
function. Again to prevent overfitting, 15% of the nodes are dropped out from the previous layer.
The model is trained to reduce the binary cross entropy loss with the help of the Adam optimizer [30].

2.1.4. Activation Functions

All the hidden layers use the ReLU activation function. The ReLU activation function provides
more sensitivity to the activation sum and avoids easy saturation. It looks and acts like a linear function,
but in fact is a nonlinear function allowing the network to learn complex non linear relationships. It is
a piecewise linear function that is linear for half of the input domain and non linear for the other half
of the domain. The final layer predicts the output of the binary classification. Sigmoid is chosen as it
has several advantages over Step function and Tanh activation function. The Sigmoid function has a
characteristic “S-shaped” curve. It bounds the values within the range [0, 1] and allows for smoother
training compared to using the Step function and helps to prevent bias in the gradients. Tanh is a
rescaled logistic Sigmoid function such that its outputs range from [−1, 1] and is centered around
0. For the final layer in a binary classification problem, Sigmoid activation function provides a softer
gradient when compared to Tanh.

2.2. Dataset

No humans were directly involved in this study, the data is anonymous or generated synthetically
from simulators. We have selected slices from various MRI scans and applied necessary preprocessing
techniques to convert the images into a common JPEG format to maintain consistency throughout
the dataset. The data is split into two categories namely “Normal” and “Tumour”. The model is
trained and tested on images curated from a number of publicly available sources. Kaggle provides
an open dataset curated and maintained by Chakrabarty [31] which collects MRI images in 2 folders
(tumor detected—“yes” and “no”), containing a total of 253 Brain MRI images. As MRI images contain
personal information and require the assistance of specialized doctors for labeling, we have also made
use of simulated brain images. The Brain wave [32–35] brain simulator provides a 3D simulation of
the brain based on a range of user-defined parameters. The data is in 3D slices, and we can select a
particular series of slices (top-down view) to add to the dataset. As these simulations are based on
the anatomical model of a healthy brain, they serve as the ground truth for any analysis procedure.
Another resource used is the Harvard Brain simulator [36], which provides many simulated brain MRI
images that have been carefully selected and added to the dataset.

The next step consists of image pre-processing. We aim to remove additional data present around
the main MRI brain scan, making sure that all the images are of the same type, and the focus is only
on the central part of the brain. To carry out the mentioned preprocessing, we have used a relatively
common method of using the extreme points of a contour. The simple step by step approach illustrated
in Figure 2, combined with a few image processing methods such as converting the image to Grayscale,
Thresholding, and Opening (Erosion followed by Dilation), as mentioned below in Algorithm 1, makes
sure that the brain is in focus in each image. Finally, using the extreme points as a mask, it is a fairly
simple task to crop out the parts of the image that do not add any value to the classifier model.

When preparing the data for training, we need to create a generalized dataset as deep learning
algorithms are highly data-driven. This means that imbalanced sets and other skewed image properties
in a particular class will create a bias in the model and results in improper classification. The Brain
MRI dataset suffers from two main issues, firstly the size of the dataset and secondly, there is no single
correct structural shape of a human brain. Each human brain is shaped uniquely and slightly different
from the other. Using the Keras Image Data Generator [37], we augment the images over a set of
parameters, and this adds a slight degree of randomness to the images. In terms of the entire training
process, the model learns on a generalized dataset. The applied augmentation techniques include
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Rescaling the image between a range of [0, 1], Rotation randomly between [−15◦,+15◦], Shifts in height
and width to a maximum 10% of image dimensions, Shear range of 0.1 and a Brightness range between
the bounds [0.5, 1.5]. As the brain MRI images are vertically aligned, it is not feasible to use a vertical
flip. Preferably a Horizontal flip is used to create symmetrical data about the vertical axis. Figure 3
depicts the degree of randomness introduced by using the above mentioned image augmentation on a
single sample MRI image.

Algorithm 1 Image Pre-processing.
Input Raw Image

Output Cropped Image

1: for iteration = 1, 2, . . . , Nimages do
2: ImageGray ← Grayscale(ImageInput)
3: ImageBinary ← Binary(ImageGray, threshold[45–255])
4: Opening
5: ImageBinary ← Erosion(ImageBinary)
6: ImageBinary ← Dilation(ImageBinary)
7: ImageContour ← Contour(ImageBinary)
8: ImageMask ← Extremes(ImageContour)
9: ImageOutput ← Crop(ImageBinary, ImageMask)

10: end for

Figure 2. (a) Original Image: Section of brain from a MRI scan (b) Finding largest contour: Detecting
the overall shape of the skull structure. (c) Calculating extreme points of contour: Selecting the best
points to fit the entire brain into the frame with minimum loss of data (d) Cropping based on extreme
points: The brain structure from the MRI image is the main focus area of the new image.

Figure 3. Augmented images: Each of the 21 displayed images are generated from the same input
image by introducing slight variations such as rotation, sheer, zoom, brightness, shift and horizontal
flip with the aim of building a generalized and robust dataset.

After preparing the data and applying the mentioned augmentation techniques, the data is split
into training and validation sets. Each model is trained using backpropagation on the training set and
after each Epoch (one iteration through the complete training set), the validation accuracy is calculated.
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Using the validation accuracy, checkpoints are created. These checkpoints store the best weights that
can later be used for model inferencing or for further training. The step by step flow, is mentioned in
Algorithm 2.

Algorithm 2 Dilated CNN Classifier Algorithm.
Input Image Dataset

Output Trained Brain Tumor Classifier

1: MODEL TRAINING

2: Randomly initialize neural network with random weights
3: Accuracy← 0
4: for epoch = 1, 2, . . . , Nepochs do
5: for image = 1, 2, . . . , Nbatch_size do
6: Imagedata ← Resize(Image)
7: Imagedata ← Augmentation(Imagedata)
8: Input layer u(t) takes Imagedata and sends it to the hidden layers
9: Hidden layers

10: Large dilation_rate Coarse features
11: Small dilation_rate Finer features
12: Output layer w(t) returns diagnosed results
13: Calculate error rate e(t)
14: Update weights using back_propagation
15: Using Adam_Optimizer to minimize e(t)
16: end for
17: MODEL CHECK-POINTING

18: Using Validation set, Calculate Validation_Accuracy
19: if Validation_Accuracy ≥ Accuracy then
20: Checkpoint model, Save Weights
21: Best_Weights←Weights
22: end if
23: end for

3. Results

Once the model is trained, the best checkpoint is selected for model inferencing. The predicted
classes are compared to the actual target classes to calculate the model accuracy, precision, recall and
f-measure. Once the model has crossed the threshold accuracy of 90%, we try to understand the inner
workings of the various layers of the model. Feature maps are generated for various input images.
Feature maps help to determine the active areas of the image, i.e., The highlighted areas of the image
that contribute to the classification decision. The activation maps for the various convolution and
pooling layers are illustrated in Figure 4.

From the feature maps (Figure 4), we can deduce that the dilated CNN works on a well-described
top-down approach. The outer layers (layer 1 and layer 2) focus on coarse features such as the
shape of the brain or any problem areas (outliers–tumor locations). As we move through the layers,
the granularity of the features decreases. The last layer generates features of fine granularity, and
this means the focus is now on tiny sections of the image, that can determine small tumors. Finally,
these generated feature maps are used to classify the MRI image using a Sigmoid activation function
(binary classification).
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(a) Convolution Layer1 (Conv1)

(b) MaxPooling Layer1 (MaxPool1)

(c) Convolution Layer2 (Conv2)

(d) MaxPooling Layer2 (MaxPool2)

(e) Convolution Layer3 (Conv3)

(f) MaxPooling Layer3 (MaxPool3)

Figure 4. Activation maps for various layers of the Dilated CNN. Each of the three convolutional
layers depicts the granularity of the generated features with coarse features generated in Conv1 and
fine features in Conv3. The MaxPooling layers reduce the resolution of the generated features using a
2× 2 kernel.

Figure 5 shows the number of epochs versus classification accuracy graph for Dilated CNN,
Basic CNN, and Simple ANN with Dropout. We can deduce from the graph that Dilated CNN has
performed better than Basic CNN and Simple ANN with Dropout. Figure 5 clearly describes the
power and efficiency of using Dilated CNN over Simple ANN and Basic CNN. The Dilated CNN
model achieves the threshold accuracy of 90% within 10 epochs and an accuracy of 95% after 30 epochs.
The model achieves a maximum accuracy of 97% after 50 epochs. The Basic CNN, on the other hand,
is comparatively less effective in classifying brain tumors. The ANN model fails to achieve the set
threshold of 90%. The model achieves an accuracy of 85%, after which it fails to improve further.
Similarly, Figure 6 provides a comparative analysis of using different dilation rates for the various
convolution layers. Using high dilation rates results in the gridding phenomenon that prevents the
model from learning from finer features resulting in the low accuracy of the (6, 6, 6) model. The best
performing model is the (4, 2, 1) model. Using these dilation rates allows the model to learn from the
coarse features as well as the finer features while overcoming the additional computational overhead
of using larger convolutional filters.



Appl. Sci. 2020, 10, 4915 9 of 14

Figure 5. Performance comparison between the best Dilated CNN, Basic CNN and Simple ANN with
Dropout architectures with respect to classification accuracy.

Figure 6. Comparative analysis of various dilation rate parameters based on the maximum validation
(classification) accuracy achieved during training.

Comparative analysis between the various architecture is presented in Table 1. Analysis of the
various classification metrics, namely the True Positive (TP) i.e., when the model correctly predicts
the positive class, False Negative (FN) i.e., when the model wrongly predicts the negative class, False
Positive (FP) i.e., when the model wrongly predicts the positive class, and True Negative (TN) i.e.,
when the model correctly predicts the negative class. These core metrics make up the confusion matrix
and determine the core model performance. The CNN architectures outperform the Simple ANN
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model. On further analysis, dilated CNN has a better False Positive (FP) rate compared to Basic CNN,
and this is an essential factor when dealing with medical diagnosis. The Table 2 provides an in-depth
analysis of the models’ precision and recall metrics. Comparing the Basic CNN and the Dilated CNN,
we can determine that the dilated CNN model has better precision compared to the Basic CNN model.

Table 1. True Positive, False Negative, False Positive and True Negative rates compared across Simple
ANN, Basic CNN and Dilated CNN.

Model TP FN FP TN

ANN 0.34920635 0.04761905 0.07936508 0.52380952
Basic CNN 0.38095238 0.01587302 0.06349206 0.53968254
Dilated CNN (4, 2, 1) 0.38095238 0.01587302 0.01587302 0.58730159

Table 2. Accuracy, Precision, Recall and F-measure compared across Simple ANN, Basic CNN and
Dilated CNN.

Model Accuracy Precision Recall F-Measure

ANN 0.87301587 0.81481481 0.88 0.84615384
Basic CNN 0.92063492 0.85714285 0.96 0.90566037
Dilated CNN (4, 2, 1) 0.96825397 0.96 0.96 0.96

The Table 3 displays a comparative side by side analysis of the various classification metrics,
namely the True Positive, False Negative, False Positive, and True Negative rates. The above Table 4
provides an in-depth analysis of the gridding phenomenon and the effects of the various dilation
rates. Using high dilation rates, the model cannot learn from the finer features, similarly using a low
dilation rate, the model does not pick up on the coarse features. A well-balanced model should be
able to learn both the coarse and fine features of the images. Using the (4, 2, 1) model provides the
best-case scenario.

Table 3. Comparing True Positive, False Negative, False Positive, True Negative rates across different
configuration of dilation rates for the convolution layers.

Model TP FN FP TN

Dilated CNN (2, 2, 2) 0.38095238 0.01587302 0.03174603 0.57142857
Dilated CNN (4, 4, 4) 0.3968254 0.0 0.06349206 0.53968254
Dilated CNN (6, 6, 6) 0.34920635 0.04761905 0.03174603 0.57142857
Dilated CNN (4, 2, 1) 0.38095238 0.01587302 0.01587302 0.58730159
Dilated CNN (4, 2, 2) 0.36507937 0.03174603 0.01587302 0.58730159

Table 4. Comparing Accuracy, Precision, Racall and F-Measure across different configurations of
dilation rates for the convolution layers.

Model Accuracy Precision Recall F-Measure

Dilated CNN (2, 2, 2) 0.95238095 0.92307692 0.96 0.94117647
Dilated CNN (4, 4, 4) 0.93650794 0.86206897 0.96 0.92592592
Dilated CNN (6, 6, 6) 0.92063492 0.91666667 0.88 0.89795918
Dilated CNN (4, 2, 1) 0.96825397 0.96 0.96 0.96
Dilated CNN (4, 2, 2) 0.95238095 0.95833334 0.92 0.93877551

The TPR (true positive rate) and FPR (false positive rate) are important AUC/ROC (Area Under
The Curve/Receiver Operating Characteristics) [38] metrics that help to determine the amount of
information learnt by the model and how well it is able to distinguish between the classes. In the
ideal case, TPR = 1 and the FPR = 0. Table 5a compares the metrics across the various architectures
and determines the Dilated CNN architecture with TPR = 0.96 and FPR = 0.03 is the best. Table 5b
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compares the AUC/ROC metrics for the different dilation rates. Using an incremental dilation rate
allows the model to learn the coarse as well as fine features, resulting in the maximum amount of
information learnt by the model.

To compare the model performance in terms of computational resources required, we have
designed the three models with a similar architecture in mind. This allows us to have a reasonably
accurate analysis of the compute overhead (additional time required to setup the network architecture
and data loaders) and efficiency of each network. The time taken for a single epoch (1 min 30 s approx.)
is almost the same for each of the three networks. Using this as a benchmark, we can determine the
computational effort required to achieve the threshold accuracy of 90%. Table 6a compares ANN, Basic
CNN and Dilated CNN. As the dilated CNN requires the minimum time to achieve the threshold
accuracy, it is set as the benchmark x and the performance of the other models is determined as a factor
of x. As the ANN does not achieve the threshold accuracy, its performance cannot be determined.
Table 6b shows the same analysis, for different combinations of dilation rates. The (4, 2, 1) model
(increasing dilation rates) performs the best and is selected as the benchmark. Other models with
moderate dilation rates come in close behind. Using a small dilation rate d = 2 or large dilation rate
d = 6 causes the gridding phenomenon, resulting in the models requiring additional computational
effort to achieve the threshold.

Table 5. TPR (True Positive Rate) and FPR (False Positive Rate) measures compared across (a) Simple
ANN, Basic CNN and Dilated CNN. (b) combinations of dilation rates for the different convolution layers.

Model TPR FPR

ANN 0.88 0.13157895
Basic CNN 0.96 0.1052632
Dilated CNN (4, 2, 1) 0.96 0.02631579

(a)

Dilated CNN (2, 2, 2) 0.96 0.05263158
Dilated CNN (4, 4, 4) 0.96 0.10526316
Dilated CNN (6, 6, 6) 0.88 0.05263158
Dilated CNN (4, 2, 1) 0.96 0.02631579
Dilated CNN (4, 2, 2) 0.92 0.02631579

(b)

Table 6. Epoch and comparative performance to determine the computational effort required for
various the models to reach an acceptable accuracy of above 90%. x is the factor for the minimum time
taken to achieve threshold accuracy (a) Simple ANN, Basic CNN and Dilated CNN. (b) combinations
of dilation rates for the different convolution layers.

Model Epochs Performance

ANN - ∞
Basic CNN 67 9.57x
Dilated CNN (4, 2, 1) 7 1x

(a)

Dilated CNN (2, 2, 2) 19 2.714x
Dilated CNN (4, 4, 4) 8 1.413x
Dilated CNN (6, 6, 6) 19 2.714x
Dilated CNN (4, 2, 1) 7 1x
Dilated CNN (4, 2, 2) 10 1.429x

(b)
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4. Discussion

The primary purpose of this paper is to demonstrate the potential of Dilated CNN in comparison
to other deep learning architectures, namely simple ANN with Dropout and Basic CNN in brain
tumor detection. The paper has analyzed two aspects of the architecture of the models that is the
classification accuracy and the computational resources required. For Dilated CNNs, we also have
analyzed the effects of various dilation rates on the performance of the model. The classification
accuracy is the highest (97%) for Dilated CNN (4, 2, 1), which has incremental, even number dilation
rates, followed by Basic CNN. Simple ANN failed to break the threshold accuracy of 90%. In the
case of the computing effort required by the models to attain a testing accuracy of more than 90%,
the Dilated CNN outperformed the Basic CNN architecture by a considerable margin of 9.57 times
where as ANN failed to achieve the threshold accuracy.

Finally, from the understanding of the gridding phenomenon and various values for the dilation
rate parameter for each layer, the comparative study shows that an incremental dilation rate (4, 2, 1)
provides the best results. Using dilation rates of (4, 2, 1) the model achieves an accuracy of 96.8%
whereas the next best model (tied for dilation rates (2, 2, 2) and (4, 2, 2)) achieves an accuracy of 95.2%.
This confirms the fact that the outer layers (higher dilation rates) focus on the coarse features, and
the inner layers (lower dilation rates) learn from the finer features. This combination provides the
best results. For future works, the experimental analysis can be carried out on other datasets to get a
deeper understanding of the inner working of the network as well as the effectiveness of the dilation
rate parameter.
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