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Abstract: In addition to adverse health outcomes, neurological disorders have serious societal
and economic impacts on patients, their family and society as a whole. There is no definite
treatment for these disorders, and current available drugs only slow down the progression of the
disease. In recent years, application of stem cells has been widely advanced due to their potential of
self-renewal and differentiation to different cell types which make them suitable candidates for cell
therapy. In particular, this approach offers great opportunities for the treatment of neurodegenerative
disorders. However, some major issues related to stem-cell therapy, including their tumorigenicity,
viability, safety, metastases, uncontrolled differentiation and possible immune response have limited
their application in clinical scales. To address these challenges, a combination of stem-cell therapy with
nanotechnology can be a solution. Nanotechnology has the potential of improvement of stem-cell
therapy by providing ideal substrates for large scale proliferation of stem cells. Application of
nanomaterial in stem-cell culture will be also beneficial to modulation of stem-cell differentiation using
nanomedicines. Nanodelivery of functional compounds can enhance the efficiency of neuron therapy
by stem cells and development of nanobased techniques for real-time, accurate and long-lasting
imaging of stem-cell cycle processes. However, these novel techniques need to be investigated to
optimize their efficiency in treatment of neurologic diseases.

Keywords: nanotechnology; stem cell; nanoparticle; neurodegenerative disease;
nanodelivery; nanomedicine

1. Introduction

Neurodegenerative disorders (ND) are characterized by the progressive loss of structure or function
of neurons, resulting from degeneration of selected neurons in the central nervous system (CNS).
Neurological diseases have serious economic and societal impacts on patients, their family and society
as a whole. There are no treatments for neurodegenerative diseases and the currently used medicines
can only reduce the symptoms or slow down the progress of disease [1]. Successful design of therapies
for a patient population needs careful consideration involving collaboration between clinicians,
neuroscientists and bioengineers to cover both the disease aspects and clinical requirements [2].

The perception of neurogenesis have been developed during the recent cascades and the traditional
concept of a static brain has been drastically altered with discovery of the presence of adult-born
neurons and observation of the dynamic proliferation of progenitor cells and generation of new
neurons [3]. Stem cells—which can be derived from many sources—have the potential to self-renew
and differentiate to different cell types and are suitable candidates for cell therapy purposes [4].
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The main purpose of cell-based regenerative therapy in the CNS is to improve neuroprotection,
compensate for loss of cell function and enhance the ability to repair tissue. Cell therapy for CNS
consists of cell injection into an injured brain tissue to retrieve a loss of neuron function [5]. In recent
years, the application of stem cells in cell therapy for neurodegenerative diseases has attracted great
interest in scientific societies [6]. Stem cells have great potential in inducing neuroprotection in a variety
of neural diseases or brain injuries [7]. There are several reports of the beneficial effects of stem-cell
transplantation on improvement of sensory motor and cognitive functions in stroke, Parkinson’s
disease (PD), Huntington’s disease, Alzheimer’s diseases (AD), amyotrophic lateral sclerosis (ALS)
and spinal muscular atrophy [8]. The quality of life has recently improved due to the development of
science technologies and the discovery of novel methods such as cell therapy to treat degenerative
disorders [1]. Despite promising results in preclinical trials, currently there is no stem-cell-based therapy.
Furthermore, the application of stem cells on a clinical scale are limited due to their safety and ethical
issues. Some of these concerns include tumorigenesis, stem-cell metastasis, unwanted differentiation,
vital organ sequestration, irreversibility of treatment and long-term survival of transplanted cells [9–12].
For addressing some of these challenges, combination of stem-cell therapy with other technologies can
be a leading solution. Nanotechnology has the potential to collaborate with stem-cell therapy and
improve the efficiency of cell-based therapy thanks to the unique characteristics of nanomaterials [13].
Moreover, the marriage of these technologies can form a novel interdisciplinary field with an area of
intense research [12,14]. Nanoparticles (NPs) and nanomaterials (NMs) can interact with proneurogenic
factors within the stem-cell niche and thus, promote self-renewal, proliferation and differentiation of
endogenous and exogenous neural stem cells (NSCs) [15]. Moreover, super-paramagnetic NPs labeled
with functional peptides can be intravenously injected into injured area and significantly detected
by MRI techniques [16]. The internalized modified-NPs would efficiently enhance neurogenesis and
appears to be a promising approach for therapeutic purposes and drug delivery in the treatment of
neurodegenerative diseases. In this review, we will provide an assessment of the recent advances in
stem-cell therapy and the applications of nanotechnology in cell-based methods to boost the efficiency
in the treatment of neurological diseases. Despite many efforts in application of nanotechnology to
enhance the efficiency of stem-cell therapy for preventing neuroregeneration, the interaction between
stem cells and nanoparticles remains obscure and hence, needs more investigation. We have attempted
to provide an overview of nanoparticle applications across various aspects of stem-cell therapy.
In particular, we have focused on the nanodelivery of stem cells for neurotherapeutic approaches and,
the induction and monitoring of the differentiation process of stem cells using nanotechnology; with
the overarching aim being the need to alert researchers in this field to both existing and new prospects.

2. Stem Cells and their Therapeutic Significance

Stem cells have the potential to cure and diagnose diseases and can be also used to study the
therapeutic effects of drugs. Stem cells have two origins: embryonic and adult tissues. Furthermore,
based on the potential for differentiation, they are categorized into three types: (1) totipotent stem cells
(with the ability to differentiated into all cell types of a living body and are able to make both fetus and
placenta), (2) pluripotent stem cells (with the ability to differentiate into all kind of cells and are able to
generate only the fetus and not the placenta) and (3) multipotent stem cells (can be differentiated into
some limited kinds of cell) [17]. The origin of the embryonic stem cells (ESC) is within the inner mass of
the blastocyst and are considered pluripotent, while the adult tissues contain mesenchymal stem cells
(MSCs), which are able to differentiate toward the mesodermal lineage (i.e., osteoblasts, adipocytes and
chondrocytes) (Figure 1). Despite their greater proliferative and differentiative potential, the use of ESC
for clinical applications due to medical ethics and possible immune rejection is limited. By contrast,
the number of researchers who have turned to MSCs and NSCs are increasing rapidly. The transplanted
MSCs due to ability of migration to the damaged or inflamed tissues have regenerative potential
and they can improve tissue hemostasis by increasing the nutrient supply to endogenous cells [18].
MSCs are capable of inhibiting apoptosis and fibrosis, while enhancing angiogenesis, stimulating
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mitosis and/or differentiation of tissue-resident progenitor cells and modulating the function of immune
system [19]. There is evidence for the potential of MSCs to support tissue protection and repair due
to secretion of paracrine factors. They have been proven to be effective in stimulating the structural
and functional regeneration of many tissues such as cardinal, renal, tendon and spinal cord [13,19,20].
Therefore, they can be considered as a powerful tool for therapeutic applications. Cell therapy is
a promising approach to treat various diseases where common drugs administration could not be fully
effective. Moreover, many conventional drugs show limitations in the aspect of their dosage or time
window. Nowadays, tailored medicines have attracted greater attention and the engineered drugs
derived from cellular and molecular approaches have become more developed [21]. Most research
efforts in this field focus on producing tailored medicines with the capacity to regenerate the structure
and function of defective organs. The regenerative therapeutic medicines directly target patient cells,
e.g., cell cycle components or cell metabolites. Therefore, they exert considerable influence on the
regenerative process by recovering cell division and cellular transformation [21].
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Figure 1. Representative diagram depicting the main types and sources of stem cells and their potential
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2.1. Cell Therapy of Neural System Using Stem Cells

The complex structure of the brain and central neural system make them more restricted to
access and understand the mechanism of diseases related to these regions. Their successful treatment
is not yet feasible and thus prevention and neuroprotection become more important than cure.
Telomerase enzyme inside the cells have a protective function against neurons damage. Stem-cell
therapy techniques have been recently developed; and similar to telomerase enzyme activity, have the
ability of protection and maintenance of neuron function. [17].

For many years, it was believed that CNS tissue does not have the ability of renewal, but recent
studies have challenged this dogma. Numerous experiments have been successfully carried out on the
application of neural stem cells (NSC) or neural precursor cells (NPC) for transplantation therapy for
CNS diseases.

Throughout human life, like most other mammalian species, generation of new neurons through
a process known as neurogenesis are carried out by NSCs. Generation of new neurons will occur in
the subventricular zone (SVZ) of the lateral ventricles and they reach the olfactory bulb through the
rostral migratory system. Simultaneously, movement of the new hippocampal granule neurons to
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granule cell layer leads to formation of a chain network of migrating neuroblasts which eventually
differentiate into various neural cells [16,23].

In most known neurodegenerative diseases, neural cell structures are affected and eventually
lose function. Therefore, successful regenerative therapy can be achieved by replacement of damaged
neurons with the new ones or by restoration of neural tissue/organs [2]. The progress of cell therapy
techniques in transplantation of stem cells has improved the shortage of neuron function in both acute
and chronic neurodegenerative disorders. During the last few years, the advance in transplantation
techniques of human or animal stem cells has expended much effort in preclinical brain research.
This method also has the advantage of increasing the restorative response to CNS injury, which can be
directly triggered by the stimulation of activated astrocytes. This response is believed to be mediated
by different trophic and growth factors, such as nerve growth factor, brain-derived neurotrophic
factor, vascular endothelial growth factor, fibroblast growth factor and erythropoietin. These factors
can play neurotrophic roles for neural stem cells in vitro and can also retain neurogenesis in the
adult CNS. Cell therapies have been developed to aid in CNS injuries, but to succeed in therapeutic
approaches of stem cells therapy it is necessary to fully understand the physiological mechanism
related to neurological diseases. Since current knowledge in neural development is incomplete, it is
unclear whether these findings obtained in vitro can be operational for in vivo experiments or not.

However, implantation of stem-cell scaffolds may induce a host tissue response. Encapsulation of
stem cells can be a promising approach to minimize immune response and facilitate safety issues.
Encapsulation can also promote the application of stem-cell therapies in clinical trials. Some preclinical
reports demonstrated the feasibility and efficacy of microencapsulation methods for coating individual
cells in AD models. For example, encapsulation of human mesenchymal stem cells with glycan-like
peptide and their transplantation in an AD mouse model decreased amyloid deposition or suppression
of glial and microglial responses [24]. Furthermore, other studies demonstrated the improvement
of stem-cell survival and the cognitive abilities in AD mouse models using the encapsulation of
neural stem cells (NSCs) within different types of hydrogels (e.g., dextran dialdehyde cross-linked
with gelatin) [25,26]. Biodegradable collagen scaffolds can be placed on brain slices without any
toxic response on dopamine neurons and thus, using these scaffolds, potentially provide a novel and
promising approach to enhance dopaminergic cell survival and controlled release of neurotrophic factor
in the brains of PD models [27]. Lastly, it has been demonstrated that the pretreatment of neuroblastoma
cells with controlled release of MSCs from biodegradable hydrogels produced neuroprotective factors
in a PD-relevant experimental context [28].

These are promising findings which provide strong proof of ability of the destroyed brain tissue
to be recovered similar to the other tissues and organs in body. Therefore, stem-cell therapy provides
solutions to overcome the clinical challenges in neurologic fields [29].

2.2. Stem-Cell Types in Regenerative Therapy

Various cells can be considered in tissue engineering, stem or modified cells to replace lost neurons
and somatic cells due to their neuroprotective potential. In order to develop safe and effective cell
therapy methods that can be translated to clinical applications, it is important to understand the
inherent characteristics of these potent cells; for instance, their engraftment, distribution pattern,
differentiation and survival rate.

Moreover, recognition of the differentiation process of stem cells is critical to enhance the treatment
success of neurological diseases such as AD and PD. Finding the stem-cell “niche”, the specific
microenvironment of stem-cell generation, is an important factor in order to utilize the regenerative
potential of these cells for treatment of neurodegenerative diseases [30]. The recognition of the NSC
and their potential for neurogenesis has attracted researchers to assess the feasibility of their application
in treatment of neurodegenerative diseases. NSCs have the ability to self-renew and generate multiple
neural lineages, e.g., axonal regrowth or cell replacement [31]. They are able to differentiate into the three
main cell types present in the central nervous system: neurons, astrocytes and oligodendrocytes [30].
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Recently, numerus studies have been focused on stem-cell based therapies as promising solutions
for treatment of CNS-related diseases and disorders [32]. Currently, for neurological repair therapy
the main used stem cells are comprised of NSCs, neuroprecursor stem cells, induced pluripotent
stem cell (iPS cells), mesenchymal stem cells (MSC) and embryonic stem cells (ESC). The efficacy of
differentiation of stem cells can be also improved genetically for transfer of new genes to induce better
differentiation into neural lineages or to secrete defined therapeutic compounds (Figure 2) [32].
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Figure 2. Strategies and innovations to get better outcomes in treatment of neurodegenerative disease
by stem-cell therapy. In addition to other drug or treatment, approaches could be used innate trophic
actions of stem cells. Furthermore, stem cells could be genetically engineered to secret a specific
therapeutic factor into site of neural damage by a novel carrier system like a cartridge. The engineered
cells could deliver new therapeutic genes, differentiation induction genes or migration-induced gene or
a missing/disease-relevant gene product. Adapted with permission from [33], Mirahmadi et al., 2016.

Some researchers have selected the iPSs as the most promising autologous source of stem cells
which can be generated by genetic reprogramming of transcription factors of autologous somatic cells
(e.g., fibroblasts). Novel gene editing techniques have been used for generating genetically corrected
lines from patient derived iPSCs and/or for induction of mutations in control cell lines. They have
attracted the attention of researchers for their apparent similarity to ESCs; while iPSCs grafts avoid
the ethical issues intrinsic to human ESC work. The iPSCs are derived from individual patients, so
they can be used for modeling diseases on a patient-by-patient basis. This makes the opportunity of
screening the genomic variations among individuals that may aid in early diagnosis and preventing
the progression of disease and also can be effective in finding the most appropriate pharmacological
compounds for each individual. The striatal neuros derived from iPSCs obtained from Huntington’s
disease (HD) patients, provided an in vitro disease model of HD [34].

The unilateral transplantation of syngeneic somatic NSCs within the substantia nigra pars
compacta (SNps) of aged PD mice revealed a considerable ability of grafted NSCs to fix nigrostriatal
functionality [35]. In another study, to investigate the effectiveness of NSC transplantation, the NSCs
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were isolated from postnatal day 14 mice and transplanted to the hippocampus in the mouse AD
model. Results revealed the enhance of survival, differentiation and improvement of brain memory in
transplanted mouse [36]. In another effort to examine the potential of transplanted NSCs for improved
AD symptoms, they were modified to express metalloproteinase 9 (MMP-9), a protease with ability of
degradation of aggregated Aβ peptides. The injected engineered MMP-9 NSCs were able to survive in
the AD mouse brain but were mainly distributed in the white matter tract and were unable to migrate to
amyloid plaques. It can be concluded that in spite of significant achievements in NSCs transplantation,
to enhance their therapeutic efficiency, their delivery procedure needs to be improved [37,38].

There is also research proving safety and competence of MSCs in treatment of neurodegenerative
diseases such as stroke, trauma and HD [39]. MSCs can be easily restored and do not need the
intake of immunosuppressants. The unilateral transplantation of autologous bone-marrow-derived
mesenchymal stem cells (BM-MSCs) were performed into the sublateral ventricular zone of PD patients,
by stereotaxic surgery. Following up the patients for a period of 10 to 36 months indicated a subjective
improvement in symptoms like facial expression, gait, freezing episodes and significant reduction in
the dosage of PD medicine. The results also represented the safety of the protocol and no considerable
adverse events were observed after stem-cell transplantation [40]. The safety of intraarterial (IA)
delivery of MSCs for acute ischemic stroke was evaluated in a rat model of reversible middle cerebral
artery occlusion (rMCAo). The findings suggested the IA delivery of MSCs in rodent model of stroke
can be carried out safely and delivered efficiently at the maximum tolerated dose at 24 h [41]. BM-MSCs
can play a stimulatory role in neurogenesis and angiogenesis process in stroke therapy. They can act as
small biologic pumps that secrete cytokines and growth factors with autocrine effects on themselves
and paracrine effects on their neighbor resident cells. Their activity can lead to reduction of apoptosis
in the affected area. There is also evidence of migration of implanted BM-MSCs and their combination
with local cells or differentiation into other cells types, including glia or neurons. Therefore, they can be
considered as promising candidates for neurodegenerative related stem-cell therapy purposes [42,43].

3. Application of Nanotechnology in Stem-Cell Therapy

Stem cells are a source of donor cells in regenerative medicine. In particular, induced pluripotent
stem cells (iPSCs) provide a unique opportunity for self-therapies in a personalized approach [21].
In addition, the efficiency of NSC-mediated treatment of neurological disorders has been proven by
numerous studies and it can be a promising approach to treat various neuron disfunction problems.

Although, a growing number of researchers have discovered therapeutic advantages of NSCs in
neurological disease therapy, there are serious obstacles in their clinical application. The main limitations
including screening the migration of NSCs to the injured tissues, their directional differentiation and
real-time imaging-guided therapy in vivo [44,45]. These challenges are due to the interactions of NSCs
with a variety of internal or external factors, mainly extracellular matrix (ECM), surrounding cells,
growth factors and inflammation at the damaged site. Therefore, to achieve success in the application
of NSC-mediated therapy and to overcome the obstacles of using stem cells in clinical scale, these issues
must be resolved. The unique properties of nanomaterials such as high surface-to-volume ratio (S/V),
high surface energy, distinctive mechanical, thermal, electrical, magnetic, and optical behaviors make
them appropriate to address barriers in neural stem-cell therapy [32,46]. Improvement of the efficiency
of stem-cell culture system through nanomaterials can be carried out by various methods such as
direct addition of NMs to the culture media, coating of culture container and also conjugation of NMs
with specific scaffold for 3D culture systems. Nanomaterials will exhibit various aspects of interaction
with membrane or intracellular constituents of stem cells which consequently the internalized NPs
will modify the cellular signaling pathways [22,47–49]. Here we will discuss about how the marriage
of stem-cell therapy with nanotechnology approaches, e.g., application of nanoparticles (NPs) or
nanoengineered compounds, can help in overcoming these obstacles to allow clinical application of
NSCs therapy. By recently developed synthetic and modification methodologies, engineered NPs
can be designed to desired sizes, shapes, compositions and properties. Moreover, the combination of
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bioorganic/bioinorganic techniques with chemistry facilitated fabrication of multiple functionalized
NPs as nanoengineered compounds [46].

3.1. Nanosubstrates for Large Scale Production of Stem Cells

One of the major advantages of nanotechnology in stem-cell research is the preparing of the
substrate for producing stem cells in large scales. Much effort has been focused mainly on the
amplification of neural cells, which has significant impact on the development of the therapies for
treatment of neurodegenerative diseases [21]. Having a mass culture of cells which can efficiently
remain undifferentiated during mass production process, is one of the most essential prerequisites for
cell transplantation procedures [50].

Metallic nanoparticle (NPs) have a unique potential in terms of their application over a wide
range of biomedicine, due to their specific physicochemical characteristics such as locating high energy
atoms on their surface area. For example, in the transformation process of gold nanorods by using
laser photofragmentation method, if the rate of photothermal heating increases, the internal energy
of the lattice elevates and high-energy channels above that of melting open up. In this technique,
using a nanosecond laser with longer pulse helps in opening up these channels, result in more
photon absorption during the longer pulse, and as a consequence, would increase the lattice internal
energy. There are various studies indicating the considerable influence of metallic nanoparticles
(NPs) on proliferation and differentiation of different types of cells including stem cells. Intriguingly,
there are various mechanisms which are involved in the proliferation and differentiation of stem
cells via metallic NP-induced procedures, such as modulation of signaling pathways, generation of
reactive oxygen species and adjustment of different transcription factors. Metallic NPs and their
possible potential of toxicity, in vivo and in vitro have significant effects on stem-cell differentiation
and proliferation [22]. Superparamagnetic iron oxide (SPIO) NPs are a type of IONPs (iron oxide NPs)
that possess superparamagnetism properties which enable them to migrate to the injured site, so they
can be a promising tool for regenerative disease therapy [51]. SPIO- (Ferucarbotran)NPs are able to
promote the proliferation of human MSCs (hMSCs) via counteracting intracellular H2O2 and improve
the progression of the cell cycle through upregulation of the proteins related to cell cycle, such as cyclin
D1, cyclin B and cyclin-dependent kinase 4. Therefore, SPIO-NPs can be used as a safe nanomaterial
resource to enhance proliferation of stem cells [52].

To maintain the pluripotency, iPSCs generally need to be cultured on the feeder layer cells. Due to
the high biocompatibility at low concentration and 2D structure with ultralarge surface area, graphene
(G) and graphene oxide (GO) have recently been developed as cell culture substrates. The culture of
mouse iPSCs can be supported by G and GO which allow spontaneous differentiation of stem cells.
These graphene structures induce discrete cell proliferation and differentiation properties (Figure 3).
iPSCs culture on the G surface represent similar rate of cell adhesion and proliferation compare to
glass surface, while GO surface exhibit faster rate of adherence and proliferation. Moreover, G have
another advantage of maintaining the iPSCs in the undifferentiated stage while GO accelerates the
differentiation [53].
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Figure 3. Schematic representative of scaffold structure fabricated from graphene–nanofiber for
differentiation of neural stem cells.

3.2. Nanomedicine for Modulation of Neural Stem-Cell Differentiation

The application of biomaterials, including nanoparticles will be a benefit to the regenerative
medicine over the use of existing media that facilitates cell growth and differentiation into specific
lineages. Based on size-dependent cellular uptake rates, NPs in size range of 20–70 nm have shown
the best efficiency for stem-cell differentiation [46,54]. Using tissue engineering technology, stem
cells have the potential to produce patient-specific tissues or cells without concern of immune
rejection. The culture of stem cells along with the nanoparticle-including biomaterials aids in
effectively differentiation of stem cells into a specific lineage of mature cells or tissues. They can also
remain undifferentiated and maintain their self-renewal activity [55]. Development and design of
self-assembling, biodegradable nanoparticles of poly (β-amino esters) for embedding plasmid DNA
within the nanoparticles results in successful, high-efficiency transfection of hESCs (Human Embryonic
Stem Cells). It has been demonstrated that hESCs transfected with this procedure maintain their
viability, undifferentiated state, and pluripotency following transfection with nanoparticles [56].

Linking tissue engineering technology and stem cell-based strategy can aid in producing
regenerative medicine and facilitate therapeutic replacement of injured or damaged tissues.
Some tissue-specific stem cells have the ability of mutual dedifferentiate, redifferentiate or also
transdifferentiate of certain cell types in response to particular chemical or physical stimuli (Figure 4) [57].
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In order to be successful in the therapeutic replacement of tissue, it is necessary to enhance the
interaction of the cells and tissues by combination of a beneficial physical microenvironment and
cellular biochemical signals.

Superparamagnetic iron oxide nanoparticles (SPIONs), including the iron oxide core and magnetic
coating, have specific properties such as high saturation magnetic moment, relatively stable chemical
features and minimized potential toxicity [58]. Conjunction of nanomaterial compounds with SPIO
co-covered with photonic ZnO can facilitate noncovalent binding of nanostructure and functional
proteins which leads to enhancement in the catalytic function of key proteins in the stem-cell cycle and
effectively improves the differentiation of stem cells. Modified core-shelled nanoparticles including
an SPIOs have been developed for modulation of stem-cell expansion and transdifferentiation, in vitro
and in vivo. Therefore, stem cells along with nanomaterials have a good potential for developing
the regenerative medicine and controlled neurogenesis [55]. Loading of polymeric nanoparticles
(dextran sulfate and polyethylenimine) with retinoic acid (NP–RA) is another safe and efficient
method to restore the ischemic brain by preparing a proangiogenic environment which improves
neurogenesis and neural recovery. This complex compound increased proliferation of endothelial cell
and formation of tubule network and also provided a protective property against ischemia-related
death. In an effort to examine the efficiency of NP–RA on improving neural stem-cell differentiation
and survival, endothelial cell-conditioned media (EC-CM) were examined and the findings revealed
that NP–RA can protect these cells from ischemic death. NP–RA compound also stimulated the release
of proliferation-related factors and induced differentiation signals for neural stem cells. It has been
determined that NP–RA have efficiently increased the hEPC proliferation 83-fold more than RA-alone.
Therefore, the various complexes of NP–RA can be considered as powerful neurogenic agents for
vascular diseases or neurodegenerative disorders incorporated with vasculature [59].

3.3. Nanodelivery of Stem-Cell for Neuron Recovery

Neurogenesis occurs via neural stem cells which are located in special points called niches,
such as subventricular zone, subgranular zone in the brain and central canal (CC) in the spinal
cord [60,61]. NSC-based therapeutic approach have the potential of neuron repair or replacement by
NSC transplantation at the injured point. However, the most important limitation in this method is the
high rate of implanted cell mortality, availability and metastases. Thus, inducing endogenous NSC
in situ to stimulate their differentiation to neural cells is a probable solution for this problem [62,63].
While this method may address the issues related to NSC transplantation, selective NSC targeting is the
more difficult restriction for development of transplantation approach. Carradori et al. have provided
lipid nanocapsules (LNC) to encapsulate the NFL, a synthetic peptide involved in differentiation of
SVZ–NSC. The most significant advantage of NFL compared to other cell penetrating peptides is the
stronger interaction of NFL with LNC via energy-independent mechanism. They demonstrated that
NFL–LNC complexes have preferably been taken up by neural brain stem cell, while they did not
interact with spinal cord stem cells. In vivo results confirmed in vitro findings, indicating NFL–LNC
has a good potential for delivering bioactive molecules to brain targeting neural stem cells [64].
Metal oxide NPs such as iron oxide (Fe3O4), cerium oxide (CeO), and zinc oxide (ZnO) nanoparticles
have all been developed to be used in imaging techniques and also as therapies to minimize oxidative
stress in the brain [65]. Applying an external magnetic field prior to systemic injection of Fe3O4 NPs can
improve passing the NPs through the blood brain barrier (BBB) and reaching the brain parenchyma.

The heterogeneity and uniformity of stem-cell differentiation is a critical issue to avoid
tumorigenesis. The activation of immune response due to inhospitable host environment is another
obstacle for successful transplantation of stem cells for regenerative purposes. Development of
intracellular delivery of functional molecules, such as drugs, DNA, RNAi, peptides and proteins is a
practical solution to control the stem-cell differentiation [66,67]. The dynamic external magnetic of
SPIO gold NPs coated with nerve growth factor (NGF) enable them to induce neuron growth and
differentiation. Moreover, immobilization of short hairpin RNA (shRNA) onto the Fe3O4 NPs can
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reduce neural apoptosis in a model of Parkinson’s disease [65]. Among several biomolecules capable to
differentiate stem-cell progeny to desired lineage-specific precursors [68], retinoic acid (RA) is an ideal
candidate to activate gene transcription related to cell proliferation, differentiation and apoptosis.
Manipulation of endogenous stem cells from their neurogenic niche, can trigger neurogenesis and
enhances regenerative potential of brain. In a study by Maia et al. the ability of polyelectrolyte NPs to
intracellularly release of RA and consequently to induce differentiate the SVZ cells into neurons was
investigated. They demonstrated that these NPs in concentrations below 100-µg/mL have no harmful
cytotoxic effects and do not interfere with cell morphology and proliferation. They showed RA–NP
internalization improved neurogenesis and also revealed the importance of their influence in stem-cell
differentiation; and thus, they can be considered as an excellent choice for drug delivery into the brain
and cells. These modified NPs offers an opportunity for delivery of neurogenic-inducing factors such
as key proteins, peptides, DNA and RNAi which ultimately can aid in neurodegenerative disease
treatment [69]. Thus, the nanoparticles with covalently conjugated drugs can transport bioactive
compounds and functional factors due to their surface characteristics, size and charge (Figure 5).
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Figure 5. Intraoperative transplantation of stem cells carrying drug-loaded nanoparticles into the
human brain post-tumor resection. Chronological order of the events that take place post-surgical
transplantation. Here, stem-cell carrier tumor-tropic migration results in a targeted drug release
in infiltrative tumor zones. Modified cell carriers contribute to the local toxic effects caused by
the drug-loaded system in neoplastic areas. Stem-cell immunosuppressive properties hide loaded
nanocarriers from the host-immune system and facilitate targeted anti-glioma therapy. Adapted with
some modification from [70], Auffinger et al., 2013.

3.4. Nanotechnology Application for Monitoring Stem-Cell Therapy Progress

The effective treatments for AD rely on the early diagnosis by detection and quantitation of
AD biomarkers. With its relatively large size and being located intercellularly, amyloid β (Aβ) can
be considered as a suitable imaging biomarker. Therefore, tracking the deposition of Aβ is one of
the primary histopathologic methods to control AD progress [71]. By MRI technique, accumulated
amyloid β plaques and inflammatory responses of neurons can be detected via anti-amyloid targeted
superparamagnetic IONPs. The SPIONs have beneficial for improve the MRI sensitivity acting as
in vivo or in vitro contrast agents (CAs) and thus have unique potential for biomedical applications,
namely as MRI CAs (Figure 6) [72]. Moreover, gold nanoparticles (AuNPs) due to their gold core have
several specific optical features, namely plasmonic properties, which make them ideal candidates for
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imaging applications. In particular, surface plasmon resonance (SPR) of gold particles is the resonation
of surface conduction electrons induced by the oscillating electromagnetic wave generated by light
striking the particles. By these optic features, AuNPs through X-ray and micro-CT scanning can absorb
and reduce X-rays more efficiently than traditional CT contrast agents.
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Figure 6. The application of iron oxide nanoparticles (IONPs) in diagnosis and treatment of Alzheimer’s
disease (AD). Since amyloid β (Aβ) has been identified as an ideal imaging biomarker of AD at present,
with the help of magnetic resonance imaging (MRI), IONPs can be used for the detection of Aβ

to assist in diagnosis and treatment of AD. In vitro, magnetic nanoparticles (MNPs) labeled with
antibodies against Aβ-40 and Aβ-42 is applicable to detect Aβ in the blood. Conjugated with
the Aβ oligomer aptamer and the complementary oligonucleotide of the Aβ oligomer aptamer,
IONPs can be developed as a method to measure the Aβ oligomer in the artificial cerebrospinal
fluid (CSF). DDNP-superparamagnetic iron oxide nanoparticles (SPIONs) with high affinities to
Aβ aggregates can be detected by fluorophotometry. In vivo, ultrasmall superparamagnetic iron
oxide (USPIO)-PHO could mark amyloid plaques in the NMRI mice brain; anti-Aβ protein precursor
(AβPP) antibody-conjugated SPIONs can visualize the number of plaques in AβPP/PS1 transgenic
mice. DDNP–SPIONs nanoparticles significantly decrease the signal intensity (SI) in the hippocampal
area in the rat AD model. Curcumin-conjugated superparamagnetic iron oxides (SPIOs) can detect
amyloid plaques in Tg2576 mice brains. Fibrin γ377–395 peptide-conjugatedγ-Fe2O3 nanoparticles
could specifically inhibit the microglial cells in rTg4510 tau-mutant mice and thus provide a possible
therapeutic strategy towards neurodegenerative tauopathies. In addition, magnetic IONPs bound to an
anti-ferritin antibody were developed to detect ferritin protein in areas with a high amount of amyloid
plaques in the brain of a transgenic AD mouse model. BBB, blood–brain barrier. Adapted with some
modification from [72], Luo et al., 2020.

Development of NSC transplantation approach has led to considerable progress in reducing
central nervous system damage or restitute the brain function [73]. A better understanding of the
position of transplanted NSCs has improved the efficiency of this approach. Cell tracking methods
have revealed the potential of optimizing transplantation therapy via providing accurate picture of
the fate and area effect of implanted cells. The main obstacle in application of stem-cell therapies at
the clinical-scale is the evaluation of the precise location of implanted cells and the status of graft
host cells in vivo [74]. Until recent years, mapping the in vivo control over specific differentiation,
dynamic behavior and dispensation of implanted cells were major issues of this technique. In vivo
imaging of transplanted cells is based on tagging these cells and following their differentiation from
host tissue, like the brain (Figure 7) [75].
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Figure 7. MRI technique for tracking posttransplanted neural stem cells (NSCs) using contrast agents
and understanding NSC differentiation process.

Currently, developing techniques such as magnetic resonance imaging (MRI),
computed tomography (CT), positron emission tomography (PET), and near-infrared (NIR)
fluorophores offer noninvasive models for tracking transplanted stem cells. Among these techniques,
MRI by high spatial resolution is an ideal tool to gain high quality cellular and molecular images
and is used in tracking engrafted stem cells in treatment of brain diseases. Treating the implanted
cell with an intracellular contrast agent provides visualization of MSCs using MRI. Combination of
PET with MRI can render useful information regarding cell tracking, optimal cell dose and graft
volume. SPECT is a nuclear tomographic imaging technique equipped with a gamma ray camera.
In a cell-transplanted brain of a PD model, activity of dopaminergic compounds was measured by
SPECT-[123I] altropane. Near-infrared light (NIR) is another noninvasive imaging tool with ability of
penetrating deep into tissues. To define the precise location of implanted hMSCs, NIR scanner was
used to provide 3D images contain the contour, reconstruction and coronal section at cell-engrafted
site of hMSCs [76].

Nanotechnology has beneficial for improve efficiency of these techniques in localization of
transplanted stem cells. The magnetic properties of metallic NPs make them useful for magnetic
resonance imaging. Loading stem cells with AuNPs can facilitate tracking of transplanted cells
in stem-cell therapy procedures. Complexation of 40-nm AuNPs with two ligands, poly L-lysine
(PLL) and rhodamine B isothiocyanate (RITC) improved NPs uptake by human mesenchymal stem
cells, without inhibition of cell proliferation or differentiation [77]. Carbon quantum dots (CQDs)
are also ideal tools for tracking transplanted cells. Covering mesenchymal stem cells with CQDs
prior to implantation into the sciatic nerves allowed their tracking for at least 35 days, in vivo [78].
Some specifically developed lipid–base NPs like liposomes are able to treat neurodegenerative diseases
and can be promising candidates for integrated treatment with stem-cell therapies. Conjugation of
liposomes with apolipoprotein E (ApoE) increased delivery of siRNA or plasmid DNA to the brain,
result in improving target liposomes to neural stem and progenitor cells [79].

Paramagnetic compounds such as SPIO-NPs are commonly used contrast agents.
Recently, research has been carried out to evaluate the effects of SPIO-uptake on the in vitro activity of
hMSCs and as a consequence, the effect of SPIO concentration on MRI sensitivity. Outputs of these
studies revealed that during generation of high contrast MRI signals, SPIO-uptake would not have
negative effects on the proliferation or differentiation processes. Implantation of SPIO-tagged MSCs in
experimental models lead to high resolution MRI, supporting the beneficial behavior of SPIO labeling
for stable MRI tracing [80]. Modification of SPIOs and their addition to human neural stem cells
(hNSCs) allowed tracking of implanted NSCs by MRI for up to three months, without any significant
impairment in cell viability or proliferation [81] (Table 1).
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Table 1. Summary of different types of stem cells and application of nanoparticles in stem-cell therapy.

Stem Cell Origin Types Nanoparticle Advantages in
Stem-Cell Therapy Key References

Embryonic
stem cells

Totipotent stem
cells

Superparamagnetic
iron oxide

nanoparticles
(SPIO)–(ferucarbotran)

NPs

Promoting the
proliferation of

human mesenchymal
stem cells (hMSCs)

[52]

Graphene (G) and
graphene oxide (GO)

as substrates

Improve
differentiation of iPSs [53]

Retinoic acid loaded
with polymeric
nanoparticles

(dextran sulfate and
polyethylenimine)

Restore the ischemic
brain [59]

Adult stem
cells

Induced
pluripotent

stem cells (iPSc)

Metal oxide NPs such
as iron oxide (Fe3O4),
cerium oxide (CeO)

and zinc oxide (ZnO)
nanoparticles for

Using in imaging
techniques and

tracking stem cells
[65]

Polyelectrolyte NPs

Induce differentiation
of the subventricular
zone neural stem cells

into neurons

[69]

Multipotent
mesenchymal

stem cells
(MSCs)

Gold NPs (AuNPs)
Tracking of

transplanted cells in
stem cell

[77]

Modified SPIOs Tracking of implanted
neural stem cells [81]

The ability of cell proliferation and differentiation on labeled human induced pluripotent
stem cell-derived neural precursors (iPSC-NPs) was investigated using the MRI technique.
Comparison between two iron-based nanoparticles contrast agents, silica-coated cobalt zinc ferrite
nanoparticles (CZF) and poly-l-lysine-coated iron oxide superparamagnetic nanoparticles (PLL-coated
γ-Fe2O3) revealed that PLL-coated γ-Fe2O3 would not affect cell proliferation, while CZF would
slow down this process. However, no significant differences in neural differentiation were observed
between unlabeled cells or cells labeled with both magnetic nanoparticles [82]. Thus, MRI-based
stem-cell tracking may offer a novel practical method to follow transplanted stem-cell therapy for
neurological disorders.

4. Conclusions

Recent progress in cell-based therapy and discovery of stem-cell capacity of neurogenesis in adults
have emerged as novel prospects in terms of neurologic therapeutic approaches. Differentiation of NSCs
to specific neurons have efficiently improved repair of damaged neurons and injured sections of the
brain. There are various methods to induce NSC differentiation, including the transplantation of stem
cells in their specific niche. However, viability, heterogeneity, uniformity, controlled differentiation of
stem cell, tumorigenicity rate of implanted cells—as well as real-time tracking of the fate of transplanted
cells are major concerns for this therapeutic approach. Introducing nanotechnology to this field has
brought excellent opportunities to overcome these challenges. In recent years, nanobased approaches
have been widely developed and represent beneficial impacts in the medical fields—particularly,
as potential tools for the diagnosis and treatment of various neurodegenerative diseases. Integration
of nanomaterial and stem-cell cultures provides a vital tool for enhancing NSC proliferation, accurate
delivery of functional molecules to targeting areas to induce NSC differentiation and also for permitting
real-time, noninvasive, durable monitoring of the implanted cell migration. However, as with any
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novel emerging technology, all aspects in the application of nanomaterials need to be considered in
terms of any side-effect or toxicity of these compounds on a clinical scale. Moreover, to optimize the
efficiency of these methods and to address their current challenges, a combination of nanotechnology,
molecular biology and stem-cell therapy can be a leading solution. The more specific the differentiation,
the more accurate delivery of bioactive compounds—and the more reliable tracking of injected cells
are possible through molecular engineering of nanomaterials and thus, improve the efficacy of the
conventional NSC-based therapy of neurodegenerative diseases.
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