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Abstract: In this article, we study a class of non-linear neutral delay differential equations of third
order. We first prove criteria for non-existence of non-Kneser solutions, and criteria for non-existence
of Kneser solutions. We then use these results to provide criteria for the under study differential
equations to ensure that all its solutions are oscillatory. An example is given that illustrates our theory.
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1. Introduction

The interest in studying delay differential equations is caused by the fact that they appear in
models of several areas in science. In [1–3], systems of differential equations with delays are used
to study the dynamics and stability properties of electrical power systems. The concept of delays
is also used to study stability properties of macroeconomic models, see [4–6]. Finally, properties of
delay differential equations are used in the study of singular differential equations of fractional order,
see [7–9], and other type of fractional operators such as the fractional nabla applied to difference
equations where the memory effect appears, see [10,11].

Neutral time delay differential equations (NDDEs) are equations where the delays appear in both
the state variables and their time derivatives. They have wide applications in engineering, see [12],
in ecology, see [13], in physics, see [14], in electrical power systems, see [15], and applied mathematics,
see [16]. This type of NDDEs also appear in the study of vibrating masses attached to an elastic bar,
in problems concerning electric networks containing lossless transmission lines (as in high speed
computers), and in the solution of variational problems with time delays, see [17,18]. In this article,
we consider the following class of non-linear NDDEs of third-order:(

r2 (t)
((

r1 (t)
(
z′ (t)

)α1
)′)α2

)′
+ q (t) f (x (g (t))) = 0, t ≥ t0, (1)

where z (t) := x (t) + p (t) x (τ (t)) . Throughout this paper, we will assume that

(A1) α1 and α2 are quotients of odd positive integers;
(A2) r1, r2 ∈ C1 ([t0, ∞) , (0, ∞)) and ∫ ∞

t0

1

r1/αi
i (t)

dt = ∞ for i = 1, 2; (2)
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(A3) p, q ∈ C ([t0, ∞) , [0, ∞)) , q (t) does not vanish identically and 0 ≤ p (t) < 1;
(A4) τ, g ∈ C1 ([t0, ∞) ,R) , τ (t) ≤ t, g (t) < t, τ ◦ g = g ◦ τ, τ′ (t) ≥ τ0 ≥ 0 and limt→∞ τ (t) =

limt→∞ g (t) = ∞;
(A5) f ∈ C (R,R) and there exists a constant k > 0 such that f (x) ≥ kxβ for x 6= 0, where β = α1α2.

For the sake of clarity and brevity, we define the operators

L0z (t) = z (t) , L1z (t) = r1 (t)
(
z′ (t)

)α1 ,

L2z (t) = r2 (t)
(
(L1z (t))′

)α2
= r2 (t)

((
r1 (t)

(
z′ (t)

)α1
)′)α2

and

L3z (t) = (L2z (t))′ =
(

r2 (t)
((

r1 (t)
(
z′ (t)

)α1
)′)α2

)′
.

By a solution of (1), we mean a function x ∈ C ([Tx, ∞),R) , Tx ≥ t0, which has the property
Liz (t) ∈ C1 ([Tx, ∞),R) , i = 0, 1, 2 and satisfies (1) on [Tx, ∞). We consider only those solutions of (1)
which satisfy sup{|x (t)| : T ≤ t < ∞} > 0, for any T ≥ Tx. We assume that (1) possesses such
a solution. A solution x of (1) is said to be non-oscillatory if it is positive or negative, ultimately;
otherwise, it is said to be oscillatory. The equation itself is termed oscillatory if all its solutions oscillate.

The study of qualitative behavior of NDDEs has received great attention in recent times.
The theory of oscillation is one of the most important branches of qualitative theory of differential
equations. See [19–21] for principles and basic results of oscillation theory. For more recent results of
oscillatory properties of solutions of NDDEs and non-linear differential equations, we refer the reader
to the works [22–55].

Baculikova and Dzurina [26] discussed oscillatory criteria of equations(
r2 (t)

(
z′′ (t)

))′
+ q (t) x (g (t)) = 0,

under the condition ∫ ∞

t0

1
r2 (t)

ds = ∞.

As a special case of (1), Chatzarakis et al. [27] considered the oscillation for equation(
r2 (t)

((
r1 (t)

(
z′ (t)

))′))′
+ q (t) f (x (g (t))) = 0, (3)

where 0 ≤ p (v) ≤ p0 < 1 and under the condition∫ ∞

t0

1
ri (t)

dt = ∞ for i = 1, 2.

Dzurina et al. [33] completed oscillation results for equation (3), by establishing sufficient
conditions for nonexistence of so-called Kneser solutions. In this paper we extend and improve the
results in [25,34,35,37,38] by proving new criteria which ensure that all solutions of (1) are oscillatory.

The article is organized as follows. In Section 2 we present the necessary mathematical background
used throughout the paper. In Section 3 we prove criteria for non-existence of non-Kneser solutions,
and in Section 4 we provide criteria for non-existence of Kneser solutions. In Section 5 we use the
results in the previous sections to provide criteria for (1) to ensure that all its solutions are oscillatory.
An example is given in the same section that illustrates our theory.

Remark 1. All functional inequalities and properties such as increasing, decreasing, positive, and so on,
are assumed to hold eventually, i.e., they are satisfied for all t ≥ t1 ≥ t0, where t1 large enough.
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2. Preliminary Results

We use the following notations for the simplicity:

Ri (t, u) : =
∫ t

u

1

r1/αi
i (s)

ds, i = 1, 2,

R̃ (v, u) : =
∫ v

u

(
R2 (v, s)

r1 (s)

)1/α1

ds,

Gu (t) : =
1

r
1

α1
1 (t)

∫ t

u

1

r
1

α2
2 (s)

ds


1

α1

, G̃u (t) =
∫ t

u
Gu (s) ds

and
Q (t) = min {kq (t) , kq (τ (t))} ,

for t ≥ u ≥ t0. Next we present the following six Lemmas that will be used as tools to prove our main
results in the next sections.

Lemma 1 ([23]). Assume that h1, h2 ∈ [0, ∞) and γ > 0. Then

(h1 + h2)
γ ≤ µ

(
hγ

1 + hγ
2
)

,

where

µ =

{
1 for 0 < γ ≤ 1,
2γ−1 for γ > 1.

Lemma 2. Assume that x is a positive solution of (1). Then, L3z (t) ≤ 0 and there are only two possible classes
for the corresponding function z :

Case (1) : z (t) > 0, L1z (t) < 0 and L2z (t) > 0;

Case (2) : z (t) > 0, L1z (t) > 0 and L2z (t) > 0.

Proof. Let x be a positive solution of (1). Then, there exists a t1 ≥ t0 such that x(t) > 0, x (τ(t)) > 0
and x (g(t)) > 0 for t ≥ t1. Therefore, z(t) > 0 and (1) implies that

L3z (t) = −q (t) f (x (g (t))) ≤ 0.

Hence, L2z (t) is a non-increasing function and of one sign. We claim that L2z (t) > 0 for t ≥ t1.
Suppose that L2z (t) < 0 for t ≥ t2 ≥ t1, then there exists a t3 ≥ t2 and constant K1 > 0 such that

d
dt

L1z(t) < −K1(r2(t))−1/α2 ,

for t ≥ t3. By integrating the last inequality from t3 to t, we get

L1z(t) < L1z(t3)− K1

∫ t

t3

(r2(s))−1/α2 ds.

Letting t → ∞, we have limt→∞ E1(t) = −∞. Then there exists a t4 ≥ t3 and constant K2 > 0
such that

z′(t) < −K2(r1(t))−1/α1 ,
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for t ≥ t4. By integrating this inequality from t4 to ∞, we get limt→∞ z(t) = −∞, which contradicts
z(t) > 0. Now we have E2(t) > 0 for t ≥ t1. Therefore, E1(t) is increasing function and of one sign.
The proof is complete.

Definition 1. The set of all functions z satisfy that Case (1) is denoted by ℵ. The set of all functions z that
satisfy Case (2) is denoted by ℵ̃. Solutions x whose corresponding function z ∈ ℵ are called Kneser-solutions.

Lemma 3 ([25] Lemmas 3–5). Assume that r′i (t) > 0 for i = 1, 2, x is a positive solution of (1) with
corresponding function z ∈ ℵ̃ for all t ≥ t2 ≥ t0. Then, the following results are achieved.
(1) For each η ∈ (0, 1), there exists a Tη ≥ t1 such that, for all t ≥ Tη ,

tz′(τ(t)) ≥ ητ(t)z′(t).

(2) For each t ∈ [t1, ∞),

z (t) ≥ 1
2
(t− t1) z′ (t) . (4)

(3) For each t ∈ [t1, ∞),
z′ (t) ≥ (t− t1) z′′ (t) .

Lemma 4. Assume that r′i (t) > 0 for i = 1, 2, x is a positive solution of (1) with corresponding function z ∈ ℵ̃
for all t ≥ t1 ≥ t0. Then, the following facts are verified:

z (t) ≥ 1
2
(t− t0)

1+1/α1

(
(L1z (t))′

r1 (t)

)1/α1

, (5)

(L2z (t))′ ≤ −kq (t) (1− p (g (t)))β zβ (g (t)) , (6)

z′ (t) ≥
(

R2 (t, t1)

r1 (t)

)1/α1

(L2z (t))1/β (7)

and there exists a t2 ≥ t1 such that

z (t) ≥ R̃ (t, t2) (L2z (t))1/β , (8)

for all t ≥ t2.

Proof. Let x be a positive solution of (1) with corresponding function z ∈ ℵ̃ for all t ≥ t1 ≥ t0. Then,
z (t) > 0, L1z (t) > 0 and L2z (t) > 0 for t ≥ t1. Since L3z (t) ≤ 0 and r′2 (t) > 0, we get(

r1 (t)
(
z′ (t)

)α1
)′′
≤ 0.

Thus,

r1 (t)
(
z′ (t)

)α1 = r1 (t1)
(
z′ (t1)

)α1 +
∫ t

t1

(
r1 (s)

(
z′ (s)

)α1
)′

ds

≥ (t− t1)
(

r1 (t)
(
z′ (t)

)α1
)′

and so

z′ (t) ≥
(

t− t1

r1 (t)

)1/α1 (
(L1z (t))′

)1/α1
.



Appl. Sci. 2020, 10, 4855 5 of 16

It follows from (4) that

z (t) ≥ 1
2
(t− t1)

1+1/α1

(
(L1z (t))′

r1 (t)

)1/α1

.

Since z (t) > x (t) and z′ (t) > 0, we obtain x (t) ≥ (1− p (t)) z (t) , and hence

(L2z (t))′ ≤ −kq (t) xβ (g (t)) ≤ −kq (t) (1− p (g (t)))β zβ (g (t)) .

Now, we have

L1z (t) = L1z (T) +
∫ t

t1

(
L2z (s)
r2 (s)

)1/α2

ds ≥ (L2z (t))1/α2

∫ t

t1

(
1

r2 (s)

)1/α2

ds

≥ R2 (t, t1) (L2z (t))1/α2

and so

z′ (t) ≥
(

R2 (t, t1)

r1 (t)

)1/α1

(L2z (t))1/β ,

for t ≥ t2 ≥ t1. By integrating the latter inequality from t2 to t and using (L2z (t))′ < 0, we get

z (t) ≥ z (t2) + (L2z (t))1/β
∫ t

t2

(
R2 (s, t1)

r1 (s)

)1/α1

ds

≥ R̃ (t, t2) (L2z (t))1/β .

The proof is complete.

Lemma 5. Assume that x is a positive solution of (1) with corresponding function z ∈ ℵ for all t ≥ t1 ≥ t0. Then:

z (u) ≥ R̃ (v, u) (L2z (v))1/β , (9)

for u ≤ v, and (
L2z (t) +

pβ
0

τ0
L2z (τ (t))

)′
+

1
µ

Q (t) zβ (g (t)) ≤ 0. (10)

Proof. Suppose that x is positive solution of (1). Then, there exists a t1 ≥ t0 such that x (t) > 0,
x (τ (t)) > 0 and x (g (t)) > 0 for t ≥ t1. From Lemma 1, we obtain

zβ (t) ≤ µ
(

xβ (t) + pβ
0 xβ (τ (t))

)
, (11)

it follows from the monotonicity of L2z (t) that

−L1z (u) ≥ L1z (v)− L1z (u) =
∫ v

u

(
L2z (s)
r2 (s)

)1/α2

ds ≥ (L2z (v))1/α2 R2 (v, u) ,

for v ≥ u ≥ t1. Integrating the last inequality from u to v, we obtain

z (u) ≥ (L2z (v))1/β
∫ v

u

(
R2 (v, s)

r1 (s)

)1/α1

ds = (L2z (v))
1
β R̃ (v, u) .
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From (1), (A1) and (A5), we have

pβ
0

τ′ (t)
(L2z (τ (t)))′ + kpβ

0 q (τ (t)) xβ (g (τ (t))) ≤ 0

and so,
pβ

0
τ0

(L2z (τ (t)))′ + kpβ
0 q (τ (t)) xβ (τ (g (t))) ≤ 0. (12)

Combining (1) with (12), we get

L3z (t) +
pβ

0
τ0

(L2z (τ (t)))′ + kq (t) xβ (g (t)) + kpβ
0 q (τ (t)) xβ (τ (g (t))) ≤ 0.

Hence,

L3z (t) +
pβ

0
τ0

(L2z (τ (t)))′ + Q (t)
(

xβ (g (t)) + pβ
0 xβ (τ (g (t)))

)
≤ 0. (13)

From (11) and (13) becomes

L3z (t) +
pβ

0
τ0

L3z (τ (t)) +
1
µ

Q (t) zβ (g (t)) ≤ 0,

that is, (
L2z (t) +

pβ
0

τ0
L2z (τ (t))

)′
+

1
µ

Q (t) zβ (g (t)) ≤ 0.

The proof of the Lemma is complete.

3. Criteria for Nonexistence of Non-Kneser Solutions

For simplicity, we use the following notations:

θ (t) = kq (t) (1− p (g (t)))β .

In the following, we establish a Hille and Nehari type criterion for nonexistence of
non-Kneser solutions.

Lemma 6. Assume that r′i (t) > 0 for i = 1, 2, x is a positive solution of (1) with corresponding function z ∈ ℵ̃
for all t ≥ t1 ≥ t0. If P < ∞ and D < ∞, then

P ≤ L− L
1+β

β (14)

and
P + D ≤ 1, (15)

where

P : = lim inf
t→∞

(
R̃ (g (t) , t0)

)β
∫ ∞

t
θ (s)ds,

D : = lim sup
t→∞

1
R̃ (g (t) , t0)

∫ t

t0

(
R̃ (g (t) , s)

)β+1
θ (s)ds
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and

L := lim inf
t→∞

(
R̃ (g (t) , t0)

)β L2z (t)
zβ (g (t))

.

Proof. Assume that x is a positive solution of (1) and z ∈ ℵ̃. By Lemma 4, we get that (5)–(8) hold.
Now, we define the function

ω (t) =
L2z (t)

zβ (g (t))
.

Them ω is positive for t ≥ t1, and satisfies

ω′ (t) =
(L2z (t))′

zβ (g (t))
− β

L2z (t)
zβ+1 (g (t))

z′ (g (t)) g′ (t) .

Thus, from (6) and (7), there exists a T ≥ t1 such that

ω′ (t) ≤ −kq (t) (1− p (g (t)))β − βR̃′ (g (t) , T) g′ (t)
L1+1/β

2 z (t)
zβ+1 (g (t))

,

for t ≥ T. This implies that

ω′ (t) ≤ −θ (t)− βR̃′ (g (t) , T) g′ (t)ω1+1/β (t) . (16)

Using (8), we get (
R̃ (g (t) , T)

)β
ω (t) ≤ 1,

which with (2), gives
lim
t→∞

ω (t) = 0. (17)

On the other hand, we define the function

U = lim sup
t→∞

(
R̃ (g (t) , t0)

)β L2z (t)
zβ (g (t))

. (18)

From the definitions of ω (t) , L and U, we see that

0 ≤ L ≤ U ≤ 1. (19)

Now, let ε > 0, then from the definition of P and L, we can pick t3 ≥ T sufficiently large such that(
R̃ (g (t) , T)

)β
∫ ∞

t
θ (s) ds ≥ P− ε and

(
R̃ (g (t) , T)

)β
ω (t) ≥ L− ε for t ≥ t3.

By integrating (16) from t to ∞ and using (17), we have

ω (t) ≥
∫ ∞

t
θ (s) ds + β

∫ ∞

t
R̃′ (g (s) , T) g′ (s)ω1+1/β (s)ds. (20)

Multiplying the latter inequality by
(

R̃ (g (t) , T)
)β

, we obtain
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(
R̃ (g (t) , T)

)β
ω (t) ≥

(
R̃ (g (t) , T)

)β
∫ ∞

t
θ (s)ds

+β
(

R̃ (g (t) , T)
)β
∫ ∞

t

R̃′ (g (s) , T) g′ (s)(
R̃ (g (s) , T)

)β+1

((
R̃ (g (s) , T)

)β
ω (s)

) 1+β
β

ds

≥ (P− ε) + (L− ε)
1+β

β

(
R̃ (g (t) , T)

)β
∫ ∞

t

βR̃′ (g (s) , T) g′ (s)(
R̃ (g (s) , T)

)β+1 ds

≥ (P− ε) + (L− ε)
1+β

β .

Taking the limit inferior on both sides as t→ ∞, we get

L ≥ (P− ε) + (L− ε)
1+β

β .

Since ε > 0 is arbitrary, we obtain

P ≤ L− L
1+β

β .

Next, multiplying (16) by
(

R̃ (g (t) , T)
)β+1

and integrating it from t3 to t, we get

∫ t

t3

(
R̃ (g (s) , s)

)β+1
ω′ (s) ds ≤ −

∫ t

t3

(
R̃ (g (s) , s)

)β+1
θ (s)ds

−β
∫ t

t3

R̃′ (g (s) , s) g′ (s)
((

R̃ (g (s) , s)
)β

ω (s)
) 1+β

β

ds.

Integrating by parts, we find(
R̃ (g (t) , t)

)β+1
ω (t) ≤

(
R̃ (g (t) , t3)

)β+1
ω (t3)−

∫ t

t3

(
R̃ (g (s) , s)

)β+1
θ (s)ds

+
∫ t

t3

R̃′ (g (t) , s) g′ (s)
(
(β + 1)V − βV

1+β
β

)
ds,

where V =
(

R̃ (g (t) , T)
)β

ω (s) . Using the inequality

aφ− bφ
1+β

β ≤ ββ

(β + 1)β+1 aβ+1b−β for a ≥ 0, b > 0 and φ ≥ 0, (21)

with φ = V, a = (β + 1) and b = β, we see that(
R̃ (g (t) , t)

)β+1
ω (t) ≤

(
R̃ (g (t) , t3)

)β+1
ω (t3)−

∫ t

t3

(
R̃ (g (s) , s)

)β+1
θ (s)ds

+R̃ (g (t) , t)− R̃ (g (t) , t3) .

It follows that

(
R̃ (g (t) , t)

)β
ω (t) ≤

(
R̃ (g (t) , t3)

)β+1
ω (t3)

R̃ (g (t) , t)
− 1

R̃ (g (t) , t)

∫ t

t3

(
R̃ (g (s) , s)

)β+1
θ (s)ds

+1− R̃ (g (t) , t3)

R̃ (g (t) , t)
.
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Taking the limit superior on both sides as t→ ∞ and using (18), we get

U ≤ 1− D.

Thus, from (19), we arrive at

P ≤ L− L
1+β

β ≤ L ≤ U ≤ 1− D, (22)

which completes the proof.

Theorem 1. Assume that r′i (t) > 0 for i = 1, 2, and x is a positive solution of (1). If

P = lim inf
t→∞

(
R̃ (g (t) , t0)

)β
∫ ∞

t
θ (s) ds >

ββ

(β + 1)β+1 , (23)

then the class ℵ̃ is empty.

Proof. Let x be a positive solution of (1) and z ∈ ℵ̃. First, let P = ∞. As in the proof of Lemma 6,
we obtain that (19) and (20). Then, from (20), we have

R̃ (g (t) , t)β ω (t) ≥ R̃ (g (t) , t)β
∫ ∞

t
θ (s) ds.

Taking the limit inferior as t→ ∞ and using (19), we get

1 ≥ L ≥ P = ∞,

this is a contradiction.
On the other hand, let P < ∞. From Lemma 6, we have P ≤ L− L

1+β
β . Using inequality (21) with

φ = L and a = b = 1, we get that

p ≤ ββ

(β + 1)β+1 ,

which contradicts (23). The proof is complete.

By using the comparison principles, we show that the class ℵ̃ is empty.

Theorem 2. Assume that r′i (t) > 0 for i = 1, 2, and x is a positive solution of (1). If the first-order
delay equation

y′ (t) + θ (t)
(g (t)− t0)

β+α2
θ (t)

2β (r1 (g (t)))α2 r2 (g (t))
y (g (t)) = 0 (24)

is oscillatory, then the class ℵ̃ is empty.

Proof. Assume on the contrary that z ∈ ℵ̃. Using Lemma 4, we obtain that (5) and (6). From (5) and (6),
we get

xβ (g (t)) ≥ (1− p (g (t)))β (g (t)− t0)
β+α2

2β (r1 (g (t)))α2 r2 (g (t))
r2 (g (t))

(
(L1z (g (t)))′

)α2

. (25)

Combining (1) with (25), one can see that y (t) = L2z (t) is a positive solution of the
differential inequality

y′ (t) +
(g (t)− t1)

β+α2
θ (t)

2β (r1 (g (t)))α2 r2 (g (t))
y (g (t)) ≤ 0.
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In view of [22], Theorem 1, the associated delay differential Equation (24), also has a positive
solution. This contradiction completes the proof.

In the following Theorem, we are concerned with the oscillation of solutions of (1) by using a
Riccati transformation technique.

Theorem 3. Assume that x is a positive solution of (1). If that there exists a positive function ρ(t)such that

lim sup
t→∞

∫ t

t0

(
ρ(s)θ(s)− ββ

(β + 1)β+1

(
ρ′(s)
ρ(s)

)β+1

η−β(s)

)
ds = ∞, (26)

then the class ℵ̃ is empty, where

η (t) = β
ρ(t)g′ (t)
ρ1+1/β(t)

(
R2 (g (t) , t2)

r1 (g (t))

)1/α1

.

Proof. Let x be a positive solution of (1) and z ∈ ℵ̃. By Lemma 4, we have that (5)–(8) hold. Now,
we define

ω̃(t) = ρ(t)
L2z (t)

zβ(g(t))
.

Then, from (6) and (7), we have

ω̃′ (t) ≤ ρ′(t)
ρ(t)

ω̃(t)− ρ(t)θ(t)− βρ(t)
L2z (t)

zβ+1 (g (t))
z′ (g (t)) g′ (t)

≤ ρ′(t)
ρ(t)

ω̃(t)− ρ(t)θ(t)

−βρ(t)
L2z (t)

zβ+1 (g (t))

(
R2 (g (t) , t2)

r1 (g (t))

)1/α1

(L2z (g (t)))1/β g′ (t)

≤ ρ′(t)
ρ(t)

ω̃(t)− ρ(t)θ(t)

−β
ρ(t)g′ (t)
ρ1+1/β(t)

(
R2 (g (t) , t2)

r1 (g (t))

)1/α1

ω̃1+1/β(t).

Using inequality (21) with φ = ω̃, a = ρ′/ρ and b = η, we obtain

ρ′

ρ
ω̃− ηω̃

β+1
β ≤ ββ

(β + 1)β+1

(
ρ′

ρ

)β+1

η−β.

Therefore, we get

ω̃′(t) ≤ −ρ(t)θ(t) +
ββ

(β + 1)β+1

(
ρ′(t)
ρ(t)

)β+1

η−β(t).

By integrating the above inequality from t2 to t we have

ω̃(t) ≤ ω̃(t2)−
∫ t

t2

(
ρ(s)θ(s)− ββ

(β + 1)β+1

(
ρ′(s)
ρ(s)

)β+1

η−β(s)

)
ds.

Taking the superior limit as t → ∞ and using (26), we get ω̃(t) → −∞, which contradicts that
ω̃(t) > 0. This completes the proof.
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4. Criteria for Nonexistence of Kneser Solutions

Theorem 4. Assume that x is a positive solution of (1). If there exists a function ψ ∈ C ([t0, ∞) , (0, ∞))

satisfying g (t) < ψ (t) and τ−1 (ψ (t)) < t, such that the first-order delay differential equation

y′ (t) +
1
µ

τ0

τ0 + p0
Q (t)

(
R̃ (ψ (t) , g (t))

)β
y
(

τ−1 (ψ (t))
)
= 0 (27)

is oscillatory, then the class ℵ is empty.

Proof. Assume on the contrary that x is a Kneser solution of (1) and z ∈ ℵ. Then, we assume that
x (t) > 0, x (τ (t)) > 0 and x (g (t)) > 0 for t ≥ t1 ≥ t0. From Lemma 5, we get that (9) and (10) hold.

zβ (g (t)) ≥ L2z (ψ (t))
(

R̃ (ψ (t) , g (t))
)β

,

which by virtue of (10) yields that(
L2z (t) +

pβ
0

τ0
L2z (τ (t))

)′
+

1
µ

Q (t) L2z (ψ (t))
(

R̃ (ψ (t) , g (t))
)β
≤ 0. (28)

Now, we define the function

y (t) = L2z (t) +
pβ

0
τ0

L2z (τ (t)) .

From the fact that L2z (t) is non-increasing, we have

y (t) ≤ L2z (τ (t))

(
1 +

pβ
0

τ0

)

or equivalently,

L2z (ψ (t)) ≥ τ0

τ0 + pβ
0

y
(

τ−1 (ψ (t))
)

. (29)

Using (29) in (28), we see that y is a positive solution of the first-order delay differential inequality

y′ (t) +
1
µ

τ0

τ0 + pβ
0

Q (t)
(

R̃ (ψ (t) , g (t))
)β

y
(

τ−1 (ψ (t))
)
≤ 0. (30)

Under these conditions, it has already been shown in [22], Theorem 1, that the associated delay
differential Equation (27) also has a positive solution, that is a contradiction. Thus, the class ℵ is empty
and the proof is complete.

Corollary 1. Assume that x is a positive solution of (1). If there exists a function ψ (t) ∈ C ([to, ∞) , (0, ∞))

satisfying g (t) < ψ (t) and τ−1 (ψ (t)) < t, such that

lim inf
t→∞

∫ t

τ−1(ψ(t))
Q (s)

(
R̃ (ψ (s) , g (s))

)β
ds >

τ0 + pβ
0

eµτ0
, (31)

then the class ℵ is empty.
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Theorem 5. Assume that x is a positive solution of (1). If there exists a function ϕ (t) ∈ C ([t0, ∞) , (0, ∞))

satisfying ϕ (t) < t and g (t) < τ (ϕ (t)) , such that

lim sup
t→∞

(
R̃ (τ (ϕ (t)) , g (t))

)β
∫ t

ϕ(t)
Q (s)ds >

τo + pβ
0

µτo
, (32)

then the class ℵ is empty.

Proof. Assume on the contrary that x is a Kneser solution of (1) and z ∈ ℵ. Then, we assume that
x (t) > 0, x (τ (t)) > 0 and x (g (t)) > 0 for t ≥ t1 ≥ t0. From Lemma 5, we get that (9) and (10) hold.
Integrating (10) from ϕ (t) to t and using the fact that L3z (t) ≤ 0, we see that

L2z (ϕ (t)) +
pβ

0
τ0

L2z (τ (ϕ (t))) ≥ L2z (t) +
pβ

0
τ0

L2z (τ (t)) +
1
µ

∫ t

ϕ(t)
Q (s) zβ (g (s))ds

≥ 1
µ

∫ t

ϕ(t)
Q (s) zβ (g (s))ds

≥ 1
µ

zβ (g (t))
∫ t

ϕ(t)
Q (s)ds.

Since τ (ϕ (t)) < τ (t) and L2z (t) is non-increasing, we get

L2z (τ (ϕ (t)))

(
1 +

pβ
0

τ0

)
≥ 1

µ
zβ (g (t))

∫ t

ϕ(t)
Q (s)ds. (33)

Using (9) with u = g (t) and v = τ (ϕ (t)) in (33), we arrive at

L2z (τ (ϕ (t)))

(
1 +

pβ
0

τ0

)
≥ 1

µ
L2z (τ (ϕ (t)))

(
R̃ (τ (ϕ (t)) , g (t))

)β
∫ t

ϕ(t)
Q (s)ds,

that is,
τ0 + pβ

0
µτ0

≥
(

R̃ (τ (ϕ (t)) , g (t))
)β
∫ t

ϕ(t)
Q (s)ds.

Finally, by taking the lim sup on both sides of the latter inequality, we arrive at a contradiction
to (32). The proof is complete.

By setting ϕ (t) = τ (t) in (32), the following result is an immediate consequence.

Corollary 2. Assume that x is a positive solution of (1). If

lim sup
t→∞

(
R̃ (τ (τ (t)) , g (t))

)β
∫ t

τ(t)
Q (s)ds >

τ0 + pβ
0

µτ0
, (34)

then the class ℵ is empty.

5. Oscillation Criteria

Based on the fact that there are only two cases for the corresponding function z, we can use the
results in the previous two sections to infer new criteria for oscillation of all solutions of Equation (1).
Any of the criteria (23), (24) and (26) ensures that ℵ̃ = ∅, whereas one of the criteria (27), (31)
and (34) ensures that ℵ = ∅. This guarantees that ℵ = ℵ̃ = ∅, and we can ensure that there are no
non-oscillatory solutions. Hence through these results we proved the following oscillation Theorem:

Theorem 6. Assume the non-linear NDDE of third order (1). Then:
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1. If r′i (t) > 0 for i = 1, 2.

• If there exists a function ψ ∈ C ([t0, ∞) , (0, ∞)) satisfying g (t) < ψ (t) and τ−1 (ψ (t)) < t, such
that the first-order delay differential Equations (24) and (27) are oscillatory, then (1) is oscillatory;

• If (23) and (31) hold, then (1) is oscillatory;
• If (23) and (34) hold, then (1) is oscillatory.

2. If there exists a positive function ρ(t)such that (26) and

• (31) hold, then (1) is oscillatory;
• (34) hold, then (1) is oscillatory.

Example

Consider the third-order NDDE((
(x (t) + p0x (δt))′′

)α2
)′

+
q0

t2α2+1 xα2 (λt) = 0, t ≥ 1, (35)

where p0 and q0 are positive constants and δ, λ ∈ (0, 1). Please note that r1 (t) = r2 (t) = 1, α1 = 1,
β = α2 and f (x) = xα2 . It is easy to verify that Ri (t, u) = t− u for i = 1, 2,

R̃ (v, u) =
∫ v

u
(v− s)ds =

1
2
(v− u)2 ,

θ (t) = q0 (1− p0)
α2 1

t2α2+1 ,

and Q (t) = q0/t2α2+1. Then, we have

lim inf
t→∞

(
R̃ (g (t) , t0)

)β
∫ ∞

t
θ (s) ds =

q0 (1− p0)
α2

2α2+1 lim inf
t→∞

(λt− t0)
2α2

t2α2

=
q0 (1− p0)

α2

2α2+1 λ2α2 .

Thus, the condition (23) becomes

q0 >
2α2+1α

α2+1
2

λ2α2 (1− p0)
α2 (α2 + 1)α2+1 . (36)

Next, by choosing ψ (t) = (λ + δ) t/2, condition (31) reduces to

lim inf
t→∞

∫ t

τ−1(ψ(t))
Q (s)

(
R̃ (ψ (s) , g (s))

)β
ds = lim inf

t→∞

∫ t

(δ+λ/2δ)t

kq0

2α2

(
δ− λ

2

)2α2 1
s

ds

=
kq0

2α2

(
δ− λ

2

)2α2

ln
2δ

δ + λ

or equivalently,
kq0

2α2

(
δ− λ

2

)2α2

ln
2δ

δ + λ
>

τ0 + pα2
0

eµτ0
. (37)

Hence, by Theorem 6, every solution of Equation (35) is oscillatory if (36) and (37) hold.

Remark 2. By using our results, we obtain sufficient conditions to ensure that all solutions of (1) are oscillatory.
Whereas, the related results [37,38,40,41,43] created conditions that ensure that solutions are either oscillatory
or tend to zero. So, our new criteria improve and complement a number of existing results.
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6. Conclusions

We considered a class of non-linear NDDEs of third order. By using Riccati transformation and
comparison principles that compare the third-order equation with a first-order equation, we proved
criteria for non-existence of non-Kneser solutions, and criteria for non-existence of Kneser solutions.
We then used these results to conclude to a Theorem that provides criteria for (1) in order to ensure that
all its solutions are oscillatory. These criteria extend and improve several other results in the literature.
An example was given to support our theory.
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