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Featured Application: Ultrasound assisted extraction (UEA) is a methodology considered ecological
and low cost. The optimization of the UAE conditions to extract bioactive compounds, such as
alkaloids, is useful for future applications in the industry. Alkaloids are compounds of interest
to the pharmaceutical industry; a rich plant source of alkaloids is soursop by-products. It is
of great importance since they are an alternative for its exploitation and its use will reduce
environmental pollution.

Abstract: The main goal of this work was to measure the total alkaloid content (TALC) from pulp, peel,
seed, and columella of soursop fruit (Annona muricata L.) by ultrasound-assisted extraction (UAE) and
to obtain the best conditions of the UAE with the response surface methodology (RSM). We evaluated
the effect of amplitude (40%, 70%, and 100%), time (5, 10, and 15 min) and pulse-cycles (0.4, 0.7, and 1 s)
and compared the best UAE conditions of alkaloids with a conventional extraction (maceration).
The structural characterization of the raw material with the highest TALC was developed using
nuclear magnetic resonance (NMR) techniques [1H, 13C, heteronuclear single quantum correlation
(HSQC), heteronuclear multiple bond correlation (HMBC), and homonuclear correlation spectroscopy
(COSY)]. According to the RSM, the best conditions in the UAE for extracting alkaloids varied
depending on the type of plant tissue. It took 5 min with an amplitude of 70% and pulse-cycles of 1,
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0.4, and 1 s, respectively, to extract the highest TALC in peel, seed, and columella while the optimal
conditions for extracting the largest amount of alkaloids from the pulp were obtained at 5 min in
UAE with pulse-cycles of 0.55 s and 100% amplitude. The TALC was highest in the peel (7.48 mg/g),
which was followed by the seed (2.31 mg/g), the pulp (1.20 mg/g), and the columella (0.79 mg/g)
and was positively correlated (R2 = 0.98–0.88) with the predicted values. In addition, the extraction
alkaloids from the peel, pulp, seed, and columella using the UAE was 56.31, 5.45, 3.06, and 2.96 times
higher, respectively, than the extraction by maceration. The alkaloids identified in the peel have not
been reported and were nornuciferin, assimilobin, anonaine, and isolaureline. This study showed
that the soursop fruit peel can be a source of alkaloids and that UAE has an important potential for
extracting these compounds.

Keywords: Annona muricata; alkaloids; pulp; by-products; ultrasound-assisted extraction; 1D and 2D
NMR experiments

1. Introduction

Soursop (Annona muricata L. or A. muricata) is a good source of bioactive compounds such as
polyphenols, acetogenins, and alkaloids [1–4]. Polyphenols and acetogenins are widely investigated in
the A. muricata plant. However, alkaloids (ALKs) from A. muricata by-products are little studied.

The biological activity of ALKs has been studied since the 19th century, and they have been used
in medicine as anesthetics and analgesics. However, some plants are known to produce toxic ALKs.
Therefore, it is necessary to determine the content and type of ALKs present in the herbs or plants to
find their potential use in pharmacology [5]. Isoquinoline ALKs (assimilobin, nornuciferin, annonain,
reticulin, and others) have been extracted from A. muricata leaves, roots, seeds, and pulp and these
compounds have been shown to have analgesic, antidepressant, cytotoxic, antitumor, antineoplastic,
antiplatelet, and dopaminergic activities [2,6–9]. These ALKs are involved in major behavioral disorders
such as schizophrenia, Huntington’s disease, attention deficit hyperactivity disorder, and Parkinson’s
disease. Precisely, alkaloids with (R)-apomorphine groups, aporfin semi-synthesized from morphine,
have been used in the clinic for treating Parkinson’s disease [10–12]. Likewise, it has been demonstrated
that these alkaloids have an affinity for 5-HT1A receptors in vitro and participate in the biosynthesis
of dopamine. It has been proposed that Annone-derived alkaloids could induce antidepressant type
effects and cytotoxic activity [6,7].

However, there are no reports on the content and type of ALKs present in the other parts of
A. muricata that are considered as by-products such as the peel or columella of the soursop fruit.

Ultrasound-assisted extraction (UAE) is a technology that has been widely used in recent
years to extract bioactive compounds from different plants. The mechanism of action of the UAE
is to produce cavitation that causes structural changes in the plant material by facilitating
the extraction of compounds [13,14]. Ultrasound offers advantages that can improve extraction,
reduce compound degradation, and processing time compared to heat extraction methods [15,16].
Ultrasonic cavitation allows for high diffusion of extraction solvents, higher mass transfer,
and greater plant cell decomposition more than maceration, heating, and the soxhlet method
(liquid-solid extraction) [13,14,17]. However, the utility or potential of the UAE depends on factors such
as: the type of metabolite, the raw material, or the food matrix. Therefore, research on optimization of
metabolite extraction by UAE should be established for each plant product [18,19].

The UAE has been applied for the extraction of ALKs from different plants. Dary et al. [20]
used the UAE to extract three bioactive ALKs from Stephania cambodica and, with the response
surface methodology (RSM), found the optimal extraction conditions (liquid-solid ratio 26.6:1 mL/g,
ethanol 52%, 25 kHz, time 9 min, and 150 W). The authors concluded that the UAE is a practical
extraction procedure for obtaining alkaloid-rich extracts for pharmacological research. Meanwhile,
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Wang et al. [21] applied UAE and RSM to extract ALKs from Sophora alopecuroides seeds, and found
that UAE improved yield by 32% to 136% compared to the enzymatic extraction method. On the
other hand, Yohannes et al. [22] found that, when they used UAE (extraction time 30 min, 90 W) on
Radix physochlainae, the extraction efficiency of ALKs was 121.3% compared to extraction by heating.

RSM is a tool to optimize the extraction processes of biological compounds because it considers the
operating variables and their simultaneous interactions during the extraction of bioactive compounds
from plant tissues [23]. Recently, Aguilar-Hernández [6,7] found that UAE was effective in extracting
polyphenols and acetogenins from soursop pulp and by-products, and concluded that, depending on
the type of bioactive compound extracted and on each part of the fruit, UAE extraction conditions
change because factors such as the physicochemical stability of the compounds and the extraction matrix
are involved. Therefore, the aim of this study was to extract total ALKs using ultrasound-assisted
extraction (UAE) from the pulp, peel, seed, and columella of A. muricata to optimize extraction
conditions with RSM and to characterize by using NMR techniques. The type of ALKs present in the
raw material have the highest content of these compounds.

2. Materials and Methods

2.1. Plant Material

Soursop fruits (A. muricata) were harvested at consumption maturity (15–19 ◦Brix) in Compostela,
Nayarit, Mexico. They were manually peeled to obtain the pulp and the by-products (peel, seeds,
and columella). The raw materials were freeze-dried at −50 ◦C under pressure of 0.12 mbar
(Labconco 77522020, Kansas City, MO, USA), then ground (Nutribullet NB-101B, Los Angeles,
CA, USA), and sieved (500 µm, No. 35, Fisher Scientific, Hampton, NH, USA).

Quinine standard, acetic acid, Dragendorff’s reagent, and methanol were purchased from
Sigma-Aldrich (St. Louis, MO, USA).

2.2. Ultrasound-Assisted Extraction (UAE)

A Box-Behnken design was used for UAE. The individual effects and interactions of sonication
amplitude (XSA, %) at 40%, 70%, and 100%, extraction time (XET, 5, 10, and 15 min), and pulse cycles
(XPC, 0.4, 0.7, and 1 s) on total alkaloid content were evaluated in the experiment. To reduce the effect
of unexplained variability on response variables, a randomized experimental order was used.

ALKs extraction from the by-products and pulp was performed by a UP400S ultrasonic system at
24 kHz frequency and 400 Watts (Hielscher Ultrasonics, Teltow, Germany). The ultrasonic probe (H7 Tip
7, Hielscher, Teltow, Germany) has a maximum amplitude of 100% or 175 µm and acoustic power
density of 300 W/cm2. This device was immersed in the extractant solution (2 cm). The freeze-dried
samples (2 g) were placed in an extraction tube with methanol (15 mL), and treated under UAE
controlled conditions (according to Box-Behnken design) at 25 ± 2 ◦C. A water recirculation bath
(Thermo Scientific 2870, Waltham, MA, USA) was used to maintain the temperature. The samples were
then centrifuged at 8000× g, 4 ◦C, and 10 min (Hermle Z32HK, Wehingen, Germany). The supernatants
were recovered for analysis.

2.3. Total Alkaloid Content (TALC)

The TALC was determined according to the procedure described by Ontiveros-Rodriguez et al. [24]
with modifications. The methanolic extracts obtained were diluted with 10 mL of methanol, and 5 mL
of 5% HCl were added. The samples were shaken moderately for 4 h at room temperature (25 ± 5 ◦C)
and then left to rest in refrigeration (4 ◦C) overnight. The extracts were filtered, placed on ice, and their
pH was adjusted to 10.0 with 15% NaOH. Lastly, CH2Cl2 in 1:2 ratio (extract: CH2Cl2) was added to
the samples, and the organic layer was recovered. This step was performed two more times to bring
together the organic layers obtained. The extracts (100 µL) were mixed with the Dragendorff’s reagent
(1000 µL) and the absorbance was measured at 530 nm in a spectrophotometer (Jenway 6705, Dunmow,
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UK). The TALC was calculated with a standard quinine curve, and the results were expressed as
equivalent milligrams of quinine per gram of dry weight (mg/g DW).

2.4. Response Surface Methodology Analysis

The RSM was applied to the TALC data to obtain the best extraction conditions for each raw material.
To calculate the predicted response, a second-order polynomial equation was used (Equation (1)).

Y = β0 +
E∑

i=A

βi Xi +
E∑

i=A

E∑
j=A,i

βij Xi + E (1)

where Y is the predicted response (TALC), β0 is a constant, βi are the main effect coefficient for
each variable, Xi is the coded or uncoded values for the factors (XET, XPC, and XSA), and βij are
the coefficients of the interaction effect. To determine the main effects, interactions and suitability of
the model, an analysis of variance (ANOVA) was performed and the coefficients of determination
(R-squared and R-adjusted) were quantified; the test of non-adjustment was also used with a significance
level represented by 1%.

2.5. Model Reliability of Ultrasound-Assisted Extraction (UAE)

To verify model accuracy, the optimal UAE conditions obtained from RSM analysis were used to
extract TALC from pulp and by-products. These latter results were compared with the TALC obtained
by maceration. The effectiveness of UAE (%) was calculated.

2.5.1. Extraction by Maceration (ME) of Alkaloids

Extraction by maceration was carried out with 2 g of freeze-dried sample in 15 mL of methanol
at room temperature for one week [24]. After maceration, the methanolic extracts were treated and
quantified, as described in Section 2.3.

2.5.2. Effectiveness of UAE in the Alkaloid Extraction

The effectiveness of alkaloid extraction was calculated as the ratio between TALC obtained by
UAE and TALC obtained by maceration (Equation (2)).

Effectiveness (n− times) =
TALC by UAE

TALC by maceration
(2)

2.6. Structural Identification of Alkaloids

The raw material with the highest ALKs content derived from results was selected in the first
stage. The dried powder (700 g) of the selected raw material was added to methanol, and the ALKs
were extracted under the optimal UAE conditions. The crude extract was treated as in Section 2.3 to
obtain an organic crude extract, and concentrated in a rotary evaporator to produce 2.5 g of dried
alkaloidal extract. The alkaloidal extract was eluted on a chromatographic column (4.46 × 60 cm,
80 g SiO2 60 mesh) with CH2Cl2/AcOEt/EtOH (1:2:0.2 v/v). A total of 115 fractions were obtained.
Each fraction was performed to thin-layer chromatography (Analytical Chromatography, HX312859,
Darmstadt, Germany). The ALKs were visualized with Dragendorff´s reagent [24].

The alkaloidal positive fractions were analyzed by 1H and 13C nuclear magnetic resonance
(NMR) spectroscopy in 1D and 2D. Pre-purified ALKs were extensively analyzed by 1H and 13C NMR
spectroscopy in 1D and 2D. The samples (10 mg) were dissolved in 0.5 mL of deuterated chloroform
(CDCl3), and was then poured into a magnetic resonance tube (5 mm diameter). The 1H and 13C
NMR and homo and heteronuclear in 1D and 2D spectra were measured in an NMR spectrometer
(Varian VNMR System, Walnut Creek, CA, USA) at 500 MHz. The chemical shifts were measured in
ppm or δ.



Appl. Sci. 2020, 10, 4869 5 of 15

2.7. Statistical Analysis

Data were expressed as the mean ± standard deviation (n = 3). The RSM was used as well as an
analysis of variance (ANOVA) (p < 0.05) with the STATISTICA v.10 software (Statsoft, Tulsa, OK, USA).
To analyze the significant difference between means, the Fisher test was used (α = 0.05).

3. Results and Discussions

3.1. Ultrasound-Assisted Extraction (UAE) of Total Alkaloids Content (TALC) in Soursop Samples

The experimental design and results obtained at the TALC are shown in Table 1. The UAE
treatments and raw material had significant effects as the TALC of the pulp and by-products (peel, seeds,
and columella) depended on the experimental conditions in the UAE (p < 0.05). The highest TALC
(7.48, 2.31, and 0.60 mg/g, respectively) was found in the peel, seed, and columella under the same
conditions of time (5 min) and sonication amplitude (70%) with 1-s pulse-cycle for peel and columella,
and 0.4-s pulse-cycle for seeds. Likewise, the highest TALC in the pulp (1.16 mg/g) was found using
5 min of extraction, 0.7 s of pulse-cycles, and 100% amplitude. These differences in TALC could be
attributed to different factors. First, the effects of UAE conditions and structural composition of raw
materials. The extraction of bioactive compounds by ultrasound is achieved by the vibration of the
ultrasonic waves, which cause the acceleration of the particles and allows the solute to pass quickly to
the solvent. This increases its diffusivity [14]. Some authors argue that UAE produces mechanical effects
that modify the structure of the cell wall and it becomes more porous when facilitating extraction [25].

Table 1. Effect of the variables of the process of extraction assisted with ultrasound on the content of
total alkaloids from A. muricata peel, seed, columella, and pulp.

Treatment
Ultrasound Conditions Total Alkaloids (mg/g Dry Weight)

1XET
2XSA

3XPC Peel Seed Columella Pulp

1 5 40 0.7 3.03 ± 0.02 jA 0.93 ± 0.01 kB 0.51 ± 0.01 bC 0.12 ± 0.01 kD

2 15 40 0.7 2.64 ± 0.01 lA 0.91 ± 0.01 kB 0.48 ± 0.02 dC 0.46 ± 0.01 hD

3 5 100 0.7 3.26 ± 0.03 hA 1.86 ± 0.01 cB 0.15 ± 0.02 iD 1.16 ± 0.02 aC

4 15 100 0.7 4.74 ± 0.01 cA 0.81 ± 0.02 mB 0.41 ± 0.01 fC 0.20 ± 0.01 jD

5 5 70 0.4 3.11 ± 0.02 iA 2.31 ± 0.02 aB 0.40 ± 0.02 fD 0.95 ± 0.01 bC

6 15 70 0.4 2.80 ± 0.01 kA 1.96 ± 0.01 bB 0.22 ± 0.01 gD 0.76 ± 0.01 eC

7 5 70 1 7.48 ± 0.01 aA 1.18 ± 0.01 fB 0.60 ± 0.01 aC 0.43 ± 0.01 iD

8 15 70 1 7.11 ± 0.01 bA 1.18 ± 0.01 fgB 0.50 ± 0.01 bD 0.65 ± 0.01 fC

9 10 40 0.4 3.57 ± 0.01 fA 1.17 ± 0.01 gB 0.22 ± 0.01 ghD 0.75 ± 0.01 eC

10 10 100 0.4 4.06 ± 0.01 dA 1.01 ± 0.01 iB 0.04 ± 0.02 jD 0.76 ± 0.01 eC

11 10 40 1 3.88 ± 0.01 eA 1.52 ± 0.02 dB 0.05 ± 0.02 jD 0.88 ± 0.01 cC

12 10 100 1 3.56 ± 0.01 fA 1.00 ± 0.02 jB 0.41 ± 0.03 fD 0.65 ± 0.01 fC

13 10 70 0.7 2.60 ± 0.01 mA 1.87 ± 0.01 cB 0.46 ± 0.01 eD 0.82 ± 0.01 dC

14 10 70 0.7 3.11 ± 0.01 iA 1.06 ± 0.02 hB 0.15 ± 0.01 iD 0.63 ± 0.01 gC

15 10 70 0.7 3.51 ± 0.01 gA 1.36 ± 0.01 eB 0.21 ± 0.01 hD 0.81 ± 0.02 dC

1XET: extraction time (min). 2XSA: sonication amplitude (%). 3XPC: pulses-cycles. Data are expressed as the
mean ± SD (n = 3). Same capital letters indicate no significant statistical differences between the raw materials
(p < 0.05) and same lowercase letters indicate no significant statistical differences between treatments (p < 0.05).

The differences in the conditions of UAE for extracting these bioactive compounds depended
on the physical-mechanical phenomenon that each UAE combination generates in each raw material
influencing their structural composition. The longer treatment time, the highest ultrasonic amplitude or
density of acoustic energy, and a constant acoustic irradiation cause a high cavitation, which produces
to greater cellular lysis [14]. However, it has also been shown that extreme ultrasound conditions can
decrease the content of bioactive compounds by the phenomenon called sonolysis, which causes the
formation of hydroxyl radicals that cause oxidation [26]. This may indicate that the TALC extracted
from each A. muricata raw material depends on the greater or lesser susceptibility to cell disruption
and the stability of the ALK at the higher UAE extraction conditions of 100% amplitude, 1-s pulse cycle
(permanent acoustic irradiation), and 15 min. Second, the difference in the ALKs content depended
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on the synthesis of them in each raw material. Three important functions of alkaloids in plants are
known such as defensive route as toxic compounds for animals and humans, and hormonal route
because they function as phytohormones in some plants and an allelopathic route, which influence
the growth of other organisms [8,27]. Therefore, the highest TALC in peel and seed was likely due
to these organs increasing the biosynthesis of ALKs as a defense system because the function of the
peel is to protect the fruit and the seed to the embryo [28]. It is important to point out that some
research studies demonstrated that the UAE could be the most efficient method for extracting ALKs in
different plants [20,29,30].

Teng and Choi [31] reported that the extraction efficiency of ALKs from Rhizoma coptidis
was dependent on time, temperature, and solvent concentration. Dary et al. [20] showed that,
when ultrasound extraction is applied in Stephania cambodica, the short times and low extraction
temperatures have a significant effect on TALC because the UAE prevents the degradation of
thermolabile compounds and the possible co-extraction of components undesirable in plant material.
Similarly, Hossain et al. [29] found that, when applying UAE to obtain ALKs in potato peel,
the extraction efficiency is mainly influenced by the amplitude. In this investigation, optimal UAE
conditions to extract ALKs varied according to the matrix of each raw material, likely due to differences
in chemical composition of the cell matrix, and types of ALKs present in them.

3.2. Response Surface Methodology (RSM) Analysis

The UAE conditions on TALC from raw materials are shown in Figure 1A (peel), Figure 1B (seed),
Figure 1C (columella), and Figure 1D (pulp). There is a significant interaction effect between the factors
evaluated (p < 0.05). The elliptical shape of the plots indicates the significant effect of interactions on
the TALC [17]. All the conditions of the UAE caused an ALK extraction in all raw materials. The effect
(negative or positive) of the factors on the extraction of ALKs depended on each matrix, and the
significant effect of the independent variables (and their interactions) on each raw material was as
follows: for peel, XPC > XET > XAS, seed XET > XAS > XPC, columella, XET> XPC > XAS, and pulp,
XET > XPC > XSA.
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Figure 1. Response surface plots and pareto charts of total alkaloid content from A. muricata peel
(A), seed (B), columella (C), and pulp (D) after the ultrasound-assisted extraction. DW = dry weight.
XSA = sonication amplitude (%). XET = extraction time (min). XPC = pulse cycle.
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On the other hand, RSM was performed using multiple regression techniques. Second order
polynomial equations (Table 2) were obtained to calculate the predicted TALC for pulp, peel columella,
and seeds, which describe the effect of the test factors as well as the effect of all interactions on the
response variable. Regression analysis showed that the TALC experimental data from peel (R2 = 0.98),
seed (R2 = 0.88), columella (R2 = 0.88), and pulp (R2 = 0.97) have a reasonable correlation and adequate
adjustment with the model (Lack of fit, p > 0.05) (Table 2). The lack of fit ensures the fitness of the
model, and this demonstrates the approximation to a real system.

Table 2. Predicted mathematical model for the extraction of total alkaloids (mg/g DW) from the peel,
seed, columella, and pulp from Annona muricata after the UAE.

Raw Material * Polynomial Equation R2

Peel
35.3989 − 0.6829XSA + 0.0042 XSA

2
− 69.6346XPC + 27.3493XPC

2
− 0.4419XET +

0.0341XET
2 + 1.4082 XSA*XPC − 0.20 XSA*XPC

2
− 0.0082 XSA

2*XPC −

0.0107 XSA*XET + 0.001 XSA
2*XET − 0.0122XPC*XET

0.98

Seeds
2.4056 +0.0607 XSA − 0.0005XPC

2 + 0.7420XPC + 1.7927XPC
2
− 0.497XET +

0.0036XET
2
− 0.1073XSA*XPC − 0.0443 XSA*XPC

2 + 0.00110 XSA
2*XPC +

0.0055 XSA*XET − 0.00 XSA
2*XET − 0.23XPC*XET

0.88

Columella
−0.66319 + 0.03356 XSA − 0.00018 XSA

2 + 3.93642XPC − 4.2610XPC
2
− 0.06707XET

+ 0.00727XTE
2
− 0.02885 XSA*XPC + 0.05652 XSA*XPC

2
− 0.00025 XSA

2*XPC −

0.00339 XSA*XET + 0.00003 XSA
2*XET + 0.01257XPC*XET

0.88

Pulp
1.5584 + 0.01XSA − 0.00 XSA

2
− 8.554XPC + 7.682XPC

2 + 0.06XET − 0.0067XET
2 +

0.0386 XSA*XPC − 0.0923 XSA*XPC
2 + 0.001 XSA

2*XPC + 0.003 XSA*XET −

0.00 XSA
2*XET + 0.0688XPC*XET

0.97

* XSA = Sonication amplitude (%). XPC = Pulses-cycles (s). XTE = Extraction time (min). R2 = Regression coefficient.

Similar results were shown by Dary et al. [20] in the optimization of UAE of ALKs from Stephania
cambodica. The extraction of ALKs from peel, seed, columella, and pulp can be calculated with predicted
mathematical models (Table 2). However, some coefficients (Table 3) were not significant (p > 0.05) for
the model. ALKs from peel, seed, columella, and pulp can be calculated with predicted mathematical
models (Table 2).

Table 3. Regression coefficients of the predicted quadratic polynomial models with the conditions
of ultrasound-assisted extraction on the total alkaloid content from A. muricata peel, seed, columella,
and pulp.

Fuente

Regression Coefficients

CAT β-Coefficient

Peel Seeds Columella Pulp

Media/interception 35.3989 2.4056 −0.66319 1.5584
XSA −0.6829 * 0.0607 ** 0.03356 * 0.0111 **
XSA

2 0.0042 * −0.0005 * −0.00018 ** −0.0002 *
XPC −69.6346 * 0.7420 ** 3.93642 * −8.5540 *
XPC

2 27.3493 * 1.7927 ** −4.2610 * 7.6820 *
XET −0.4419 * −0.497 * −0.06707 * 0.0591 *
XET

2 0.0341 * 0.0036 ** 0.00727 * −0.0067 *
XSA*XPC 1.4082 * −0.1073 ** −0.02885 ** 0.0386 *
XSA*XPC

2 −0.20 * −0.0443 ** 0.05652 ** −0.0923 *
XSA

2*XPC −0.0082 * 0.0011 * −0.00025 * 0.0006 *
XSA*XET −0.0107 * 0.0055 * −0.00339 * 0.003 *
XSA

2*XET 0.0001 * −0.00 * 0.00003 * −0.00 *
XPC*XET −0.0122 ** 0.2292 * 0.01257 ** 0.069 *
R-square 0.98 0.88 0.88 0.97

R-adjusted 0.98 0.84 0.84 0.96

XET = Extraction Time. XPC = Pulses-cycles. XSA = Sonication amplitude. * Significant (p < 0.05). ** Non-significant (p > 0.05).
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3.3. Model Reliability Assessment of Ultrasound-Assisted Extraction (UAE)

The optimal UAE conditions for the extraction of alkaloids from the peel, seed, columella, and pulp
are shown in Table 4. Treatments were carried out using the best conditions for each raw material,
as suggested by Aydar et al. [19] to modify the reliability of the model. The experimental data of TALC
(Table 1) for all raw materials are consistent with the predicted data (Table 4).

Table 4. Optimal conditions of ultrasound-assisted extraction in total alkaloids from A. muricata peel,
seed, columella, and pulp.

Parameters Peel Seeds Columella Pulp

Extraction time (min) 5 5 5 5
Pulses-cycles (s) 1 0.4 1 0.55

Sonication amplitude (%) 70 70 70 100
Optimal response (mg/g DW) 7.48 2.31 0.74 1.20
−95% Confidence limit 7.24 2.11 0.63 1.14
+95% Confidence limit 7.71 2.52 0.85 1.26

Confidence interval, the difference between upper and lower limits. −95% confidence limit, lower limit.
+95% confidence limit, upper limit. DW = dry weight.

Thus, the use of UAE is useful to obtain an efficient extraction of alkaloids from A. muricata.
RSM tools have been used to optimize the extraction of ALKs using UAE in tubers of the
Stephania cambodica plant [20] and Sophora alopecuroides [21].

In all A. muricata raw materials, 5 min of UAE was sufficient to enhance TALC. However,
the intensity of the ultrasound (70% amplitude) was the same for peel and columella with a 1-s
pulse-cycle and seed with a 0.4-s pulse-cycle while 100% amplitude was necessary for the pulp with a
0.5-s pulse-cycle. According to Hielscher’s ultrasound technology and the characteristics of ultrasound
equipment, a 1-s pulse-cycle means a continuous acoustic irradiation with a 0.7-s pulse-cycle is 0.7 s of
acoustic irradiation and 0.3 s is kept in pause and the 0.4-s pulse-cycle are 0.4 s of acoustic irradiation
and 0.6 s in pause. Therefore, low cavitation was necessary to extract ALKs from the pulp or seeds
likely because of the low content found.

TALC was significantly higher (p < 0.05) when ultrasound extraction was used than the
alkaloid content obtained by maceration extraction (Table 5). The effectiveness of UAE was 56.3,
30.6, and 29.6 times higher for the peel, pulp, seed, and columella, respectively, when compared to
maceration. Vinatoru et al. [32] reported an increase in the percentage (77%) of alkaloid extraction
from ipecacuana root (Cephaelis ipecacuanha) and Jaborandi leaf (Pilocarpus microphyllus) when the
extracts were obtained using UAE compared to the extraction using Soxhlet (22%). Additionally,
Wang et al. [21] reported that alkaloid extraction from Sophora alopecuroides seeds produced the highest
extraction yield (4.6% and 38.3%) when compared to extraction using reflux heating and enzymatic
extraction, respectively.

3.4. Structural Identification of Alkaloids

Analysis of Nuclear Magnetic Resonance (NMR) Spectra Obtained from the Selective Extract of
Alkaloids from the Peel of the Soursop Fruit

The peel from soursop was selected to obtain alkaloidal extract due to the highest content of
them. The separation of the above extract by column chromatography gave a total of 180 fractions
from which fractions 105 to 150 showed an alkaloid positive test when visualized with Dragendorff’s
reagent. It was possible to perform the structural identification of these compounds without further
purification, using mainly proton and carbon-13 nuclear magnetic resonance (1H and 13C NMR).
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Table 5. Total alkaloid content and yield in peel, seed, columella, and pulp of Annona muricata using the optimal conditions of ultrasonic-assisted extraction and
conventional extraction.

Parameter/Method
UAE CE UAE CE UAE CE UAE CE

1 Peel 2 Seeds 3 Columella 4 Pulp

Total alkaloid content (mg/g DW) 7.32 ± 0.02 a 0.13 ± 0.01 c 2.02 ± 0.01 d 0.66 ± 0.00 d 0.83 ± 0.01 b 0.28 ± 0.01 c 1.09 ± 0.01 d 0.20 ± 0.00 d

Effectiveness UAE (n-times) 56.31 3.06 2.96 5.45

All values are the means± standard deviation of three determinations. Different letters in each row indicate significant statistical difference between treatments (p < 0.05). CE = Conventional
extraction. Ultrasound-assisted extraction (UAE) experimental conditions. (1) XET = 5 min, XPC = 1 s, XSA = 70%. (2) XET = 5 min, XPC = 0.4 s, XSA = 70%; (3) XET = 15 min, XPC = 1 s,
XSA = 100%. (4) XET = 5 min, XPC = 0.55 s, XSA = 100%.
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Figure 2 shows the 1H NMR spectrum (bottom) of this set of fractions (F105–F150), which highlights
the residual signal of the CH2O group of ethanol used in the washing process of glass material during
the analysis as well as the CHCl3 signal normally present as a reference signal in deuterated chloroform
(CDCl3) used as solvent for NMR analysis. The rest of the signals belong to aromatic protons,
methoxy groups (OMe), and protons attached to sp3 carbons (signals appearing between 2.50 and
4.30 ppm) (Figure 2). In the same figure is shown an expansion between 5.90 and 8.45 ppm, where the
chemical shifts, integral sections (area under the curve), and multiplicity for the signals of aromatic
and dioxolane protons can be appreciated in greater detail. The assignment of the 1H NMR spectrum
was supported by establishing correlations of vicinal (3J) and geminal (2J) protons in the homonuclear
correlation spectrum (COSY) (Figure 2, top) from which adjacent scalar-coupled protons could be
identified. For instance, correlations between protons H-8 and H-9 of aporphines 3 and 4 was established
through their respective cross-peaks correlations, as shown in Figure 2 (top). Following a similar
analysis for the rest of the protons, it was possible to recognize the signals of four major compounds with
the core structure of aporphine alkaloids: nornuciferine 1, asimilobine 2, anonaine 3, and isolaureline 4
(Figure 3).Appl. Sci. 2020, 10, x 10 of 15 
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Figure 2. 1H nuclear magnetic resonance spectrum (bottom) and homonuclear correlation spectroscopy
(COSY) (top) spectrum of the alkaloid-enriched F105-150 fractions obtained from the chromatography of
the selective extract of alkaloids from A. muricata peel. Cross-correlation contour peaks shown in the COSY
experiment (top) allowed to establish vicinal (3J) and geminal (2J) 1H- 1H connectivity, which concludes
that the alkaloid-enriched fraction mainly comprises two pair of aporphine alkaloids (A,B).
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The most significant signals showing the presence of these four major alkaloids are described
as follows. Between 7.95 to 8.45 ppm can be observed. The signals belong to proton H-8 of these
derivatives. Similarly, the signals between 7.20 and 7.35 ppm of the aromatic protons H-9, H-10,
and H-11 are grouped, while, in the region of 6.30 to 6.80 ppm, the singlet signals of proton H-3 are
observed. The presence of protons for the CH2 group of the dioxolane ring, assigned as H-12a and
H-12b, are also very noticeable between 5.90 and 6.15 ppm. In turn, the singlet signals of methoxy
groups (OCH3) appear at a higher field between 3.50 and 3.90 ppm. In the same region, the H-6a signal
usually appears, which, in this case, is hidden by the rest of the signals. The protons of the piperidine
ring (H-4a,b, H-5a,b, and H-6a) appear as complex multiplicity signals in the region between 2.60 and
3.60 ppm. Lastly, in several aporphine alkaloids, there is sometimes a CH3 group directly attached to
nitrogen, which appears as a simple signal between 2.30 and 2.60 pm region in which one of these
groups is observed (2.54 ppm).

The upper trace of the 1H NMR spectrum (bottom) shows the signals for aromatic protons
corresponding to nornuciferine 1, assimilobine 2, and anonaine 3 (H-3, H-8, H-9, H-10, and H-11) and
isolaureline 4 (H-3, H-8, H-9, and H-11), as well as the protons for dioxolane ring (H-12a and H-12b)
of anonaine 3 and isolaureline 4. Bold numbers identify the signals corresponding to each alkaloid
according to its identification number.

It can be observed that the four double signals (due to scalar coupling with H-9, J = 8.7 Hz)
belonging to H-8 provided clear evidence that four major alkaloids were present in this mixture.
The integral values under each double signal represent the relative ratio between them, which gives
100:44:52:44 from left to right.

Complementarily, the four double signals (J = 1.4 Hz) shown between 5.90 and 6.15 ppm are
typical of geminal protons (H-12a, H-12b) of the dioxolane rings (Figure 2, top, dioxolane derivatives
A). A pair of these double signals belong to one alkaloid and the remaining pair belong to another one.
Judging by their integral values, both at an averaged ratio of 55:45, it can be deduced that belonging to
the same alkaloid gives the double signals appearing in 8.08 (integral 0.53) and 8.01 ppm (integral 0.44)
of H-8, respectively. Therefore, it can be concluded that the signals appearing in 8.08, 6.10, and 5.95 ppm
belong to protons H-8, H-12a, and H-12b, respectively, of an alkaloid with dioxolane ring (Figure 2, top,
A structures) while the signals appearing in 8.01, 6.07, and 5.93 ppm belong to H-8, H-12a, and H-12b,
respectively, of the second alkaloid with dioxolane ring. According to this analysis, it can be deduced
that the double signals that appear in 8.39 and 8.28 ppm belong to H-8 of two aporphine derivatives
without a dioxolane ring (Figure 2, top, B structures).

It can also be observed in Figure 4 where the 13C NMR spectrum (bottom) shows the set of signals
for aromatic carbons (δ 105–160), acetalic carbons of the dioxolane ring (δ 100.7–100.8), C-6a and OCH3

groups (δ 53–65), and in a higher field (δ 28–47) N-CH3, C-5, and C-4 carbons. The heteronuclear single
quantum correlation (HSQC) experiment allowed to stablish de one-bond (1J) heteronuclear correlation
between protons attached to their respective carbons (Figure 3, top). Both experiments complement
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the spectroscopic evidence that the alkaloid-enriched fractions contain the presence of the following
four compounds: nornuciferine 1, asimilobine 2, anonaine 3, and isolaureline 4. As mentioned above,
such compounds possess the core structure of tetracyclic alkaloids named aporphine, which are
biogenetically referred to as isoquinoline derivatives.
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Figure 4. Heteronuclear single quantum correlation (HSQC, top) and 13C nuclear magnetic resonance
(NMR) spectrum (bottom) of the alkaloid-enriched F105-150 fractions obtained from the chromatography
of the selective extract of alkaloids from A. muricata peel. HSQC experiment shows one-bond correlations
for all protonated carbons and help discriminate all non-protonated carbons. 13C NMR spectra (bottom)
shows the range of chemical shifts in which the different types of carbons belonging to alkaloids
nornuciferine 1, assimilobine 2, anonaine 3, and isolaureline 4 appear. Bold numbers identify the signals
corresponding to each alkaloid according to its identification number.
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Once the typical NMR signals of aporphine alkaloids were recognized, a bibliographic review
was made on alkaloids present in the fruit of A. muricata in order to compare the information of our
spectra with those described in the literature. With these considerations in mind, we proceeded to
review the NMR data described for aporphine alkaloids isolated from the A. muricata fruit, or from
other parts of this plant, including other species. Thus, Hasrat et al. [6,7] described the isolation of
alkaloids nornuciferine 1, asimilobine 2, and anonaine 3 from A. muricata fruits, along with their
respective 1H and 13C NMR data. The former (1H NMR data) coincided faithfully with those observed
in Figure 2. Although Hasrat et al. [6,7] does not describe the structure of isolaureline 4, it was possible
to determine that this derivative contains an OCH3 group attached at C-10 since the chemical shifts
of H-8 and H-9 are shifted to higher field due to the donor effect of the OCH3 group. In addition,
multiplicity of H-9 (dd, J = 8.5, 1.9 Hz) corresponded to an ortho coupling with H-8 and meta with H-11.
The rest of the functional groups were very similar to those present in annonaine 3. It was also found
that isolaureline 4 was already described by Tomita and Kitamura [33] as a product of synthesis. Years
later, this compound was isolated for the first time from a plant by Ziyaev et al. [34]. Although 1H and
13C NMR data of isolaureline 4 are not fully described to date, the NMR data collected in this paper are
sufficient to propose that this alkaloid is also present in this mixture from A. muricata peel, since no
such alkaloids have been reported in this raw material. For now, the present results motivate to apply
the present protocol to extract, purify, quantify, and determine the structure and relative ratio of the
minor and major alkaloids present in other organs of Annona species.

4. Conclusions

This study demonstrates the high efficiency of the ultrasound for extraction of alkaloids. However,
the type and complexity of the plant material are important to obtain the optimal extraction conditions
(amplitude and pulse cycle of ultrasound, and the resulting 5 min) of UAE. In addition, NMR-based
spectroscopic experiments strongly support the presence of four main alkaloids, which were structurally
identified as nornuciferine 1, assimilobine 2, anonaine 3, and isolaurelin 4 isolated from Annona muricata
fruit peel. This is the first study where the presence of these alkaloids in the peel of A. muricata is
reported. As confirmed by qualitative tests and spectroscopic analysis, ultrasound technology was
shown to be an efficient innovative extraction technique to extract naturally occurring metabolites
with nutraceutical and/or therapeutic interest.
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