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Abstract: In this study, we compared the accuracy of three location estimation methods of an
autonomous driving robot for underground mines: an inertial measurement unit with encoder
(IMU + encoder) sensors, Light Detecting and Ranging with encoder (LiDAR + encoder) sensors,
and IMU with LiDAR and encoder (IMU + LiDAR + encoder) sensors. An accuracy comparison
experiment was conducted in an indoor laboratory composed of four sections (X-change, X-Y change,
X-Z change, and Y-change sections) that simulated an underground mine. The robot’s location was
estimated using each of the three location estimation methods as the autonomous driving robot
moved, and the results accuracy was analyzed by comparing the estimated location with the robot’s
actual location. From the results of the indoor experiments, the average estimation error of the IMU +

LiDAR + encoder sensors was approximately 0.09 m, that of the IMU + encoder was 0.19 m, and
that of the LiDAR + encoder was 0.81 m. In a field experiment, the average error of the IMU +

LiDAR + encoder was approximately 0.11 m, that of the IMU + encoder was 0.17 m, and that of the
LiDAR + encoder was 0.70 m. In conclusion, the IMU + LiDAR + encoder method, which uses three
types of sensors, showed the highest accuracy in estimating the location of autonomous robots in an
underground mine.
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1. Introduction

Autonomous driving is a technology that involves identifying the surrounding environment
and driving to a destination without human intervention. Since the concept was first announced
at the General Motors (GM) Motor Show [1] in 1956, autonomous driving cars that can drive on
highways were developed through the PROMETHEUS project [2], which took place from 1984 to 1994.
Since then, research on autonomous driving technology began in earnest in 2004 through the DARPA
Grand Challenge [3], which involved traversing the Mojave Desert in the U.S. using an autonomous
driving car. Recently, various global companies are also conducting research on autonomous driving
technology. Representatively, GM [4] unveiled a multi-sensor-based autonomous vehicle, “BOSS”, in
2008, and plans to commercialize a super cruise capable of autonomous driving on highways by 2022.
Tesla [5] developed a vision camera-based autonomous driving system, “autopilot”, and is launching
it as a commercial product.

In the mining industry, various studies have been conducted using autonomous driving technology;
many studies have been conducted to map underground mines [6–8]. Baker et al. [9] developed an
autonomous driving robot called the “Groundhog”, equipped with a Light Detecting and Ranging
(LiDAR) sensor, a camera sensor, and an environmental measurement sensor, and conducted driving

Appl. Sci. 2020, 10, 4831; doi:10.3390/app10144831 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-9616-3725
http://dx.doi.org/10.3390/app10144831
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/14/4831?type=check_update&version=2


Appl. Sci. 2020, 10, 4831 2 of 17

and mapping experiments on abandoned mines. Bakambu and Poloski [10] developed an autonomous
driving robot capable of route planning, and obstacle detection in the underground mine environment.
They performed mapping work for underground mine tunnels. Neumann et al. [11] developed an
autonomous driving robot, “Barney”, equipped with a rotating LiDAR sensor, and performed 2D and
3D mapping work on underground mines.

Studies have also been conducted to transport ores using autonomous driving vehicles in
underground mines [12,13]. Larsson et al. [14] developed an autonomous driving loader for
underground mines using radio frequency identification technology (RFID) and the fuzzy logic
algorithm. Marshall et al. [15] developed Load–Haul–Dump equipment capable of autonomous
driving in underground mines, and conducted experiments on the feasibility of application to sites.
Mobile Tronics [16] developed an autonomous driving train called the “VirtuRail” that transport ores
from underground mines without rail tracks. VirtuRail utilizes sensors such as LiDAR, RFID, and
radio detection and ranging to measure the distance to the tunnel wall and is autonomously driven by
maintaining a constant distance from the wall.

Additionally, studies have been conducted for exploration and environmental surveys of
underground mines using the autonomous driving robot [17,18]. Zhao et al. [19] developed the
autonomous driving robot “MSRBOTS”, for investigating safety accidents in the mines. The MSRBOTS
is equipped with infrared sensors, environmental measuring sensors, and camera sensors, which
make it possible to safely explore areas that are dangerous for humans to access. Günther et al. [20]
developed a system that could measure environmental factors such as temperature, humidity, and gas
concentration in underground mines, and transmit the results remotely using an autonomous driving
robot. Kim and Choi [21,22] developed a LiDAR sensor-based autonomous driving robot and conducted
driving performance experiments in an indoor laboratory, and field tests in underground mines.

Essentially, autonomous driving technology in the mining industry is used in various ways,
including tunnel mapping, ore transportation, and environment exploration. To efficiently apply
autonomous driving technology to the mining industry, it is necessary to detect the surrounding
environment using sensors, as well as estimate the location of the robot accurately. The application
of autonomous driving robots (tunnel mapping, ore transport, and environmental exploration)
in underground mine environments can only be effective when the robot’s location is accurately
determined. Moreover, it is impossible to determine the location in underground mine environments
through GPS. Therefore, it is necessary to develop location recognition technology for the applications.

Studies have been conducted in other industries to estimate the location of autonomous vehicles
and mobile robots [23–25]. Jo et al. [26] estimated the location of autonomous vehicles using GPS,
digital maps, and camera sensors. Shen et al. [27] conducted a study to estimate the location by
fusing the inertial measurement unit (IMU) sensor, encoder sensor and computer vision-based distance
measurement technology. Li et al. [28] developed a location estimation system that can be used indoors
using camera sensors and image processing technology. Moreno et al. [29] developed the localization
algorithm for autonomous driving robots using ultrasonic sensors in an indoor semi-structured
environment and evaluated its accuracy.

Additionally, in order to reduce the uncertainty that occurs when estimating the robot’s location,
probability localization algorithms such as the Kalman and particle filters are widely used [30,31].
Wiscnewski et al. [32] developed a localization system that combines GPS and LiDAR sensors with
the Kalman filter, and which was applied to three types of process models to compare the speed and
residuals in the longitudinal and lateral directions. Moreover, Stahl et al. [33] developed a high-speed
trace car location system using the Monte Carlo localization method, which is based on the Robot
Operating System (ROS), an open-source operating system for mobile robots, and the LiDAR sensor
and Kalman filter. Adams et al. [34] performed the localization of robots in a semi-constructed outdoor
environment by utilizing a localization algorithm based on a particle filter. Consequently, this made it
possible to perform location estimation quickly and easily in an indoor environment.
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In the mining industry, studies have been conducted to estimate the location of the autonomous
driving robot. Ghosh et al. [35] predicted the robot’s attitude using an IMU sensor and fused it with
an encoder sensor to estimate the robot’s location. Chi et al. [36] developed an autonomous driving
algorithm based on the LiDAR sensor and utilized it to estimate the robot’s location. Because GPS is
not available in underground mine environments, and camera sensors are also limited, sensors such
as IMU and LiDAR are often used to estimate the location of autonomous driving robots. However,
because previous studies were focused on developing or utilizing the location estimation methods,
they did not compare the accuracy of the methods in the underground mine environment.

In this study, we compared the accuracy of three location estimation methods of an autonomous
driving robot in an underground mine environment: inertial measurement unit with encoder (IMU +

encoder) sensors, Light Detecting and Ranging with encoder (LiDAR + encoder) sensors, and IMU
with LiDAR and encoder (IMU + LiDAR + encoder) sensors. The study presents the autonomous
driving robot system, sensors, and location estimation methods used in the experiments. The location
of the autonomous driving robot was estimated using each of the three methods as it drove through
the indoor laboratory, which simulated an underground mine, and in an actual underground mine. We
analyzed the accuracy of the results by comparing the estimated robot location with its actual location.

2. Materials and Methods

2.1. System Configuration for Autonomous Driving Robot

Figure 1 shows the configuration and communication environment of the autonomous driving
robot used in this study. The robot consists of high/low/remote controllers and sensors; the controllers
have the following functions:

• Low-Level Controller: Robot’s motor control and data acquisition from encoder sensor
• High-Level Controller: Communication with low level, remote controllers, robot’s state monitoring

and data acquisition from sensors
• Remote Controller: Remotely control the robot by connecting to the high-level controller
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Figure 1. Overall structure of the autonomous driving robot used in this study. Figure 1. Overall structure of the autonomous driving robot used in this study.

The high-level controller communicates with the low-level controller via the RS232C method; the
remote controller is connected wirelessly through Wi-Fi communication. A Bluetooth beacon, which is
a Bluetooth-based wireless communication device, was used to enable the robot to stop automatically
at the destination. The Bluetooth beacon used in the study was the RECO beacon (Perples, Seoul,
Korea), and the HM-10 module was used as the Bluetooth signal receiver. LiDAR, IMU and encoder
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sensors were used to estimate the location of the robot. Table 1 shows the model and specifications of
the sensors, controller, and driving platform used in this study.

Table 1. Specification of sensors, controller, and driving platform used in this study.

Item Equipment Model and Specification

Sensor
LiDAR Sensor LMS-111 2D (SICK, Waldkirch, Germany)

IMU Sensor EBIMU – 9DOFV4 (E2BOX, Hanam, Korea)

Encoder Sensor IG-32PGM 01TYPE (YOUNGJIN B&B,
Seoul, Korea)

Controller
High Level Controller

Intel Celeron(R) CPU 1007U 1.50 GHz, 4 GB
RAM, Intel(R) HD Graphics, (Intel, Santa

Clara, CA, UAS)
Windows10 (Microsoft Corporation,

Redmond, WA, USA)
NI LabVIEW software (National
Instruments, Austin, TX, USA)

Low Level Controller

AVR Microcontroller ATMega128 Pro Kit
(MICROCHIP, Chandler, Arizona, USA)
C Language (Bell Labs, Murray Hill, NJ,

USA)

Remote Controller

Intel Atom (TM) CPU N2600 1.60 GHz, 2
GB RAM, Intel(R) Graphics Media
Accelerator 3600 Series, Windows 7

NI LabVIEW Software

Driving Platform Driving Robot ERP-42(Unmanned Solution, Seoul, Korea)

2.2. Location Estimation Methods of Autonomous Driving Robot

2.2.1. Dynamic Model of the Autonomous Driving Robot

Figure 2 shows the robot location on a 2D coordinate system and its dynamic model. The mobile
robot used in this study is a four-wheel drive, four-wheel steering based type vehicle, which is driven
using principles similar to those used for real cars. The mobile robot also has two DC motors for
driving, and two DC servo motors for steering.
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The position of the robot in the two-dimensional coordinate system can be expressed using three
variables [x(tk), y(tk), α(tk)], where x(tk) and y(tk) are the x and y coordinates at time tk, and α(tk) is the
robot’s heading angle. By defining the straight distance from [x(tk+1), y(tk+1)] to [x(tk), y(tk)] as d(tk),
the robot’s location at time tk+1 can be defined by Equations (1) and (2).

x(tk+1) = x(tk) + d(tk)·cos(α(tk)) (1)

y(tk+1) = y(tk) + d(tk)·sin(α(tk)) (2)

Because the roads in underground mine environments are often sloped, the height (z) from the
surface must be included to accurately estimate the location of the robot. If the angle of the z-y
coordinate axis rotated about the x-axis is called β (Pitch), the robot’s three-dimensional coordinates
can be defined by Equations (3)–(5).

x(tk+1) = x(tk) + d(tk)·cos(β(tk))·cos(α(tk)) (3)

y(tk+1) = y(tk) + d(tk)·cos(β(tk))·sin(α(tk)) (4)

z(tk) = z(tk) + d(tk)·sin(β(tk)) (5)

Unlike Equations (1) and (2), cos(β(tk)) was multiplied with the variables in Equations (3) and (4)
to convert the travel distance in the three-dimensional space to the travel distance projected in the x-y
plane. This way, the location of the robot in three dimensions can be defined as variables [x(tk), y(tk),
z(tk), α(tk), β(tk)].

2.2.2. Location Estimation Methods

Figure 3 shows the overall system architecture of the sensors and data processing equipment.
Three types of orientation sensors (accelerometer, gyroscope, and magnetometer) measure the robot’s
attitude and heading. Each measured data point is fused through the Kalman filter and then converted
into a Euler angle. The encoder sensor measures the travel distance by counting the robot wheels. The
LiDAR sensor measures the distance difference between the left and right walls, and calculates the
robot’s heading through an autonomous driving algorithm.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 17 
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This study compared three location estimation methods of autonomous driving robots. In all the
methods, the encoder sensor was used to measure the travel distance of the robot. Additionally, the
IMU and LiDAR sensors were also used to measure the robot’s heading angle in the IMU + encoder
and LiDAR + encoder methods, respectively. The IMU + LiDAR + encoder method measures the
headings by switching the IMU and LiDAR sensors according to the threshold angle.

GPS cannot be used in underground mine environments, and location estimation through a
camera sensor is also impossible to use because of the lack of lighting. Therefore, in this study, a
localization method was constructed by combining sensors that can measure the robot’s travel distance
and direction on their own.

2.2.3. Distance Measurement Using an Encoder Sensor

The encoder sensor calculates the travel distance by determining the number of motor rotations.
It is also possible to calculate the direction angle of the robot in wheel-type mobile robots using an
encoder sensor based on the difference between the left and right wheels. However, wheel-type mobile
robots generate slips depending on the condition of the road surface. Specifically, errors caused by slips
are more likely when turning left and right than when driving in a straight line [36]. In an underground
mine environment, this error is more pronounced because of the varying shape of the road and the
roughness of the floor. Consequently, this study used the encoder sensor to measure only the linear
travel distance. The wheel diameter of the mobile robot used in the study is 15.8 cm, the motor’s gear
ratio is 61, and the encoder’s gear ratio is 13. Thus, the travel distance can be calculated based on the
encoder count using Equation (6).

Distance (m) = 2×π× 0.158×
1

13
×

1
61
× Encoder Count (6)

2.2.4. Heading Measurement Using IMU Sensor

IMU sensors are used to estimate the attitude of aircrafts, ships, mobile robots, etc., by converging
gyroscopes, acceleration sensors, and geomagnetic sensors. Although IMU sensors show high
performance in estimating the position or angle of a mobile vehicle, they accumulate a large error when
estimating the travel distance by integrating the acceleration. The IMU sensor used in this study is a
small attitude and heading reference system device with a three-axis gyroscope, acceleration sensor,
and a geomagnetic sensor (E2BOX, Hanam, Korea). The acceleration, angular velocity, and magnetic
force data measured by the IMU sensor are output in the form of a Euler angle by applying a Kalman
filter, and correction algorithms such as the Robust Attitude and Robust Heading Algorithms are
applied to minimize the error.

2.2.5. Autonomous Driving Algorithm and Heading Measurement Using a LiDAR Sensor

The LiDAR sensor uses laser light to measure the distance and direction to an object. Because of
its accurate and wide utilization, the LiDAR sensor is used as a core technology in various studies
related to autonomous driving. In this study, the distance to the left and right walls was measured
using the LiDAR sensor, and the robot was designed to drive along the central line of the road based on
the difference between the right and left distances. For example, if the robot is driving close to the left
wall, the distance to the right wall is measured as relatively large. The robot’s steering then changes
towards the right direction, returning it to the central line of the road. Figure 4 shows the relationship
graph of the steering angle output according to the left and right distance difference measured by the
LiDAR sensor. In this study, the heading of the robot was estimated by the steering angle calculated
according to the graph in Figure 3.
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3. Indoor Experiment

In this study, an accuracy comparison experiment was conducted on the three location estimation
methods in an indoor laboratory. The indoor experiment was conducted five times repeatedly at an
indoor laboratory simulating an underground mining environment. The raw data measured from the
IMU, LiDAR and encoder sensors, and all x, y, z coordinates and directional angles calculated in real
time while the robot was driving through the indoor laboratory, were recorded. The location estimation
accuracy was analyzed by comparing the recorded actual location with the estimated location.

3.1. Indoor Laboratory Simulation

Figure 5 shows the overall composition and sectional picture of the indoor laboratory used in this
study. The indoor laboratory was 2.5 m wide, 2.6 m high, and 30 m long; the longitudinal direction of
the robot’s front was set along the x-axis, and the transverse direction along the y-axis at the starting
point. The indoor laboratory was composed of the X change, X-Y change, X-Z change, and Y change
sections. The accuracy of the change in coordinates of the corresponding sections among X, Y, and Z
were calculated as the robot was driving in each section. The temporary wall in the experiment was
higher than the detection height (60 cm) of the LiDAR sensor in all sections, and the central point of
the road was marked on the floor. To measure the accuracy of the Z value, an inclined terrain with a
height of approximately 12.5 cm was set. The Bluetooth beacon was installed at the robot’s destination
so that the autonomous driving robot stopped automatically.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 17 
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3.2. Indoor Experiment Method

In this study, the location of the robot was estimated using the IMU + encoder, LiDAR + encoder,
and IMU + LiDAR + encoder sensors, respectively. Additionally, the robot’s actual location was
determined by filming the robot’s driving process. To measure the accuracy of the Z value, the Z
coordinate was analyzed by comparing the shape of the actual slope structure with the robot’s X-Z
coordinates. The mean absolute error (MAE) method was applied to determine the error of the location
estimation methods. During the experiment, the data acquired from the sensors were set to be stored
in 0.1 s, and compared with the actual robot location in 1 s.

3.3. Indoor Experimental Results

Figure 6 shows the autonomous driving robot conducting the location estimation experiment
at the indoor laboratory. It was observed that the autonomous driving robot stably drove along the
central line of the road in the entire experimental section; the ability to climb on a temporarily made
ramp was used to measure the accuracy of the z-axis. The autonomous driving robot was driven on
approximately the same path during the five repeated experiments, taking an average of 73.3 seconds
to drive through the entire indoor laboratory.
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Figure 7 shows the robot’s actual driving path, and the pathways measured by the three location
estimation methods. Overall, the IMU + LiDAR + encoder and IMU + encoder sensors showed similar
driving paths, with the IMU + LiDAR + encoder sensors showing higher accuracy than the IMU +

encoder and LiDAR + encoder sensors. The mean absolute error of the IMU + LiDAR + encoder
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sensors was 0.09 and 0.08 m in the X and Y directions, respectively. For the IMU + encoder sensors,
the mean absolute error was 0.20 and 0.18 m in the X and Y directions, respectively. Additionally, for
the LiDAR + encoder sensors, the mean absolute error was 0.90 and 0.72 m in the X and Y directions,
respectively. The LiDAR + encoder sensors produced greater errors in the sections where the robot’s
orientation angle changes rapidly, and the accuracy of the location estimation decreases significantly
in the sections where the robot rotates vertically. However, the IMU + LiDAR + encoder and IMU +

encoder methods show a flow that is similar to the actual driving path.
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and IMU + LiDAR + encoder sensors) and the actual driving path in the indoor experiment.

The encoder sensors were used to measure the distances in all methods, and the IMU and LiDAR
sensors were used to measure the robot’s heading angle. Therefore, the difference in the driving path
was caused by the accuracy difference between the two heading measurement sensors.

When comparing the two types of heading measurement sensors, the cumulative error was
expected to be relatively large for the LiDAR sensors as there was no filter to correct the raw value. It
was also expected that there would be a difference between the angle at which the robot would be set
to drive along the central point of the road and the angle at which the robot would actually drive. In
addition, if the robot rotates at a large angle on the road, it does not recognize the accurate angle.

Based on the results, the IMU + LiDAR + encoder sensors showed an overall higher accuracy
than the IMU + encoder and LiDAR + encoder sensors. For the IMU sensors, three types of sensors
(acceleration, angular velocity, and magnetic) are fused and calibrated in real time to estimate the
robot’s angle and can recognize directional rotation of up to 180◦. In contrast, the LiDAR sensors
measure the distance to the left and right walls and estimate the heading direction according to the
difference between the two. Therefore, when the distance to the left and right wall suddenly changes,
the calculated heading value also tends to vary significantly. In particular, it was confirmed that the
direction estimation ability is rapidly decreasing at a 90◦ intersection. Therefore, if the two types of
heading measurement sensors were compared, the accuracy of the IMU sensor is higher than that of
the LiDAR sensor, but the IMU + LiDAR + encoder sensors combined, leveraging the advantages of
each of the two sensors according to the heading angle, which showed the highest accuracy overall.
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Table 2 shows the location estimation methods’ mean absolute error for each section during the
five experiments. The X-change section has a straight portion with a constant road width. In this
straight section, the distance from the LiDAR sensor to the left and right walls is similar; therefore, the
location estimation accuracy was excellent when using the high-performance LiDAR sensor. On the
other hand, the IMU sensors showed relatively high errors; it was inferred that they were caused by
the robot’s body vibration during driving, and the poor performance of the magnetic sensor when it
was close to metallic materials. The IMU + LiDAR + encoder and LiDAR + encoder sensors showed
the same results because the headings were measured in the same way through the LiDAR sensors in
the X-change section.

Table 2. Experiment results of the autonomous robot’s indoor location estimation at each section.

Location Estimation
Method MAE X-Change

Section
X -Y Change

Section
X-Z Change

Section
Y-Change

Section

IMU + Encoder Sensors
X MAE (m) 0.11 0.19 0.28 0.36

X MAE (m) 0.10 0.14 0.19 0.20

LiDAR + Encoder
Sensors

X MAE (m) 0.03 0.43 0.46 2.66

Y MAE (m) 0.03 0.31 0.35 2.12

IMU + LiDAR + Encoder
Sensors

X MAE (m) 0.03 0.08 0.11 0.13

Y MAE (m) 0.03 0.05 0.06 0.17

In the X-Y change section, the IMU + LiDAR + encoder and IMU + LiDAR sensors had cumulative
errors similar to the previous section, whereas the LiDAR sensor’s errors increased sharply as the road
width changed and the steering shift increased. In the X-Z change section, the IMU + encoder sensors
showed a similar cumulative error to the previous section; however, the LiDAR + encoder sensors had
fewer cumulative errors compared to the previous sections. There was no shift in steering because the
height in the Z direction changed, but the Y value did not. Therefore, it was observed that the error in
that section was relatively small, similar to the first section, and since the IMU + LiDAR + encoder
sensors measure heading angle using the LiDAR sensor in a straight section, errors were accumulated
in a similar manner to the LiDAR + encoder sensors. Finally, in the Y-change section, the LiDAR +

encoder sensors showed the largest error among all sections, whereas the IMU + encoder sensors’
accumulated errors remained constant, as in all the previous sections. The LiDAR sensor could not
detect the driving direction of the robot whenever it used a large steering change to turn, hence the X
and Y values showed large errors.

Overall, all location estimation methods tended to accumulate errors over time. The IMU +

encoder sensors showed similar errors in each section, whereas the LiDAR sensors showed very
high accuracy in the straight sections, but their location estimation accuracy decreased sharply in the
sections where there was a large steering shift. The IMU + LiDAR + encoder sensor generated errors
in each section corresponding to the method with the highest accuracy in that section among the two
different methods, so the total accumulated error was the smallest.

Figure 8 shows the X-Z position of the autonomous driving robot measured on an inclined terrain.
The length and height of the Z-axis terrain are approximately 1.7 and 0.125 m, respectively. The tilt
angle of the terrain was measured by the pitch angle estimated by the IMU sensor, and the distance was
measured by the encoder sensor. The mean absolute error obtained from comparing the 58 measured
Z-coordinates and the actual slopes was 0.58 cm.

In Figure 9, the lateral and longitudinal absolute error and velocity between the three types
of location estimation methods (IMU + encoder, LiDAR + encoder, and IMU + LiDAR + encoder
sensors) were compared. When measuring the robot’s heading angle, it was found that combining the
two sensor types generated a smaller error than that of the two previously used location estimation
methods. These results show a significant difference in the overall location estimation accuracy, as there
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was a straight road in all areas of the X-Y-change and Y-change sections, as well as some areas of the
X-Z-change and Z-change sections.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 17 

were accumulated in a similar manner to the LiDAR + encoder sensors. Finally, in the Y-change 

section, the LiDAR + encoder sensors showed the largest error among all sections, whereas the IMU 

+ encoder sensors’ accumulated errors remained constant, as in all the previous sections. The LiDAR 

sensor could not detect the driving direction of the robot whenever it used a large steering change to 

turn, hence the X and Y values showed large errors.  

Overall, all location estimation methods tended to accumulate errors over time. The IMU + 

encoder sensors showed similar errors in each section, whereas the LiDAR sensors showed very high 

accuracy in the straight sections, but their location estimation accuracy decreased sharply in the 

sections where there was a large steering shift. The IMU + LiDAR + encoder sensor generated errors 

in each section corresponding to the method with the highest accuracy in that section among the two 

different methods, so the total accumulated error was the smallest. 

Figure 8 shows the X-Z position of the autonomous driving robot measured on an inclined 

terrain. The length and height of the Z-axis terrain are approximately 1.7 and 0.125 m, respectively. 

The tilt angle of the terrain was measured by the pitch angle estimated by the IMU sensor, and the 

distance was measured by the encoder sensor. The mean absolute error obtained from comparing the 

58 measured Z-coordinates and the actual slopes was 0.58 cm. 

 

Figure 8. Comparison of the pathways estimated by the IMU + encoder sensors and the actual driving 

path of the autonomous driving robot in the Z-axis terrain. 

In Figure 9, the lateral and longitudinal absolute error and velocity between the three types of 

location estimation methods (IMU + encoder, LiDAR + encoder, and IMU + LiDAR + encoder sensors) 

were compared. When measuring the robot's heading angle, it was found that combining the two 

sensor types generated a smaller error than that of the two previously used location estimation 

methods. These results show a significant difference in the overall location estimation accuracy, as 

there was a straight road in all areas of the X-Y-change and Y-change sections, as well as some areas 

of the X-Z-change and Z-change sections.  

In the longitudinal/lateral velocity graph from Figures 9 (c) and (d), the IMU + LiDAR + encoder 

sensors showed a similar flow to the LiDAR + encoder sensors in the X-change section, and showed 

a similar flow to the IMU + encoder sensors in the steering change section. The LiDAR + encoder 

sensors showed relatively little change in lateral and longitudinal velocity compared to the other two 

methods. In particular, in the Y-change section, the lateral velocity should be higher than the 

longitudinal velocity because the robot is driven along the Y axis after rotating approximately 90°, 

but the LiDAR + encoder sensors drive at an almost constant speed in all sections. It is assumed that 

the LiDAR sensor cannot recognize that the robot is driving after it turns at a large angle. On the 

Figure 8. Comparison of the pathways estimated by the IMU + encoder sensors and the actual driving
path of the autonomous driving robot in the Z-axis terrain.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 17 

other hand, for the IMU sensors, the robot's rotation can be recognized to confirm that the 

longitudinal speed is reduced and the lateral speed is increased. 

 

Figure 9. Comparison of the longitudinal and lateral absolute errors ((a) and (b)) and the longitudinal 

and lateral velocities ((c) and (d)) between the three (LiDAR + encoder, IMU + encoder, and IMU + 

LiDAR + encoder sensors) location estimation methods. 

4. Field Experiment 

4.1. Field Expriment Method 

In this study, a field experiment of the three location estimation methods of autonomous driving 

robots was conducted in underground mines. While the autonomous driving robots were driving in 

the underground mine tunnel, the robot's location was estimated by each method, and the actual 

location was measured by filming the robot's driving path. The mean absolute error (MAE) method 

was used to compare the actual location of the robot with its estimated location. While the 

autonomous robot was driving, the sensor data and the calculated location were stored every 0.5 s, 

and this was compared to the actual robot location. 

4.2. Experiment Area 

The study area was an amethyst mine (35°32'43' N, 129°5'37' E) in Ulju-gun, Ulsan, Korea. The 

mine is 2.5 km long, has an average internal temperature of 12 to 16 °C, and an area of 16,000 m2, and 

is currently closed. A section of the mine, 30 m long and 3 m wide, shown in Figure 10, was set up as 

the experiment area. The experiment area contains four curved points, each with a curvature of −30°, 

0°, −30° and −40°, respectively, compared to the starting point. Since the wall surface of the 

experiment section was higher than the LiDAR's sensing height (60 cm), it was possible to measure 

the distance to the left and right wall surfaces through the LiDAR sensor in all driving sections. Before 

conducting the experiment, a scale surveying was performed to measure the width and length of the 

tunnel, and sticky notes were attached to the bottom of the tunnel at regular intervals to accurately 

Figure 9. Comparison of the longitudinal and lateral absolute errors ((a) and (b)) and the longitudinal
and lateral velocities ((c) and (d)) between the three (LiDAR + encoder, IMU + encoder, and IMU +
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In the longitudinal/lateral velocity graph from Figure 9c,d, the IMU + LiDAR + encoder sensors
showed a similar flow to the LiDAR + encoder sensors in the X-change section, and showed a similar
flow to the IMU + encoder sensors in the steering change section. The LiDAR + encoder sensors
showed relatively little change in lateral and longitudinal velocity compared to the other two methods.
In particular, in the Y-change section, the lateral velocity should be higher than the longitudinal velocity
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because the robot is driven along the Y axis after rotating approximately 90◦, but the LiDAR + encoder
sensors drive at an almost constant speed in all sections. It is assumed that the LiDAR sensor cannot
recognize that the robot is driving after it turns at a large angle. On the other hand, for the IMU sensors,
the robot’s rotation can be recognized to confirm that the longitudinal speed is reduced and the lateral
speed is increased.

4. Field Experiment

4.1. Field Expriment Method

In this study, a field experiment of the three location estimation methods of autonomous driving
robots was conducted in underground mines. While the autonomous driving robots were driving
in the underground mine tunnel, the robot’s location was estimated by each method, and the actual
location was measured by filming the robot’s driving path. The mean absolute error (MAE) method
was used to compare the actual location of the robot with its estimated location. While the autonomous
robot was driving, the sensor data and the calculated location were stored every 0.5 s, and this was
compared to the actual robot location.

4.2. Experiment Area

The study area was an amethyst mine (35◦32′43” N, 129◦5′37” E) in Ulju-gun, Ulsan, Korea.
The mine is 2.5 km long, has an average internal temperature of 12 to 16 ◦C, and an area of 16,000 m2,
and is currently closed. A section of the mine, 30 m long and 3 m wide, shown in Figure 10, was set up
as the experiment area. The experiment area contains four curved points, each with a curvature of
−30◦, 0◦, −30◦ and −40◦, respectively, compared to the starting point. Since the wall surface of the
experiment section was higher than the LiDAR’s sensing height (60 cm), it was possible to measure the
distance to the left and right wall surfaces through the LiDAR sensor in all driving sections. Before
conducting the experiment, a scale surveying was performed to measure the width and length of the
tunnel, and sticky notes were attached to the bottom of the tunnel at regular intervals to accurately
observe the location of the robot. Bluetooth beacons were installed at the destination, so that the
autonomous driving robots can be automatically stopped.
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4.3. Field Experiment Results

Figure 11 shows the autonomous robots driving in the underground mine during the field
experiment. The autonomous driving robot received signals from the remote controller at the starting
point and drove through four curved points stably cornered. The entire drive through the experiment
section was performed along the central point of the mine, without touching the sidewalk blocks
installed at a width of about 1 m, and the total driving time was approximately 66 s.
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Figure 12 shows the actual driving path of the autonomous robots in the underground mine, and
the driving path measured through the three location estimation methods. Overall, the IMU + LiDAR
+ encoder sensors have the highest accuracy, followed by IMU + encoder sensors and the LiDAR +

encoder sensors, which is similar to the indoor experiment results.
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The mean absolute error in the method using the IMU + LiDAR + encoder sensors was 0.11 m
and 0.11 m in the X and Y directions, respectively (Table 3). The IMU + LiDAR + encoder sensors show
similar paths to the LiDAR + encoder sensors on the straight road, and similar paths to the IMU +

encoder sensors on the curved road.

Table 3. Field experiment results of the autonomous robot’s location estimation.

IMU + Encoder LiDAR + Encoder IMU + LiDAR + Encoder

X MAE (m) 0.12 0.52 0.11

Y MAE (m) 0.23 0.91 0.11

The X direction mean absolute error of the IMU + encoder sensors was 0.12 m, and the Y direction
mean absolute error was 0.23 m. The IMU + encoder sensors showed a slightly higher location
estimation accuracy in the field experiments compared to the indoor experiments.

The LiDAR + encoder sensors show relatively high accuracy on straight roads, similar to the
indoor experiment, while errors tended to accumulate when the robot’s steering changed rapidly. The
LiDAR + encoder sensors’ X direction mean absolute error was 0.52 m, and the Y direction mean
absolute error was 0.91 m, showing relatively high accuracy compared to the indoor experiments. In
the indoor laboratory, there was a section where the width changed rapidly or was bent vertically,
whereas, in the underground mines, the width of the road gradually increased and decreased, so the
robot’s heading did not change rapidly. Additionally, the LiDAR + encoder sensors did not recognize,
in the indoor experiment, the large rotation of the robot’s steering, so a large error occurred. In the
field experiments, however, the robot’s steering did not change rapidly because the tunnel road width
increased and decreased gradually.

In order to quantitatively compare the accuracy of the location estimation according to the steering
change, the boundary between the straight and curved sections was clearly set, and the width and
curvature of the road were changed significantly. However, since the underground mine tended to
change gradually, in the form of shafts or road curvatures, the accuracy of the location estimation was
generally increased. In particular, in the case of the LiDAR sensor, the positioning performance was
very low because the sensors did not recognize the robot’s large angle rotation in the indoor laboratory;
however, in the underground mine environment, the robot’s headings changed frequently at small
angles, meaning that the accuracy of the location estimation could have increased slightly. Unlike the
indoor laboratory, the actual underground mine environment is large and most of the roads are almost
straight. Therefore, the importance of the LiDAR sensors, which showed high accuracy when the robot
moved in a straight direction, was expected to increase further.

5. Conclusions

In this study, an accuracy comparison experiment was conducted for three location estimation
methods of an autonomous driving robot (IMU + encoder, LiDAR + encoder, and IMU + LiDAR
+ encoder sensors) in an indoor laboratory that simulated an underground mine, and an actual
underground mine. The robot location was estimated by each of the three methods as the autonomous
vehicle was driving through the indoor laboratory, in a total of five repetitive experiments, and through
an underground mine. The results accuracy was analyzed by comparing the estimated with the actual
robot location. From the results, the IMU + LiDAR + encoder sensors generally showed the highest
accuracy, followed by the IMU + encoder sensors and the LiDAR + encoder sensors. When the entire
test site was divided into sections, the IMU + encoder sensors showed high performance on the curved
roads, whereas the LiDAR + encoder sensors showed high performance on the straight roads. The
IMU sensor showed a constant error in all the sections owing to the robot’s vibration, whereas the
LiDAR sensor showed relatively high accuracy in the straight sections with a constant distance to
the wall. Since the IMU + LiDAR + encoder sensors were used by switching between the two types
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of heading measurement sensors, an error occurred corresponding to the method with the relative
highest accuracy among the two different methods in each section. As a result, the IMU + LiDAR +

encoder sensors method, which uses two types of heading measurement sensors together based on the
steering angle, showed the highest overall accuracy in all sections.

A correction filter that could improve the localization accuracy of the robot was not applied in
this study; in the future, if localization correction algorithms such as the Kalman and particle filters are
applied, the accuracy of the location estimation will be further improved. It will also be possible to
improve the localization accuracy by utilizing pre-built LiDAR maps and point clouds measured by
the LiDAR sensors. Additionally, if a wide range of environmental sensors such as vision cameras are
used, it will be possible to check the overall road condition, and correct the position of the robot by
grasping the structural shape. The autonomous robot used in this study drove at the same speed on all
paths. However, in the future, additional experiments should be conducted to compare changes in the
location estimation accuracy based on different robot speeds.

If autonomous robots are used in underground mining environments, they can explore areas
that are difficult for humans to access, and productivity can be improved by automating the
equipment used in the underground mines through autonomous driving technology. Additionally, the
location estimation technology can be combined with environmental sensors to automate the overall
environmental monitoring of tunnels. Location estimation technology is the basis for the work of
exploring underground mines, such as tunnel mapping, environmental mapping, and optimal route
planning. It is expected that the results of this study will be useful reference materials for the use of
autonomous driving robots in underground mine environments.
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