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Abstract: The traditional method used to determine the moisture content of tea leaves is time
consuming and destructive. To address this problem, an effective and non-destructive prediction
method based on near-infrared spectroscopy (NIRS) is proposed in this paper. This new method
combines discrete wavelet transforms (DWT) with the bootstrap soft shrinkage algorithm (BOSS).
To eliminate uninformative or interfering variables, DWT is applied to remove the noise in the
spectral data by decomposing the origin spectrum into six layers. BOSS is used to select informative
variables by reducing the dimensions of the sub-layers’ reconstruction spectrum. After selecting
the effective variables using DWT and BOSS, a prediction model based on partial least squares
(PLS) is built. To validate effectiveness and stability of the prediction model, full-spectrum PLS,
genetic algorithm PLS (GA-PLS), and interval PLS (iPLS) were compared with the proposed method.
The experiment results illustrate that the proposed prediction model outperforms the other classical
models considered in this study and shows promise for the prediction of the moisture content in
Yinghong No. 9 tea leaves.

Keywords: near-infrared; moisture content; discrete wavelet transforms; bootstrap soft shrinkage
algorithm; partial least squares

1. Introduction

Processed leaves and leaf buds of tea tree are used to produce tea, which are popular in many
parts of the world [1]. Traditional tea making is complicated; the drying of fresh leaves is the primary
and indispensable stage of this process [2] and moisture content is a key index in the drying process [3].
However, improper handling may lead to inaccurate measurements when determining moisture
content. Therefore, an accurate and rapid detection approach would be indispensable for determining
the moisture content of tea leaves during tea making [4].

Many attempts have been made to determine moisture based on near-infrared spectroscopy (NIRS).
Moisture measurements are commonly recorded by detecting mass loss after heating to evaporate
moisture. However, this procedure damages the samples and is time consuming. In contrast, direct
determination of moisture by NIRS is fast, only requiring the acquisition of the sample’s reflection
spectrum [5]. However, the disadvantages of NIRS include broad overlapping, difficultly interpreting
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the attribute absorption bands, and noise [6]. The effective selection of wave bands is used to address
these problems. It is difficult to select effective variables that peaks are unresolved and important
features cannot be recognized [7]. Therefore, it is crucial to eliminate noise and avoid losing spectral
details in the spectral prediction model of determining the moisture content.

The current common spectral denoising methods include moving average, Savitzky–Golay
filtering, and median computing [8]. Xie et al. proposed a tailoring noise frequency spectrum technique
based on the Savitzky–Golay filter and obtained a satisfying result [9]. Morgan et al. used the moving
weighting algorithm to estimate soil organic carbon content fixing the spectrum bias [10]. Although
these methods can remove the noise in spectral data, useful signals may be lost during the process of
denoising. To avoid losing effective variables, a discrete wavelet transform (DWT) of spectral signals was
developed. The moisture content (MC), soluble solids content (SSC), pH, and hardness of Gala apple
samples were tested non-destructively within 350–2500 nm using the wavelet transform pretreatment
of raw spectral data [11]. The use of DWT successfully further simplified the genetic algorithm-the
partial least squares (GA-PLS) model by reducing variables by 40–44% without reducing the prediction
accuracy [12]. Other experimental results [13] showed that the DWT-support vector regression
(DWT-SVR) multivariate regression model, having good robustness, can measure protein, starch,
and fat contents in corn simultaneously, demonstrating that DWT can effectively remove noise from
corn NIRS spectral data. However, an unsolved problem is that DWT cannot reduce the dimensions
of huge data, which leads to a redundancy in the data volume during model building. In summary,
wavelet decomposition is an effective method for removing noise without reducing data dimension.

As NIRS produces a large amount of data, considerable residual redundant noise and irrelevant data
remain after spectra denoising. Therefore, variables must be selected before building a prediction model.
The benefits of variable selection can be summarized into three aspects: (1) eliminating uninformative or
interfering variables, (2) selecting informative variables, and (3) reducing the dimensions of the data [14].
The common selection methods can be divided into three types: (1) single variable selection, where
some use different variable ranking criteria such as regression coefficients and variance analysis [9];
(2) random variable selection such as uninformative variable elimination (UVE) [15], genetic algorithm
(GA) [16], random forest (RF) [17], etc.; and (3) interval variable selection such as interval partial least
squares (iPLS) [18] and synergy iPLS (SiPLS) [19]. A new variable selection method called bootstrap
soft shrinkage algorithm (BOSS) was proposed, which was derived from the idea of weighted bootstrap
sampling (WBS) and model population analysis (MPA) [20]. In BOSS, WBS is used to generate
sub-models based on the weights, and MPA is used to analyze the sub-models and update the weights
of the variables [21,22]. Yan et al. used the BOSS method with mid-infrared (MIR) spectroscopy to
determine chlorantraniliprole in abamectin, and obtained the highest coefficient of determination
of cross-validation (R2

cv = 0.9998) and coefficient of determination of the test set (R2
p = 0.9989) [23].

Zhang et al. showed that BOSS can improve prediction performance and markedly reduce features,
and had the best accuracy in calibration and prediction with the correction determination coefficient
(R2

c ) of 0.9907, the root-mean-square error of calibration (RMSEC) of 0.4257 mg/kg, R2
p of 0.9821, and the

root-mean-square error of prediction (RMSEP) of 0.6461 mg/kg [24]. From the above research, the BOSS
algorithm not only improves the prediction accuracy of the model but also effectively reduces the
number of variables to speed up the calculation of the model. However, BOSS directly processes
the original spectral data, which includes processing irrelevant noise information. Therefore, noise
elimination steps must be added.

In this study, we constructed a novel variable selecting method based on DWT and BOSS. GA [25]
and iPLS [26,27] were compared with the new proposed method, which are categorized as a random
variable selection method and interval variable selection method, respectively [28,29]. As classical
methods, many studies selected variables to improve prediction ability. Jiang, H monitored yeast
concentrations of Saccharomyces cerevisiae cultivations with NIRS and compared the results with different
variable selection methods. The GA model was built on fewer data points than that based on full
spectra, which ranges from 1557 to 71 points, with R2

p ranging from 0.9777 to 0.9806 [30]. Sousa Sampaio
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optimized rice amylose determination using NIRS with the iPLS method. The full spectrum was split
into 10, 20, 25, and 50 intervals, and the optimal model was obtained for the Savitzky–Golay filter
(R2

p = 0.92 and RMSEP = 2.133), which was better than the full-spectrum PLS model [7]. Yang et al.
used different regression methods such as PLS, iPLS, and SiPLS with multiple pretreatment methods.
The Al2O3 models obtained using the iPLS algorithm had R2

p values of 0.8273 to 0.9196 [31].
PLS, which can improve the prediction ability by selecting informative variables or eliminating

uninformative variables, was used to build a prediction model in this paper [32–34]. DWT and BOSS
were combined as a new variable selection method. After previous variable selection, DWT-BOSS-PLS,
GA-PLS, and iPLS models were established, which are based on the NIRS data and moisture content.
By comparison, three variable selection methods are discussed to choose the best one.

2. Materials and Methods

2.1. Trial Introduction

For the trial, we used Yinghong No. 9 variety tea leaves, which was carried out on 4 December,
2019 at the Yingde Yinghong No. 9 base of the Tea Research Institute of Guangdong Academy of
Agricultural Sciences (Yingde, Qingyuan, Guangdong, China). The tea leaves were picked randomly
within the tea garden. At 12:00 p.m., 100 kg of tea leaves were picked and placed in a withering trough,
and the leaves were about 4 cm thick. Samples were taken every hour from withering trough. At the
normal time of withering, there was a total of 15 h. The fresh tea leaves were taken in 5 samples and,
in the other 14 h, the tea leaves were taken 10 samples. In total, 145 samples were obtained in this test.

The tea leaves reflectance spectra were measured using a Thermo Antaris II Fourier transform
near-infrared (FT-NIR) spectrometer (Thermo Scientific Co., Waltham, MA, US) with a diffuse reflection of
the integrating sphere at a spectral range of 12,000–3800 cm−1 (833–2630 nm). The resolution was 4 cm−1

and the diameter of the sample cup rotator was 20 cm. The number of sample scans were 64 (can rotate
a circle). Each sample was covered with 25 g in an integration sphere. Three spectra were taken from
each sample, and then the average spectra were taken as the spectra of the corresponding samples.

2.2. Moisture Content Acquisition

Tea leave samples were tested for moisture content immediately after the spectral experiments,
and measured for moisture content according to GB/T 8304-2013 in Chinese. From 12:00 p.m.,
the moisture content was recorded every hour. Each spectrum corresponds to a moisture content,
so the number of moisture content was 145. The average moisture content per hour over a range of
15 h is shown in Figure 1. As the withering time increases, the moisture content gradually decreases.

w =
m1−m2

m1
× 100% (1)

where w is the moisture content, m1 is the leaves of fresh weight, m2 is the leaves of dry weight.
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Figure 1. The moisture content of tea leaves changes with withering for 15 h.
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2.3. Sample Set Partitioning Based on Joint X-Y Distance (SPXY)

The SPXY algorithm is a method of dividing the sample set considering both X and Y variables.
It evolved from the Kennard–Stone (KS) algorithm and divides the samples into training and test sets
by calculating the distance between samples [35]. In this paper, X indicates tea leaves’ spectral data
and Y indicates moisture content.

2.4. Analysis of PLS Model

The partial least squares organically combines the model and cognitive methods. Under regression
modeling (multiple linear regression), data structure simplification (principal component analysis) and
correlation analysis between two sets of variables can be performed simultaneously [36]. In this study,
the prediction model was built on the PLS algorithm.

In this study, the following parameters were selected to evaluate the accuracy of the model:
correction determination coefficient (R2

c ), cross-validated determination coefficient (R2
cv), prediction

determination coefficient (R2
p), the root mean square error of calibration (RMSEC), the root mean square

error of cross-validation (RMSECV), and the root mean square error of prediction (RMSEP). The larger
the R2, the more accurate the predictive ability of the mode, and the RMSE represents the stability
of the model [37]. The lower the value of these three values, the higher the reliability of the model.
The correlation coefficient (R) is used to measure the correlation between two variables; the closer R is
to 1, the higher the correlation. In this paper, when R > 0.8, the corresponding variables are defined as
strongly correlated variables.

R2 =

∑n
i=1(ŷi − ŷ)(yi − y)2

(n− 1)
∑n

i=1 (yi − ŷ)2∑n
i=1 (ŷi − ŷ)

2 (2)

RMSEC =

√∑n
i=1 (yi − ŷi)

2

n
(3)

RMSECV =

√∑n
i=1 (yi − ŷi∗)

2

n
(4)

RMSEP =

√∑m
i=1 (ŷi − yi)

2

m
(5)

where ŷi is the value predicted by the calibration model, yi is the reference value, ŷi∗ is the value
predicted by the cross-validation model, y is s the mean of the reference values, ŷ is the mean of the
predicted values, n is the number of samples in the calibration or validation steps, and m is the number
of predicted samples.

2.5. Wavelength Selection Method

2.5.1. DWT and BOSS Coupling Algorithm

DWT produces a multi-scale representation of digital signals using a series of high- and low-pass cutoff
filters to classify signals according to their frequencies in the wavelength space of the spectrum [38–40].
In this study, the wavelet decomposition coefficient was extracted first, then the wavelet high-frequency
coefficient (HC) and the wavelet low-frequency coefficient (LC) were extracted. Finally, the LC and the
zeroing HC were combined to establish the wavelet reconstruction matrix.

BOSS is a method using collinearity to select effective features and using the information of the
regression coefficient to flexibly shrink the information of interest. The BOSS algorithm is constructed using
bootstrap sampling (BBS) and weighted bootstrap sampling (WBS) to generate random combination of
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variables and sub-model, and by combining model population analysis (MPA) and the PLS algorithm
to extract effective information from the sub-model [12].

In this paper, the DWT-BOSS algorithm is proposed by coupling DWT with BOSS to obtain the
optimal band to establish the PLS prediction model. The process is as follows (shown in Figure 2).

(1) Obtain the maximum decomposition layer (L(Max)) of the wavelet transform. First observe
the trend in the spectra image after decomposition, then according to the order of correlation
coefficient to select the maximum number of layers;

(2) Use the BOSS algorithm to optimize the effective variables of each spectral data from L1 to L(Max)
(L1-L(Max)), and the optimal variables set is obtained by superimposing the preferable variables
of L1-L(Max). L1 is defined as the first decomposition layer.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 15 
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algorithm (BOSS) coupling algorithm. Note: N, the max layer of the DWT.; WEIGHT (n), the weight of
the n variable; WBS, weighted bootstrap sampling; sub-model, generate random combination variables
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2.5.2. Correlation Coefficient (R)Method

The correlation coefficient method involves obtaining the correlation coefficient from the unknown
sample and the reference sample to judge whether the unknown sample and the reference sample are
consistent for a certain property. The higher the similarity, the closer the R value is to 1. The formula is
as follows:

R =
Cov(y1, y2)

delta_y1 × delta_y2
(6)

where the y1 is the absorbance corresponding to each wavelength point, y2 is the water content.
delta_y1 means the y1 of the standard deviation, delta_y2 means the y2 of the standard deviation.
Cov is the covariance.

2.5.3. Genetic Algorithm

The GA is a global optimization method that can solve problems efficiently for which there are
many possible solutions, such as variable selection. The core steps of GA are analogous to the process
of Darwinian evolution, in which individuals are selected for the next generation through crossover,
mutation, and survival of the fittest until a specific stopping criterion is reached [16]. The main GA
parameters were set as follows: population size of 32, window width of 10, maximum generation of
100, and mutation rate of 0.005 in MATLAB R2016a (MathWorks, Natick, MA, USA).
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2.5.4. iPLS

The iPLS method is a wavelength interval selection method. The method functions by dividing
the whole spectrum into several intervals, and then expanding or decreasing the wavelength variables
by the center of the interval [18]. The modeling setting of the iPLS method was as follows: the number
of intervals was set to 20 in MATLAB R2016a (MathWorks, Natick, MA, USA).

3. Results and Discussion

3.1. Wavelet Transform and Maximum Decomposition Layer

In this study, the db4 wavelet-generating function was used in MATLAB R2016a (MathWorks,
Natick, MA, USA) to decompose the eight layers wavelet of the original spectrum. The reconstructed
signals of layers 1 to 8 are defined as L1 to L8(L1–L8), respectively. L0 indicates the origin spectrum.

The significant moisture absorption peaks around 1800 and 2400 nm, and weak peaks around
1200 and 2600 nm. There are three distinct areas of noise in L0, which were more obvious around 1600
(defined as noise1), 2200 (defined as noise2), and 2400 nm (defined as noise3) (Figure 3). The small burr
phenomenon occurred in noise1, noise2, and noise3. Figure 4 depicts the noise spectral image around
1600 nm, the scope of which is disordered in L0. When decomposition was applied, the high-frequency
signal was further removed, and the noise weakened. As shown in Figure 4, when the original spectrum
was decomposed into the fifth sub-layer, the spectral curves became smoother. The spectral details
were gradually removed and the spectral curve gradually tended to be smooth, so some absorption
peaks representing the moisture characteristics of tea leaves disappeared. When the spectrum was
decomposed into seven layers, the spectral curve was almost a straight line, but in this case, the spectral
data considerably deviated from the original data and large amounts of effective information were lost.
The loss of effective information was more serious at L8. Therefore, L7 and L8 completely deviated
from L0 to L6.
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L1 refers to the reconstructed spectral average after the layer wavelet transforms, L2 to L8 are analogous
to L1. L0–L6 have similar trends under L7 and L8. L7 and L8 correspond to solid red and solid
blue, respectively.

To further determine the appropriate maximum decomposition layer, the correlation coefficient
method was used to measure the correlation between the spectral absorption and moisture
characteristics of each wavelength point in the spectral matrix of L1–L8. By comparing the measured
value (defined as R) with the threshold value, the preferable number of wavelength points was
determined. In this study, the threshold value was set to 0.8. According to Figure 5, 259 points in L1
and L2 exceeded the threshold, 257 points in L3 and L4, 260 points in L5, 262 in L6, 175 in, and 199 in L8.
Figure 5 shows that the numbers of points in L1–L6 passing threshold were similar, stable at 260 ± 3.
About 30% less of the points in L7 and L8 passed the threshold than in L1–L6, gradually weakening the
moisture characteristics of the spectrum. To ensure that enough moisture characteristics are preserved
after the wavelet transform, the sixth decomposition layer was taken as the largest decomposition
layer and the reconstruction spectrum of L1–L6 lost as few spectral details as possible and noise was
relatively thoroughly removed. In the following, we used L1–L6 to replace the original spectrum.
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3.2. An Optimal Variable Set Applicable to Moisture Characteristics of Tea Leaves

The BOSS method was used to optimize the variables of different layers of the wavelet
reconstruction matrix. As shown in Figure 6, the optimal set of each layer was roughly distributed
around the moisture absorption peak (1200, 1400, 2400, and 2600 nm). Due to the randomness of
the variable selection, BOSS was repeated 30 times to reduce the statistical errors. Therefore, the top
10 variables with the highest occurrence frequency were taken as the preferable variables in each layer
after 30 cycles in the test. After the combination of the preferable variables of L1–L6, the optimal
variable set V was obtained. As the number of decomposition layers increased, some moisture features
were optimized and some irrelevant information was eliminated. The optimal variables decomposed
by L1–L6 were superimposed to obtain 55 optimal variables in the regions of 800–1000, 1100–1400,
1500–1700, 1900–2000, and 2300–2600 nm. The considerable number of variables are in the range
of 800–1100, 1200–1400, and 1700–2000 nm. The wavelength ranges were mainly represented by
the fundamental frequency vibration of the free –OH group, as well as the combination and octave
vibration absorption.
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3.3. Establishment and Verification of the PLS Model Based on an Optimal Variable Set

The optimal variable set selected by DWT-BOSS was the independent variable of the tea leaves’
moisture content prediction model, and the corresponding tea leaves moisture content was the
dependent variable. The tea leaves moisture content prediction model (defined as L(i)-BOSS-PLS
model, i = 1–6) was constructed. Due to the generation of random numbers, the model was run
30 times to verify the reliability of the model. In other words, 30 models were obtained in each layer.
The optimal variable sets of L1–L6 were modeled, respectively, and the model of full-spectrum L0 was
introduced for comparison. The V-PLS model was constructed to explore the model’s accuracy and
stability. By comparing the L(i)-BOSS-PLS algorithm with the V-PLS algorithm, we concluded that the
accuracy and stability of the PLS models were improved. By analyzing the information in Table 1, we
found the V-PLS model has the highest accuracy, with an R2

c of 0.9410, RMSEC of 0.2404, R2
cv of 0.9171,

RMSECV of 0.2851, R2
p of 0.9513, and RMSEP pf 0.2236. In general, the L(i)-BOSS-PLS model produced

a better effect than the L0-PLS model, with higher prediction accuracy and better model stability.
The results obtained by running the program 30 times were within a reasonable range. The DWT-BOSS
considerably reduces the amount of modeling computation and effectively improves the prediction
ability of the model. In the V-PLS model established by the optimal variable set, 55 variables were
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selected from 3112 variables for modeling, which greatly reduced the modeling time and improved the
model accuracy. The method provides a reference for the selection of key bands for the near-infrared
spectrum of Yinghong No. 9 tea leaves, providing an inversion of moisture content for other tea leaves.

Table 1. Results of different PLS models by different deposition layers.

Variable Set R2
c RMSEC R2

cv RMSECV R2
p RMSEP n_VAR

L0 0.9266 0.2713 0.8529 0.3855 0.9085 0.2349 3112
L1 + BOSS 0.9326± 0.0396 0.2588± 0.0689 0.9336± 0.0019 0.2581± 0.0037 0.9412± 0.0637 0.2355± 0.1064 9.8333± 2.8333
L2 + BOSS 0.9304± 0.0125 0.2641± 0.0229 0.9236± 0.0011 0.2768± 0.0020 0.9470± 0.0113 0.2247± 0.0230 16 ± 4
L3 + BOSS 0.9250± 0.0120 0.2742± 0.0213 0.9300± 0.0011 0.2650± 0.0021 0.9421± 0.0055 0.2351± 0.0110 10.5000± 3.5000
L4 + BOSS 0.9380± 0.0114 0.2494± 0.0220 0.9289± 0.0014 0.2672± 0.0011 0.9431± 0.0094 0.2328± 0.0199 14.1000± 2.9000
L5 + BOSS 0.9304± 0.0133 0.2641± 0.0244 0.9271± 0.0013 0.2705± 0.0012 0.9447± 0.0141 0.2292± 0.0298 14.1000± 2.9000
L6 + BOSS 0.9212± 0.0026 0.2811± 0.0047 0.9131± 0.0010 0.2953± 0.0017 0.9512± 0.0021 0.2158± 0.0047 14.9333± 2.9333

V 0.9410 0.2404 0.9171 0.2851 0.9513 0.2236 55

Note: n_VAR, number of variables; RMSEC, root mean square error of calibration; RMSECV, root mean square
error of cross-validation; RMSEP, root mean square error of prediction; R2

c , correction determination coefficient;
R2

cv, coefficient of determination of cross-validation; R2
p, coefficient of determination of test set; statistical results are

presented as mean value ± standard deviation for 30 runs.

3.4. Two Classical Methods Introduced to Establish PLS Models

To validate the prediction accuracy and stability of the prediction model, two classical algorithms
for selecting variables based on the near-infrared spectrum were introduced for comparison with the
performance of the proposed DWT-BOSS selection algorithm. Two classical variable selection methods
are the GA and interval iPLS.

3.4.1. GA-PLS Prediction Model Built for Comparison with the Proposed Model

The main GA parameters were set as follows: population size of 32, window width of 10, maximum
generation of 100, and mutation rate of 0.005. Due to the randomness of the GA, 30 modeling repetitions
were used in this experiment for selecting the best results. As shown in Figure 7, the corresponding
bands above the red dotted line were selected, for a total of 870 bands. As shown in Table 2, R2

c was
0.9318, RMSEC was 0.2617, R2

cv was 0.8908, RMSECV was 0.3287, R2
p was 0.9420, and RMSEP was

0.2421. Due to the complexity of the full-spectrum data, which contained redundant information
and noise, the GA left the band closer to the moisture characteristics using the survival of the fittest
rule, and the result was optimized and improved compared with the original spectrum. However,
compared with the DWT-BOSS algorithm, the result still had redundant wavebands; the proportion of
the number of the variables was about 1:16 (V:GA).Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 15 
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Table 2. PLS model was established by different wavelength selection methods.

Variable Set R2
c RMSEC R2

cv RMSECV R2
p RMSEP n_VAR

GA 0.9318 0.2589 0.8908 0.3287 0.9420 0.2421 870
iPLS 0.9294 0.2617 0.9021 0.3088 0.9232 0.2838 280

V 0.9410 0.2404 0.9171 0.2851 0.9513 0.2236 55

3.4.2. iPLS Prediction Model Built for Comparison with the Proposed Model

The modeling setting of the iPLS method was as follows: By moving windows, the interval size
was set to 20. The result included 280 bands in total that were selected from 14 intervals, which were
located near 850, 1200, 1350, 1600, 1800, 2200, 2400, 2500, and 2600 nm. As shown in Figure 8, about
280 variables were selected as the modeling objects to establish the iPLS model, whose R2

c was 0.9294,
RMSEC was 0.2713, R2

cv was 0.9021, RMSECV was 0.3088, R2
p was 0.9232, and RMSEP was 0.2838.

By selecting the interval, the bands with a stronger correlation with moisture characteristics were
obtained, which increased the accuracy and stability of the model. However, the performance of the
iPLS model was slightly worse than that of the DWT-BOSS-PLS model because the selected variables
were still redundant bands.
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As shown in Table 2, among the three different wavelength selection methods, the DWT-BOSS
algorithm performed the best. The PLS model established using the DWT-BOSS algorithm not only
had the best stability and prediction ability but also used the least number of wavelength points.
In summary, the ranking of the number of selected variables was as follows: DWT-BOSS < iPLS < GA,
whereas the ranking of the prediction accuracy was: DWT-BOSS > GA > iPLS.

4. Conclusions

In this study, a novel variable selecting algorithm based on DWT and BOSS was employed to
select the optimal variable set of the moisture content of tea leaves for the Yinghong No. 9 variety.
After selecting the optimal variables, a PLS prediction model was built. The prediction effect of this
algorithm on the moisture content of tea leaves was explored. Some conclusions and contributions of
this research are summarized as follows:

(1) In the DWT process, the noise was considerably removed. The band was calculated by the
correlation coefficient method to select the maximum levels and the maximum levels of decomposition
was found to be six. In general, the moisture-related spectrum of L6 was denoised but retained
effective information.
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(2) BOSS selected the effective information from the spectrum with the noise removed by DWT.
By superimposing layers L1–L6 optimized by the BOSS algorithm, 55 optimal variables were obtained
as the optimal variable set V. A considerable number of variables fell within the range of 800–1100,
1200–1400, and 1700–2000 nm. Those wavelength ranges were mainly represented by –OH groups and
the vibration absorption of combinations and octaves. The number of variables dropped from 3112 to
55 using BOSS.

(3) Compared with full spectral modeling, DWT-BOSS-PLS had higher accuracy and prediction
accuracy, with R2

c of 0.9410, RMSEC of 0.2404, R2
cv of 0.9171, RMSECV of 0.2851, R2

p of 0.9513, and RMSEP
of 0.2236. GA and iPLS algorithms were used for comparison with the proposed DWT-BOSS method;
the DWT-BOSS results had higher stability and accuracy, with fewer bands used.

(4) We proposed a novel prediction model that is robust and effective for forecasting the moisture
content of Yinghong No. 9 tea leaves.

However, tea making still has difficulties of extensive application of NIRS technology, such as
expensive machinery and equipment, learning to use NIRS technology, and the production line design
and so on. Thus, NIRS technology needs to be popularized in tea processing factories. Furthermore,
spectral equipment needs some suitable designs for production, while the entrepreneur is willing to
pay for technological transformation.
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