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Abstract: An analytical model is presented for solving the longitudinal complex impedance
of a large-diameter floating pile in viscoelastic surrounding soil with radial heterogeneity
and viscous-type damping, taking the effect of three-dimensional wave propagation of soil and lateral
inertia of the pile shaft into account. The corresponding analytical solution for longitudinal impedance
is also derived and validated via comparisons with existing solutions. The influences of the pile length,
Poisson’s ratio of the pile shaft and the viscous damping coefficient, as well as the degree and radius
of disturbed surrounding soil, on the longitudinal impedance of the pile shaft are examined by
performing parametric analyses. It is demonstrated that the proposed analytical model and solution
are suitable for the longitudinal vibration problem of a large-diameter pile and radially inhomogeneous
surrounding soil, especially when the pile slenderness is low. In addition, the present solution can be
easily degenerated to describe the longitudinal vibration problem relating to a large-diameter floating
pile in radially homogenous soil or a pile with fixed-end supports.

Keywords: pile vibration; longitudinal impedance; analytical solution; radial heterogeneity;
viscous-type damping

1. Introduction

In most analytical models for pile vibration, the soil around the pile shaft is generally simplified to be
radially homogeneous [1–6]. However, when construction operations cause soil to be disturbed within
the vicinity of the pile, the effect of the soil’s radial heterogeneity on the vibration performance of the
pile–soil system cannot be roughly ignored. In recent decades, the vibration problems of piles in radial
inhomogeneous soil have been focused on by researchers [7,8]. As pioneering work, Novak et al. [9,10]
and Veletsos et al. [11,12] investigated the longitudinal and torsional vibration of piles in radially
heterogeneous soil by dividing the surrounding soil into a semi-infinite outer undisturbed zone and
an inner disturbed zone with a single layer. Subsequently, Nogami et al. [13,14] derived an analytical
solution for the longitudinal impedance of piles in radially inhomogeneous soil by combining
Novak’s planestrain and Winkler’s models. Doston et al. [15] deduced the analytical expressions
for both the longitudinal and torsional impedance of a single pile in soil with radial heterogeneity,
assuming an exponential function for the variance of soil shear moduli within the inner zone.
Similarly, Vaziri et al. [16] and Han et al. [17,18] considered the variance of shear moduli as a parabolic
function for the radial heterogeneity of surrounding soil. Furthermore, EI Naggar [19,20] regarded the
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inner disturbed zone of surrounding soil as a series of annular sub-layers and combined them with
Novak’s plane-strain model for pile–soil vibration. On this basis, Wang et al. [21] and Yang et al. [22]
identified the limitations of EI Naggar’s model and proposed a new approach for the longitudinal
vibration of piles in hysteretic-damping soil, which considers a completely coupled condition at
the sub-layer interface by adopting the complex stiffness method. In addition, Dai et al. [23] further
examined the longitudinal impedance of piles in radially inhomogeneous soil with a hysteretic-type
damping model, considering the three-dimensional (3D) wave propagation in soil.

The aforementioned studies mainly employed the Euler–Bernoulli rod model to describe
the dynamic behavior of pile shafts, in which the wave propagation effect of pile shafts in
a radial direction was roughly ignored [24,25]. Instead, the Rayleigh–Love rod model can take
account of this radial wave effect, i.e., the lateral inertia effect, by introducing Poisson’s ratio
into the governing equation [26–28]. With the combination of the Rayleigh–Love model and the
3D wave propagation theory, Lü et al. [29,30] proposed a simplified model for the longitudinal
dynamic behavior of a large-diameter pile in radially homogenous viscoelastic media by adopting
the hysteretic-type damping model. Afterwards, Zheng et al. [31] further extended this model to
examine the longitudinal vibration of a large-diameter pipe pile in radially homogenous media.
Moreover, for the longitudinal vibration problem of piles with radial heterogeneity, Li et al. [32,33]
investigated the longitudinal vibration characteristics of a large-diameter pile in viscoelastic media
with radial heterogeneity and hysteretic-type damping, using Novak’s thin layers model and the wave
propagation theory of a 3D continuum, respectively. It has been demonstrated that the hysteretic-type
damping model, which is independent of frequency, could be unsatisfactory when the excitation
is non-harmonic [34]. In contrast, the viscous-type damping model is suitable for non-harmonic
excitation [35,36]. Hence, Cui et al. [37,38] presented a new mechanical model and examined the
longitudinal impedance of a pipe pile in layered viscoelastic media with radial heterogeneity and
viscous-type damping, based on Novak’s plane-strain model.

To date, however, little work has been carried out on the longitudinal impedance of a large-diameter
floating pile in viscoelastic soil with radial heterogeneity, combining both the viscous-type damping
and the 3D wave propagation effect of surrounding soil. The primary aim of this paper is to develop
a new analytical model to describe the longitudinal vibration of a large-diameter floating pile in
viscoelastic surrounding soil with radial inhomogeneity, taking the effect of 3D wave propagation
and lateral inertia of the pile shaft into account. In addition, extensive parametric analyses are also
conducted to examine the longitudinal vibration characteristics of floating piles in surrounding soil
with radial heterogeneity.

2. Computational Model and Basic Assumptions

Figure 1 shows a new mechanical model for the longitudinal vibration of an interaction system
including soil and a solid pile. H, r1, ρp, Ep and νp represent the length, diameter, density, elastic
modulus and Poisson’s ratio, respectively, of a floating solid pile. The surrounding soil is composed of
two parts, i.e., two zones: an inner disturbed annular zone and a semi-infinite outer undisturbed zone of
surrounding soil. The inner zone of surrounding soil can be further divided into m annular sub-layers.
The radial thickness and radius of the inner disturbed zone are b and rm+1, respectively. r j+1 is the
outer radius of the jth annular sub-layer. ρs

j , λ
s
j , Gs

j , Es
j and cs

j denote the density, Lame constant,
shear modulus, elastic modulus and viscous coefficient, respectively, of the jth disturbed sub-layer.
The mechanical constants of the viscoelastic supports beneath the pile toe and surrounding soil are
kp, δp and ks, δs, respectively. The uniformly distributed excitation pressure is p(t). Besides this,
the following assumptions are specified in the proposed mechanical model:
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(1) The large-diameter pile is considered to be a Rayleigh–Love rod with linear elasticity and a uniform
cross section, while the soil is an isotropic viscoelastic continuum with frequency-dependent
viscous-type damping [38].

(2) Within the inner zone of surrounding soil, two neighboring annular sub-layers are completely
coupled at the interface.

(3) The deformation of the simplified mechanical system is small. There is no interface sliding
between the pile and soil.

(4) Within the inner zone of surrounding soil, Gs
j and cs

j are determined in terms of the
following expressions:

Gs
j(r) =


Gs

1 r = r1

Gs
m+1 × f(r) r1 < r < rm+1

Gs
m+1 r ≥ rm+1

(1a)

cs
j(r) =


cs

1 r = r1

cs
m+1 × f(r) r1 < r < rm+1

cs
m+1 r ≥ rm+1

(1b)

where f(r) is a parabolic function that describes the variance of construction disturbance for the
jth disturbed sub-layer [22].
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The mathematical implementation for the derivation procedure of pile–soil dynamic vibration is
shown in Figure 2.
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Figure 2. The derivation procedure of complex stiffness.

3. Governing Equations

Based on the wave propagation theory of a continuum in the axisymmetric condition, the governing
equation for the jth disturbed sub-layer proposed by Nogami and Novak [34] is adopted:

(λs
j+2Gs

j)
∂2

∂z2 us
j(r,z,t)+Gs

j(
1
r
∂
∂r+

∂2

∂r2 )u
s
j(r,z,t)+cs

j
∂
∂t

[(
∂2

∂z2 +
1
r
∂
∂r+

∂2

∂r2

)
us

j(r,z,t)
]
=ρs

j
∂2

∂t2
us

j(r,z,t) (2)

where us
j(r, z, t) is the longitudinal displacement of the jth disturbed sub-layer.

The longitudinal shear stress at the interface (i.e., r = r1) between the first annular sub-layer
and the pile shaft is expressed by

τs
1(r1, z, t) = Gs

1

∂us
1(r1, z, t)

∂r
+ cs

1

∂2us
1(r1, z, t)

∂t∂r
. (3)

According to the Rayleigh–Love rod model theory [31], the governing equation for the longitudinal
vibration of a large-diameter pile shaft can be written as

EpAp ∂
2

u
p(z, t)
∂z2 −mp

(
∂2

u
p(z, t)
∂t2 + (νpr1)

2 ∂
4up(z, t)
∂z2∂t2

)
− 2πr1 f s(z, t) = 0 (4)

where f s(z, t) = τs
1(r, z, t)

∣∣∣r=r1 , mp = ρpAp, Ap = πr2
1.

4. Boundary and Initial Conditions

The boundary conditions at the free surface and bottom of the jth annular sub-layer are given by
the following expressions, respectively.

∂us
j(r, z, t)

∂z
|z=0 = 0 (5a)

∂us
j(r, z, t)

∂z
|z=H = −

ks
ju

s
j(r, z, t)

Es
j

+
δs

j

Es
j

∂us
j(r, z, t)

∂t

 (5b)

where Es
j

∂us
j(r,z,t)

∂z refers to the internal stress of the soil. ks
ju

s
j(r, z, t) and δs

j

∂us
j(r,z,t)

∂t are the external
forces related to stiffness and damping, respectively. According to the force equilibrium conditions,
Equation (5b) can be established.
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When r→∞ , the longitudinal displacement of surrounding soil tends toward zero. Namely,

lim
r→∞

u(r, z, t) = 0 (6)

The continuity and equilibrium conditions at the outer interface of the jth sub-layer are

us
j(r, z, t)

∣∣∣r=r j+1 = us
j+1(r, z, t)

∣∣∣r=r j+1 (7a)

Gs
j

∂us
j(r, z, t)

∂r
+ cs

j

∂2us
j(r, z, t)

∂t∂r

∣∣∣r=r j+1 = Gs
j+1

∂us
j+1(r, z, t)

∂r
+ cs

j+1

∂2us
j+1(r, z, t)

∂t∂r

∣∣∣r=r j+1 (7b)

where Gs
j

∂us
j(r,z,t)

∂r + cs
j

∂2us
j(r,z,t)

∂t∂r

∣∣∣r=r j+1 and Gs
j+1

∂us
j+1(r,z,t)

∂r + cs
j+1

∂2us
j+1(r,z,t)

∂t∂r

∣∣∣r=r j+1 are the shear stress of
the jth and (j+1)th, respectively, sub-layers. Based on the stress equilibrium condition at the interface
between the jth and (j+1) th sub-layers, Equation (7b) is built.

The equilibrium conditions of the pile are expressed as the following forms:

EpAp dup

dz

∣∣∣∣∣
Z=0

+ ρpAp(νpr1s)2 dup

dz
|z=0 = −p(t) (8a)

kp + sδp

EpAp up +
dup

dz
+
ρpAp(νpr1s)2

EpAp
dup

dz
|z=H = 0 (8b)

where kp+sδp

EpAp up denotes the external supporting force beneath the pile toe. dup

dz +
ρpAp(νpr1s)2

EpAp
dup

dz is
the internal stress of the pile. According to the force equilibrium condition beneath the pile toe,
Equation (8b) can be established.

The coupled condition of the first disturbed sub-layer and pile is given by

us
1(r, z, t)

∣∣∣r=r1 = up(z, t). (9)

5. Solution of the Surrounding Soil

Performing a Laplace transform to Equation (2), it gives

(λs
j+2Gs

j)
∂2

∂z2 Us
j (r,z,s)+Gs

j(
1
r
∂
∂r+

∂2

∂r2 )U
s
j (r,z,s)+cs

js
(
∂2

∂z2 +
1
r
∂
∂r+

∂2

∂r2

)
Us

j (r,z,s)=ρs
js

2Us
j (r,z,s) (10)

where Us
j(r, z, s) is the Laplace transform of us

j(r, z, t).
Setting Us

j(r, z, s) = Rs
j(r)Z

s
j(z) and substituting it into Equation (10) with rearrangement yields

(λs
j + 2Gs

j + cs
js)

1
Zs

j

∂2Zs
j

∂z2 − ρ
s
js

2 + (Gs
j + cs

js)
1

Rs
j

1
r

∂Rs
j

∂r
+
∂2Rs

j

∂r2

 = 0. (11)

Further splitting Equation (11), the following ordinary differential equations can be given:

d2Zs
j

dz2 + (hs
j)

2Zs
j = 0 (12a)

d2Rs
j

dr2 +
1
r

dRs
j

dr
− (qs

j)
2Rs

j = 0 (12b)

where hs
j and qs

j are undetermined coefficients that satisfy the following expression:

− (λs
j + 2Gs

j + cs
js)(h

s
j)

2 + (Gs
j + cs

js)(q
s
j)

2 = ρs
js

2. (13)
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Rearranging the terms of Equation (13) gives

(qs
j)

2 =
(λs

j + 2Gs
j + cs

js)(h
s
j)

2 + ρs
js

2

(Gs
j + cs

js)
. (14)

Thus, the general solutions of Equations (12a) and (12b) are

Zs
j(z) = Cs

j cos(hs
jz) + Ds

j sin(hs
jz) (15a)

Rs
j(r) = As

jI0(qs
jr) + Bs

jK0(qs
jr) (15b)

where I0(qs
jr) and K0(qs

jr) are the first and second kind, respectively, modified Bessel functions of order
zero; As

j , Bs
j , Cs

j and Ds
j are undetermined coefficients.

Substituting Us
j(r, z, s) = Rs

j(r)Z
s
j(z) into Equations (5a) and (5b), respectively, gives

Ds
j = 0 (16a)

tan(hs
jH) =

K
s
j

hs
jH

(16b)

where K
s
j = Ks

jH/Es
j ; Ks

j = ks
j + sδs

j denotes the complex stiffness of viscoelastic supports beneath the
pile toe.

Solving the transcendental Equation (16b) yields the eigenvalues hs
jn(n=1, 2, . . . ). Then, qs

jn can be
further obtained with the substitution of hs

jn into Equation (14).
Combining Equations (5a), (5b) and (6), the general solution Us

j can be obtained as

Us
j =


∞∑

n=1
As

jnK0(qs
jnr) cos(hs

jnz) ( j = m + 1)
∞∑

n=1

[
Bs

jnI0(qs
jnr) + Cs

jnK0(qs
jnr)

]
cos(hs

jnz) ( j = m, . . . , 2, 1)
(17)

where As
jn, Bs

jn and Cs
jn are undetermined coefficients.

Hence, the shear stress at the inner interface of the jth sub-layer can be further expressed as

τs
j =


(Gs

j + cs
js)
∞∑

n=1
As

jnqs
jnK1(qs

jnr) cos(h1
s
jnz) , ( j = m + 1)

(Gs
j + cs

js)
∞∑

n=1
qs

jn

[
−Bs

jnI1(qs
jnr) + Cs

jnK1(qs
jnr)

]
cos(hs

jnz) , ( j = m, . . . , 2, 1)
. (18)

Considering the boundary conditions listed in Equations (7a) and (7b), ps
jn=Bs

jn/Cs
jn is obtained as

ps
mn =

(Gs
m+cs

ms)qs
mnK1(qs

mnrm)K0(qs
(m+1)n

rm)−(Gs
m+1+cs

m+1s)K0(qs
mnrm)K1(qs

(m+1)n
rm)

(Gs
m+cs

ms)qs
mnI1(qs

mnrm)K0(qs
(m+1)n

rm)+(Gs
m+1+cs

m+1s)qs
(m+1)n

I0(qs
mnrm)K1(qs

(m+1)n
rm)

( j = m) (19a)

ps
jn=

(Gs
j + cs

js)q
s
jnK1(qs

jnr j)[qs
( j+1)n

I0(qs
( j+1)n

r j) + K0(qs
( j+1)n

r j)]

−(Gs
j+1 + cs

j+1s)qs
( j+1)n

K0(qs
jnrj)[qs

( j+1)n
I1(qs

( j+1)n
r j) −K1(qs

( j+1)n
r j)]

(Gs
j + cs

js)q
s
jnI1(qs

jnr j)[qs
( j+1)n

I0(qs
( j+1)n

r j) + K0(qs
( j+1)n

r j)]

−(Gs
j+1 + cs

j+1s)qs
( j+1)n

I0(qs
jnr j)[qs

( j+1)n
I1(qs

( j+1)n
r j) −K1(qs

( j+1)n
r j)]

( j=m−1,...,2,1). (19b)
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6. Solution of the Large-Diameter Pile

Substituting Equation (3) into Equation (4) and applying a Laplace transform produces

[(Vp)2+(vprs)
2
]
∂2U

p
1 (z,s)

∂z2 −s2Up(z,s)−
2πr1
ρpAp (Gs

1+cs
1s)

∞∑
n=1

qs
1n

{
[−Bs

1nI1(qs
1nr1)+Cs

1nK1(qs
1nr)] cos(hs

1nz)
}
=0 (20)

where Vp =
√

Ep/ρp, and Up(z, s) is the Laplace transform of up(z, t).
Setting s = iω(i =

√
−1), the general solution for Equation (20) is achieved as

Up′ = Dp
1 cos(

ω
η

z) + Dp
2 sin(

ω
η

z). (21)

Furthermore, the particular solution for Equation (20) is given by

Up∗ =
∞∑

n=1

Ms
n cos(hs

1nz) (22)

where Dp
1 , Dp

2 and Ms
n are undetermined coefficients; η =

√
(Vp)2 + (vprs)2 .

Substituting Equation (22) into Equation (20) with rearrangement yields

Ms
n =

2πr1qs
1n

ρpAp

(Gs
1 + cs

1s)[Bs
1nI1(qs

1nr1) −Cs
1nK1(qs

1nr1)]

[(Vp)2 + (vpr1s)
2
](hs

1n)
2
−ω2

. (23)

Therefore, the solution for Equation (21) is obtained as

Up = Dp
1 cos(

ω
η

z) + Dp
2 sin(

ω
η

z) +
∞∑

n=1

Ms
n cos(hs

1nz) . (24)

Combining Equations (9), (19a), (19b) adn (24) gives

Up = Dp
1 [cos(

ω
η

z) +
∞∑

n=1

γ′n cos(hs
1nz) ] + Dp

2 [sin(
ω
η

z) −
∞∑

n=1

γ′′n cos(hs
1nz) ] (25)

where the coefficients of γ′n and γ′′n are provided in Appendix A.
In terms of Equations (8a) and (8b), the longitudinal impedance at the head of the pile shaft can

be expressed by

Z(θ) =
P(s)

Up(z, s)
=

EpAp

H
[1− (vpr1θη)

2/(Vp)2]θ

Dp
1

Dp
2
(1 +

∞∑
n=1

γ′n) −
∞∑

n=1
γ′′n

=
EpAp

H
K′d (26)

where K′d = θ[1− (vpr1θη)
2/(Vp)2]/[

Dp
1

Dp
2
(1 +

∞∑
n=1

γ′n) −
∞∑

n=1
γ′′n ] is the dimensionless complex stiffness

and P(s) is the Laplace transform of p(t).
K′d can be rewritten as

K′d = Kr + iKi (27)

where Kr and Ki are the true stiffness and equivalent damping; R = kp

EpAp H, Ab = δp

EpAp H,

Dp
1

Dp
2

=

∞∑
n=1

γ
′′

n sin(h
s
1n)+(R+sAb)[sin(θ)−

∞∑
n=1

γ
′′

n cos(h
s
1n)]+

(
vpr1θη

Vp

)2[ ∞∑
n=1

γ
′′

n h
s
1n sin(h

s
1n)+θ cos(θ)

]
+θ cos(θ)

∞∑
n=1

γ′n sin(h
s
1n)−(R+sAb)[cos(θ)−

∞∑
n=1

γ′n cos(h
s
1n)]+

(
vpr1θη

Vp

)2[ ∞∑
n=1

γ′nh
s
1n sin(h

s
1n)+θ sin(θ)

]
+θ sin(θ)

.
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7. Results and Discussions

Numerical examples are provided to validate the obtained analytical solutions via comparisons
with previous solutions. Parametric analyses are also performed to discuss the longitudinal vibration
of a large-diameter floating pile embedded in surrounding soil with radial heterogeneity, considering
the 3D wave propagation effect. The number of the annular sub-layers n is taken as 20 to satisfy the
accuracy requirement in the following analyses, which is suggested in EI Naggar [20] and Cui et al. [38].
Furthermore, a quadratic variation of the shear modulus and viscous damping coefficient, i.e., a linear
variation of shear velocity, is assumed as follows:

ζs =
√

Gs
1/Gs

m+1 =
√

cs
1/cs

m+1 = Vs
1/Vs

m+1 (28)

where ζs denotes the coefficient of disturbance degree [21]. When ζs < 1, the soil is weakened due to
construction disturbance; when ζs > 1, the soil is strengthened; and when ζs = 1, the surrounding soil
is radially homogeneous without construction disturbance.

Unless otherwise specified, the following mechanical parameters are used:
r1 = b = 0.5m, ρp = 2500kg/m3, Vp = 4000m/s, H = 10m, kp = 1× 105kN/m3, δp = 1× 105kN · s/m2,
vp = 0.3, vs

j = 0.25, ρs
j = 2000kg/m3, Vs

m+1 = 100m/s, cs
m+1 = 1kN · s/m2, ζs = 1.4.

7.1. Verification of the Solution

With respect to the same parameters, the present solution for a pile head’s complex stiffness is
reduced to compare with the existing solution of Lü et al. [29] by setting ζs

→ 1 . Figure 3 shows that
the present solution for longitudinal impedance with different values of pile length H is in very good
agreement with that derived by Lü et al. [29]. Moreover, the material damping of the present solution
is viscous-type, which differs from the hysteretic-type damping used for the solution of Yang et al. [22].
For convenience, the effect of material damping is not considered in the following comparison. The
present solution is reduced to compare with the existing solution of Yang et al. [22] by setting cs

j → 0
(j=1, 2,..., m) and vp

→ 0 . It is illustrated in Figure 4 that the obtained solution with a different pile
length agrees well with the existing solution achieved by Yang et al. [22]. Hence, the accuracy of the
present solution can be validated with these independent comparisons.
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Figure 4. Comparison between the present solution ( cs
j → 0 and νp

→ 0 ) and the results of
Yang et al. [22]: (a) true stiffness; (b) equivalent damping.

7.2. Parametric Analyses

Due to the consideration of the lateral inertia effect of the pile shaft, the present solution from
the Rayleigh–Love rod model can easily be reduced to the one from the Euler–Bernoulli rod model
by setting vp

→ 0 . The effect of Poisson’s ratio on the longitudinal impedance at the pile head is
shown in Figure 5. It is clear that both the resonance frequency and amplitude of the pile head’s
longitudinal impedance decline with the increasing Poisson’s ratio in the high-frequency range, while
the effect of Poisson’s ratio on the longitudinal impedance can be neglected in the low-frequency range.
Furthermore, it illustrates the limitation of the Euler–Bernoulli rod model (vp

→ 0) to describe the
longitudinal vibration of a large-diameter pile, compared with the Rayleigh–Love model.
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stiffness; (b) equivalent damping.

With the aim to further illustrate the difference between the Rayleigh–Love rod and Euler–Bernoulli
models, two cases for Poisson’s ratio with vp = 0 and vp = 0.3 are used in the following analyses,
besides other parameters. Figure 6 depicts the effect of the pile length on the pile head’s longitudinal
impedance. It is clear that both the resonance frequency and amplitude of the longitudinal impedance
rise with the decrease of pile length in the high-frequency range and this tendency becomes more
significant with the rising frequency. In addition, the shorter the pile length, the greater the difference in
longitudinal impedance between the two cases with vp = 0 and vp = 0.3. This result demonstrates that
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the present solution derived from the Rayleigh–Love model is suitable for the longitudinal vibration of
a large-diameter pile, especially when the pile slenderness is low. Furthermore, it can be seen from
Figure 7 that the viscous coefficient of soil has an obvious influence on the longitudinal impedance
of the pile shaft within the high-frequency range. With the increase of the soil’s viscous damping
coefficient, both the oscillation amplitude and frequency of the longitudinal impedance decrease.
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Figure 7. The effect of the viscous damping coefficient on the longitudinal impedance of the pile shaft:
(a) true stiffness; (b) equivalent damping.

Figures 8 and 9 depict the effect of the degree and radius soil is weakened due to a construction
disturbance on the longitudinal impedance at the head of the pile shaft, respectively. It is clear that the
oscillation amplitude and resonance frequency rise with the increase of the degree to which the soil is
weakened, and the tendency becomes significant in the high-frequency range. In contrast, only the
oscillation amplitude of longitudinal impedance is augmented with the enlargement of the radius of
the weakened soil due to a construction disturbance, and the influence of the weakened soil’s radius
on the resonance frequency is negligible.
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Figure 10. The effect of the degree soil is strengthened due to a construction disturbance on the 
longitudinal impedance of pile shaft: (a) true stiffness; (b) equivalent damping. 
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Figure 9. The effect of the radius of weakened soil due to a construction disturbance on the longitudinal
impedance of the pile shaft: (a) true stiffness; (b) equivalent damping.

The influences of the degree and radius of strengthened soil on the longitudinal impedance of the
pile shaft are illustrated in Figures 10 and 11, respectively. It is observed that the oscillation amplitude
and frequency both decrease with the increase of the degree to which the soil is strengthened, which is
significant in the high-frequency range. Differently, only the oscillation amplitude of longitudinal
impedance becomes smaller with the increase of the strengthened soil’s radius due to a construction
disturbance, and the influence of the strengthened soil’s radius on the resonance frequency can be
practically ignored. In addition, the change in the weakened or strengthened soil’s radius leads to no
further extra effect on the longitudinal impedance when the weakened or strengthened soil’s radius
reaches a certain value, e.g., b = 0.5 r1 in this analysis.
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Figure 11. The effect of the radius of strengthened soil due to a construction disturbance on the
longitudinal impedance of a pile shaft: (a) true stiffness; (b) equivalent damping.

8. Conclusions

A new3D axisymmetric model was presented to describe the longitudinal vibration of
a large-diameter floating pile in viscoelastic surrounding soil with radial inhomogeneity, taking the
effects of three-dimensional wave propagation and lateral inertia of the pile shaft into account.
The corresponding analytical solution was deduced and validated via comparisons with existing
solutions. Parametric analyses were also conducted to examine the influences of Poisson’s ratio of the
pile shaft, pile length and viscous damping coefficient, as well as the degree and radius of disturbed
surrounding soil, on the longitudinal impedance of pile shaft. The relating results demonstrate that:

(1) Both the resonance frequency and amplitude of longitudinal impedance decrease with the
increasing Poisson’s ratio of the pile shaft in the high-frequency range, while the Poisson’s ratio
of the pile shaft has a negligible effect on the longitudinal impedance of the pile shaft in the
low-frequency range.

(2) The oscillation amplitude and resonance frequency of the longitudinal impedance increase with
the decrease of pile length in the high-frequency range and this tendency becomes more significant
as the frequency increases. In addition, the shorter the pile length, the greater the difference in
the longitudinal impedance.

(3) The viscous damping coefficient of the surrounding soil has an obvious influence on the
longitudinal impedance of the pile shaft within the high-frequency range. With the increase of
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the viscous damping coefficient of the soil, both the resonance frequency and amplitude of the
longitudinal impedance decrease.

(4) The degree of disturbed surrounding soil has a significant effect on the oscillation amplitude and
frequency of longitudinal impedance. In contrast, the change of the radius of disturbed soil has
an influence only on the oscillation amplitude, while the influence on the resonance frequency
is negligible.

(5) The presented analytical model and solution are suitable for the longitudinal vibration problem
of a large-diameter pile in viscoelastic surrounding soil with radial heterogeneity, especially when
the pile slenderness is low. Furthermore, the proposed solution can be easily degenerated to
describe the longitudinal vibration problem relating to a large-diameter floating pile in radially
homogenous soil or a pile with fixed-end supports.

The pile vibration problem investigated in this manuscript is mainly focused on wave propagation
within a pile–soil system where the excitation force intensity is low. The theoretical analysis will
overestimate both the stiffness and damping of piles due to the assumption of perfect bonding between
the pile and the soil when the excitation force intensity is high.
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Appendix A

The coefficients of γ′n and γ′′n can be written as

γ′n = γn[
1

ω/η− hs
1n

sin((ω/η− hs
1n)H) +

1
ω/η+ hs

1n
sin((ω/η+ hs

1n)H)] (A1)

γ′′n = γn[
1

ω/η+ hs
1n
(cos((ω/η+ hs

1n)H) − 1) +
1

ω/η− hs
1n
(cos((ω/η− hs

1n)H) − 1)] (A2)

where γn can be written as

γn = −
(1 + iG′1cθ)q

s
1nρ1v2

1

r1

(
(h

s
1n)

2
− θ2

)
φs

nLs
n

[K1(q
s
1nr1) − ps

1nI1(q
s
1nr1)] (A3)

where G′1c = cs
1/(Gs

1Tc), h
s
1n = Hhs

1n, qs
1n = Hqs

1n, θ = ωTc, Tc = H/η, r1 = r1/H, v1 = Vs
1/η,

ρ1 = ρs
1/ρp, φs

n and Ls
n can be written as

φs
n = −ps

1n[I0(qs
1nr1) −

2πr1qs
1n

ρpAp
(Gs

1+cs
1s)

(ηhs
1n)

2
−ω2

I1(qs
1nr1)] + [K0(qs

1nr1) +
2πr1qs

1n
ρpAp

(Gs
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1s)

(ηhs
1n)

2
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K1(qs
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Ls
n =

∫ H

0
cos2(hs

1nz)dz (A5)
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