
applied
sciences

Article

Optimization of Warehouse Operations with
Genetic Algorithms

Mirosław Kordos 1,* , Jan Boryczko 1, Marcin Blachnik 2 and Sławomir Golak 2

1 Department of Computer Science and Automatics, University of Bielsko-Biała, 43-340 Bielsko-Biała, Poland;
jb054384@student.ath.edu.pl

2 Department of Applied Informatics, Silesian University of Technology, 44-100 Gliwice, Poland;
marcin.blachnik@polsl.pl (M.B.); slawomir.golak@polsl.pl (S.G.)

* Correspondence: mkordos@ath.bielsko.pl

Received: 7 June 2020; Accepted: 9 July 2020; Published: 13 July 2020
����������
�������

Abstract: We present a complete, fully automatic solution based on genetic algorithms for the
optimization of discrete product placement and of order picking routes in a warehouse. The solution
takes as input the warehouse structure and the list of orders and returns the optimized product
placement, which minimizes the sum of the order picking times. The order picking routes are
optimized mostly by genetic algorithms with multi-parent crossover operator, but for some cases
also permutations and local search methods can be used. The product placement is optimized by
another genetic algorithm, where the sum of the lengths of the optimized order picking routes is
used as the cost of the given product placement. We present several ideas, which improve and
accelerate the optimization, as the proper number of parents in crossover, the caching procedure,
multiple restart and order grouping. In the presented experiments, in comparison with the random
product placement and random product picking order, the optimization of order picking routes
allowed the decrease of the total order picking times to 54%, optimization of product placement with
the basic version of the method allowed to reduce that time to 26% and optimization of product
placement with the methods with the improvements, as multiple restart and multi-parent crossover
to 21%.

Keywords: warehouse optimization; genetic algorithms; crossover

1. Introduction

A large share of operating costs related to product storage is connected to order picking. Based on
many studies, it has been established that about 60% of warehouse operation costs are the costs of
picking up goods when completing orders [1]. As the speed of this operation is a decisive factor in
the response time to customers’ orders and is one of the factors contributing to their decision about
choosing or not the same company at the next purchase, it seems that the role of the speed of order
completion is even greater.

Thus, shortening the time of order picking is the most important and most beneficial factor
in reducing the costs of operating the warehouse. It can be achieved without significant costs by
optimizing the locations for particular products in a warehouse and then determining the fastest order
completion routes in the optimized product placement.

Some aspects of the optimization seems obvious, for example that items that are often ordered
together should be placed close to each other, and frequently purchased items should be located close
to the delivery point. However, for the case of discrete variables, considered in this paper, where the
location sizes are fixed (some goods, e.g., storage of the sand, gravel, and so forth, can be expressed
by continuous variables, but this problem is not considered here), with N items in the warehouse,

Appl. Sci. 2020, 10, 4817; doi:10.3390/app10144817 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-2031-7561
https://orcid.org/0000-0003-3336-4962
http://dx.doi.org/10.3390/app10144817
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/14/4817?type=check_update&version=3

Appl. Sci. 2020, 10, 4817 2 of 28

the number of all possible their placements is N!. For N = 100 it gives N! = 9.33× 10157, and even
if the computer could analyze 1 billion permutations per second, it would 9.33× 10157 years to find
the best product placement. So in practice, designing manually an optimal product placement is
impossible, as the number of possible arrangements significantly exceeds the possibilities of analyzing
all solutions by humans, or even by a computer program, which tries all possible configurations.

In this paper, we present a complete, fully automated system based on artificial intelligence,
particularly on genetic algorithms, which can overcome the limitations of the search space by an
intelligent search. The system usually analyzes only several thousands to several tens of thousands
possible product placements to find the optimal solution or at least a solution so close to the optimal
one, that in practice it will not make any difference. Moreover, the system returns also the quickest
order picking routes. The advantage of applying such a solution is speeding up the operations and
thus reduction of warehouse operating costs (where typically 60% are the costs of order picking [1])
and the possibility to serve more customers by the same employees in the same time and thus to
further increase the sales and profits.

Although this issue has been analyzed for a long time, and especially in recent years its intensive
development has been taking place [2–4], we were not able to find in the literature a complete, accurate,
fully automatic solution, which would consider the real distribution of orders in the optimization of
product placements. All the papers we were able to find presented only some partial approaches,
with big simplifications, for example that the route length is determined only by one product with the
longest distance from the entrance [2], or that the user is responsible for re-allocating the products by
placing the more frequently used closer to the entrance [5].

Moreover, frequently the list of products within a single order is quite long, especially in the
warehouses which sell goods mostly to retailers, what makes the optimization even more important.
The purpose of this paper is to fill the gap by presenting our solution and by discussing its particular
aspects and their influence on the accuracy and speed of the warehouse optimization process.

First we define the problem (Section 2), then we list the main points of our contribution (Section 3),
next we come to the details in the following order: the literature review (Section 4), presentation of the
proposed solution (Sections 5.1–5.4), experimental results (Section 6) and conclusions (Section 7).

2. Problem Statement

The product placement determines the locations (usually shelves) of particular products in the
warehouse. We define the cost of a product placement as the sum of the shortest order picking routes
over all orders included in the order list for this product placement (Equation (1)). The assumption
behind that is that if robots are used to collect the orders, then they will exactly follow the shortest
routes found. If humans pick the orders, they will in most cases follow the same routes, however,
sometimes they may decide to change the path. This can be however treated as random process and
thus cannot be taken into account in the optimization.

Cost =
Nord

∑
n=1
·Routemin(n), (1)

where Nord is the number orders in the order list and Routemin(n) is the shortest order picking (order
completion) route found for the n-th order.

The problem to solve is to find a product placement with with as low cost as possible. In other
words we need to minimize the cost given by Equation (1) by proper products placing at particular
locations in a warehouse.

For that purpose we developed the product placement optimization algorithm, which we describe
in the following sections.

Appl. Sci. 2020, 10, 4817 3 of 28

The inputs to the algorithm are:

• warehouse layout in the form of transition costs between neighboring locations
• the list of orders

The outputs of the algorithm are:

• the optimized product placement in the warehouse
• shortest order picking routes for each order from the order list for the optimized product placement

Here we only present the main idea and the details about each input and output can be found
in the subsequent sections. The order list contains all considered orders, which should be the orders
expected in a certain future period of time. In most cases these can be the past orders, as we can expect
that the future orders will have the same distribution of products. Otherwise these can be the past
orders from a corresponding season of the last year or the predicted future orders. Each order consists
of several (at least one) products. To complete the order, the locations of all the products that are
included in the order must be visited and the products must be picked. Thus a sub-problem of the main
problem of product placement optimization is to find the quickest (shortest) order completion route
for each order. This is necessary, as the sum of the quickest order picking routes is the main objective
that we want to minimize by optimizing the placement of particular products in the warehouse.

This sub-problem of finding the quickest order completion route is equivalent to the Traveling
Salesman Problem (TSP). While, the whole optimization of product placement is a different, much more
complex problem. The main differences are:

1. In product placement optimization, the task is to find optimal product locations. In TSP the task
is to find the shortest route connecting all considered locations.

2. In product placement optimization, the cost function that we use is the sum of the shortest order
picking routes for a given product placement (Equation (1)). In TSP the cost function is the length
a single route connecting all considered locations.

3. Product placement optimization is a two-level nested task, where the main (outer) process is the
product placement optimization itself and the inner process calculates the cost (fitness) of each
considered product placement by finding the shortest order picking routes and then summing
them to obtain the cost. TSP is a single level problem, without any nested optimization.

4. In product placement optimization the methods developed especially for TSP as nearest neighbor,
or HGReX crossover in genetic algorithms cannot be used in the main process, because we do not
look for any route, there does not exist any sequence of locations and there is no such a concept
as “go to the next location”, which the methods use.

3. Contribution

The main points of the contribution of this paper are:

1. The whole system design, with nested genetic-based optimization, where the cost of product
placement is expressed by the sum of order completions times (Section 5.2).

2. An improved multi-parent version of the HGreX crossover for route optimization (Section 5.4.1).
3. Multiple fast restart procedure to increase the accuracy with minimal growth of the optimization

time (Section 5.4.3).
4. Automatic selection of the order picking route calculation method to balance the optimization

speed and accuracy (Section 5.3).
5. Input data format in the form of transition costs between neighboring locations, what joins

maximal accuracy with minimal user effort for the data preparation Section 5.1.
6. Caching of fitness values (Section 5.4.2).

Appl. Sci. 2020, 10, 4817 4 of 28

4. Related Works

4.1. Warehouse Planing and Operations

A lot of literature positions were devoted to warehouse operations. Van Gils et al. [4] provided
a review and classification of the scientific literature investigating combinations of tactical and
operational order picking planning problems. Grosse et al. [6] analyzed human factors in order picking.
Dijkstra and Roodbergen [7] discussed predetermined order picking sequences, including various
layouts of the warehouse and its aisles. They also discussed a dynamic programming approach
that determines storage location assignments for those layouts, using the route length formulas and
optimal properties. Bolaños Zuñiga [3] presented a formal mathematical model for simultaneously
determining storage location assignment and picker routing, considering precedence constraints based
on the weight of the products and location for each product in a general warehouse. Bartholdi [1]
in his book presented practical considerations for warehouse planning and construction. Rakesh [8]
discussed methods that determine optimal lane depth, number of storage levels, and other parameters
of warehouse layout to minimize space and material handling costs. The book of Davarzani [9]
discussed warehouse planning, technology, equipment, human resource management, connections to
other department and companies. Zunic [10] considered various warehouse designs, especially the
V-shape isles and calculated the order picking routes for these designs. Dharmapriya [11] discussed the
use of simulated annealing for the warehouse layout optimization taking into account the total demand
and traveling cost, but without considering the co-existence of various products in the same orders.

4.2. Genetic Algorithms in Warehouse Optimization

Artificial intelligence methods, in particular genetic algorithms, are solutions that have numerous
successful implementations and that have been rapidly gaining popularity in recent years and were
applied also to warehouse operation optimizations [12–14].

Genetic algorithms have two important advantages: fast intelligent search used to find the product
placement and a global cost function.

Their first advantage is that due to intelligent searching, genetic algorithms do not need to analyze
all solutions (all possible permutations of product locations), which is impossible due to their number.
They usually analyze only a few thousands up to few hundred thousands of product placements (and
not all N! possibilities) to find the solution. Although genetic algorithms do not guarantee finding the
optimal solution every time, the solutions found are close enough to the optimal solution so that in
practice this does not make a significant difference.

Their second advantage is that using genetic algorithms, we do not have to define ourselves the
rules that characterize good solutions. This is a very important, because usually we do not know
how to define the rules optimally, and we only have some intuitive knowledge (e.g., goods often
purchased together should be close to each other). However, the expression of this knowledge in the
strict mathematical form is impossible because of the complexity of the system and the frequently
opposite optimums of various order completions. With genetic algorithms it is enough to formulate
the cost function, which is expressed here as the sum of all order picking route lengths or as the total
time required to complete all orders from a certain period.

In genetic algorithms, the problem is coded using arrays called chromosomes by analogy with
encoding in the chromosomes of biological organisms [12,13]. Each product placement encoded by a
chromosome represents one solution (one individual). Initially, a pool of random solutions is generated
(in each solution the products are randomly assigned to the locations in a warehouse). Then an
intelligent search is applied with the help of three basic operations—selection, crossover and mutation.
The selection mechanism selects individuals for the crossover operator. It is organized by analogy to
the biological process, where the better individuals have a higher probability of becoming parents and
exchanging information to create offspring.

Appl. Sci. 2020, 10, 4817 5 of 28

The crossover operator generates a new individual (child) from the existing ones (parents). In this
way it allows to combine the information encoded in the chromosomes of different individuals into
one new individual. The mutation mechanism exchanges the values between some positions in an
individual chromosome. Then selected individuals are promoted to the next generation. The process
is repeated iteratively as long as the satisfactory solution is found or as long as the improvement in the
solutions is still occurring.

To sum up, it should be stated that the use of genetic algorithms or other evolutionary optimization
methods in applications to warehouse systems, including the optimization of the distribution of goods
and order picking routes can bring measurable benefits to companies using these solutions, accelerating
their work and reducing operating costs.

Although the idea of applying genetic algorithms to warehouse optimization or order picking
route optimization was presented in some literature positions, we have not found a complete automatic
solution, which considers the order distribution, as we present in this paper.

As the optimization of the order picking route (which is equivalent to the traveling salesman
problem— see Section 2) is a much simpler problem than the optimization of product placement in
the warehouse, as it can be expected, much more papers are dedicated to the order picking route
optimization and only few papers discuss the product placement optimization. Below we shortly
present some of them.

Wang [5] applied genetic algorithms to optimize a fitness function consisting of three weighed
terms—the turnover of goods, the gravity center of storage racks and the relevance of the goods.
Wei [15] used a similar approach with genetic algorithm with PMX crossover and the fitness were
defined by the terms of the aisle access, the weight of the items and the dimensions of the shelves.

Avdeikins and Savrasovs [2] applied genetic algorithms to warehouse optimization using order
crossover (OX). Each individual in the population represented a warehouse layout. Each gene was
a unique item. In their solution the fitness of each individual was calculated as the sum of maximal
picking distance for each order— f itness(i) = ∑ Okdmax(I), where O was the order from the set 1, 2, ...,
k and dmax(I) was the distance to furthest picking position. Distances were expressed by an integer
value that for the first item was 1, for second 2, and so forth, increasing by 1 from one SKU to another.
Using such fitness function moves the most frequently sold items closer to the warehouse entry, but
this does not place in neighboring locations items that are frequently sold together, as this solution did
not consider this aspect, neither it determines the real order picking routes and thus this cannot be
considered a complete solution.

As the solution presented by Avdeikins and Savrasovs [2] may at the first glance seem similar to
our solution, it is worth pointing out the differences. In our solution the fitness is calculated as a sum of
all order picking route lengths. This is a fundamental difference between their work and our solution,
as this allows us to minimize the time of the real order picking operations and thus for obtaining very
accurate solutions, which also minimizes the distances between items contained in one order. The next
difference is, that we use real transition costs (or real distances) and not an approximation by increasing
the distance always by one, as was used by them. The next difference is that our solution determines
as well the product placement as the fastest order picking routes. Moreover, we use newer, effective
crossover operators and propose a lot of improvements to accuracy and speed of the optimization.

4.3. Crossover Operators

Proper design of the crossover operator is a crucial factor in genetic algorithm performance. In this
subsection we review the crossover operators and present in detail the AEX and HGreX operators,
which are used in our solution.

Crossover allows to combine together the most valuable information from two or more different
chromosomes (parents) into one chromosome (child) that can represent a better solution than its
parents. For that kind of problems, where each item can occupy only one location at a time and each
location must be occupied by one item, as order picking route optimization or product placement

Appl. Sci. 2020, 10, 4817 6 of 28

optimization in a warehouse, special crossover operators must be used to ensure that there will be no
duplicate elements and that each element will be present in the newly created individual. Several such
crossover operators have been developed.

Hassanat and Alkafaween [16] proposed several crossover operators, such as cut on worst
gene crossover (COWGC) and collision crossover, and selection approaches, as select the best
crossover (SBC). COWGC exchanges genes between parents by cutting the chromosome at the
point that maximally decreases the cost. The collision crossover uses two selection strategies for
the crossover operators. The first one selects this crossover operator from several examined operators,
which maximally improves the fitness and the other one randomly selects any operator. The SBC
algorithm applies multiple crossover operators at the same time on the same parents, and finally
selects the best two offspring to enter the population. Hwang presented the order crossover (OX) and
cycle crossover (CX) operators [17]. Tan proposed heuristic greedy crossover (HGreX) and its variants
HRndX and RProX [18]. Other popular crossover operators comprise partially mapped crossover
(PMX) edge recombination crossover (ERX) and alternating edges crossover (ERX) [19].

Several comparisons of the performance of these crossover operators can be found in the
literature [19]. Based on these comparisons, the best performing methods for the traveling salesman
problem were most frequently the variants of the HGreX crossover operator and the second best was
the AEX crossover operator. For this reason we decided to start our approach from applying these two
crossover operators for our warehouse optimization problem.

HGreX is only suitable for those kinds of problems, where the cost of transition between two
positions can be defined. For example, it can be used to find the shortest order picking path, as we
can define the distances (costs) between particular locations that contain the products from the orders
and thus must be visited. However, it cannot be applied to optimization of the product placement in
the warehouse, because the distribution of products is not directly related to any single order picking
route, but to a whole set of different routes. Thus in this case, we can define the global goal, which is
the minimization of sum of the lengths of all order picking routes, but we cannot express the cost
between any two positions. AEX on the other hand does not use the transition cost and therefore
can be applied also to the problems, where such cost cannot be defined, as the product placement
optimization in a warehouse. First we will present the AEX operator and then the HGreX operator.

AEX creates the child from two parents by starting from the value, which is at the first position in
the first parent. Then it adds this value, from the second parent, which in the second parent follows the
value just taken from the first parent. Then again a value from the first parent that follows the value
just selected from the second parent and so one. If this is impossible, because some element would
repeat, then a random not selected so far element is chosen. In the presented example each position in
the chromosome represents one location in the warehouse and each letter represents one product.

Let us assume we have two parents P1 and P2:

P1 = [A B C D E F G H]
P2 = [H A D B G F E C]

To create the child, We start from any position of the first parent P1. Let us start from A. Then we
add this value which is in the second parent after A, so we add D

Ch = [A D _ _ _ _ _ _]
and the values remaining in the parents:
P1 = [A B C D E F G H]
P2 = [H A D B G F E C]

Next we add to the child this value, which is in P1 after D, that is E

Ch = [A D E _ _ _ _ _]
and the values remaining in the parents:

Appl. Sci. 2020, 10, 4817 7 of 28

P1 = [A B C D E F G H]
P2 = [H A D B G F E C]

Next we add to the child this value, which is in P2 after E, that is C

Ch = [A D E C _ _ _ _]
and the values remaining in the parents:
P1 = [A B C D E F G H]
P2 = [H A D B G F E C]

Next we add to the child this value, which is in P1 after C, that is D. However, D has already been
used, so this is not a valid choice. In such a case we select randomly one of the remaining values in P1.
Let us select G.

Ch = [A D E C G _ _ _]
P1 = [A B C D E F G H]
P2 = [H A D B G F E C]

Next we add to the child this value, which is in P2 after G, that is F

Ch = [A D E C G F _ _]
and the values remaining in the parents:
P1 = [A B C D E F G H]
P2 = [H A D B G F E C]

Next we add to the child this value, which is in P1 after F, that is currently H

Ch = [A D E C G F H _]
and the values remaining in the parents:
P1 = [A B C D E F G H]
P2 = [H A D B G F E C]

And finally we add to the child this value, which is in P2 after H, that is currently B and the
child becomes:

Ch = [A D E C G F H B]

The HGreX crossover operator works in similar way to AEX. The difference is, that it does not take
alternatively the elements from both parents, but always chooses this element from the two parents to
which the distance (cost) from the current element is shorter (lower).

Let us assume we have the same two parents P1 and P2:

P1 = [A B C D E F G H]
P2 = [H A D B G F E C]

To create the child, we start from any position of the first parent P1, let us start from A. Then we
add this value which has lower transition cost (shorter distance) to A from the two values that appear
directly after A in both parents, that is from B and D. Let us assume that the cost of going from A to B
is 12, and from A to D is 15. So we choose B as the next position in the child.

Ch = [A B _ _ _ _ _ _]
and the values remaining in the parents:
P1 = [A B C D E F G H]
P2 = [H A D B G F E C]

However, if the costs were—A to B: 18, and from A to D: 15, then we would have chosen D as the
next position in the child. The conflicts are resolved identically as in AEX.

In Section 5.4.1 we introduce multi-parent versions of the crossover operators.

Appl. Sci. 2020, 10, 4817 8 of 28

5. The Proposed Method

In this section, we describe the proposed genetic algorithm based method that optimizes the
product placement and order picking routes in the warehouse. The purpose of the method, as described
in Section 2, is to minimize the product placement cost given by Equation (1), this is to find such
assignment of particular products to positions in the warehouse, which minimizes the sum of the
shortest order picking routes over all orders from the order list. Thus, the optimization process consists
of the outer procedure (main process), which is the product placement optimization (presented in
Section 5.2) and the inner procedure (the sub-process), which is the order picking route optimization
for each considered product placement (presented in Section 5.3).

5.1. Data Format and Problem Encoding

This subsection explains the input data format and the problem encoding in genetic algorithm
chromosomes. At the end also calculation of the transition cost matrix is explained.

To determine the quality of a given product placement (see Algorithm 1), first we must find the
order picking routes for each order (see Algorithm 2). To find them, we must calculate the transition
cost matrix (costs of moving between each pair of locations in the warehouse), and to calculate the full
matrix, the user must provide the transition costs (or distances) between the adjacent locations.

Figure 1 shows a sample layout of a very small warehouse, which we use to explain the data
format and problem encoding. Of course the real warehouses, for which the methodology was
created will be much larger. In this example the distances entered by user are shown with the color
lines in Figure 1 and the distance matrix with these entries is shown in Table 1. As distances are
symmetric (e.g., dist(loc5, loc8) = dist(loc8, loc5)), it is enough to fill the distances over the diagonal.
The remaining distances (e.g., dist(loc7, loc10)) will be calculated automatically.

Figure 1. Sample warehouse structure used to explain the data format and problem encoding. Distances
between neighboring locations: in blue the distances of 1 unit, in red of 1.5 unit, in green of 3 units,
in violet of 4 units.

The warehouse layouts with product placements and the order picking routes are encoded
in the chromosomes. Let us assume that the number of available products equals the number
of locations in the warehouse, that is, 13 for this sample warehouse and the products names are:
A,B,C,D,E,F,G,H,I,J,K,L,M. Let us also assume that there are three different orders, which occur with
the same frequency and which consist of the following products:

Order1: A,B,C,D,E,F,G
Order2: G,H,I,J,K
Order3: A,B,K

For the product placement optimization we will encode the problem in a chromosome with
13 positions. At the beginning we generate a population of random individual chromosomes
representing the product placements (see Algorithm 1). Let us assume, the 15th randomly generated
individual looks as follows:

Layout15 = [G H E F I J A C D K B L M]

Appl. Sci. 2020, 10, 4817 9 of 28

In this case the product G is at the location 1 in Figure 1, product H at location 2, and so on.
We need to find the shortest order picking routes for each individual (each product placement) to
calculate its fitness. For this purpose, we generate a population of random individual chromosomes
representing the routes. There is always 0 (which represents the entrance) at the first position and the
other positions are occupied by randomly ordered products from this order. Let us assume, the 12th
randomly generated individual for Order3 looks as follows:

Order3-Route12 = [0 A K B 0]

The length of this route lengthR is given by the formula:

lengthR = dist(loc0, loc7) + dist(loc7, loc10) + dist(loc10, loc11) + dist(loc11, loc0)

as in Layout15 loc0 is the entrance, product A at location 7, product K on location 10 and product B at
location 11.

Table 1. The original distance matrix corresponding to the warehouse structure shown in Figure 1
containing only the values required by the algorithm.

. 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 4 3 3
1 1 3
2 1
3 3 3
4 1 1 1.5
5 1 1.5 1 1.5
6 1.5 1 3
7 1
8 1
9 3 3

10 1
11 1
12 1
13

This input data format was specially designed in order to require minimal effort from the user
entering the data, and at the same time to allow for maximal accuracy of calculations. Only the costs of
transitions between neighboring locations are required in the input data. However, if the user wants to
enter also the transition costs between some further locations, he is free to do it. The program preserves
all distances entered by the user and only calculates the remaining distances.

The transition cost between locations can be entered as distance in meters, but also in seconds as
the time needed to cover this distance. This takes into account that for example there is higher cost
of covering the same distance vertically than horizontally or that turning around the corner requires
more time than covering the same distance along a straight line and thus allowing to obtain higher
accuracy of the order picking times. However, the units do not make any difference to the proposed
method, which simply considers then as units of cost.

As the available plans of different warehouses can be in many different more or less usable
formats, creating a separate software for preparation of the input data for each individual warehouse
is no practical, as it would take more time than to enter the transition costs manually. The program
does not need to know the geometrical structure of the warehouse. This is an additional advantage,
because in this way much less work is required to prepare the input data.

Appl. Sci. 2020, 10, 4817 10 of 28

Algorithm 1 Product Placement (PP) Optimization Process
Input 1: Warehouse layout in the form of transition costs between neighboring locations (see Table 1)

Input 2: The list of orders

Output 1: The optimized product placement (PP) in the warehouse

Output 2: Shortest order picking routes for each order for the optimized PP

1: With Dijkstra algorithm calculate the full matrix D of transition costs between product locations
2: for k = 1 to numberO f ProcessRestarts do

3: Generate the random population of W PPs
4: if numberO f ProcessRestarts > 1 then

5: maxIterationPP = 10 else maxIterationPP = 1000
6: end if
7: for n = 1 to maxIterationPP do

8: (Calculate the fitness of w-th PP)
9: for i = 1 to popSizePP do

10: if i-th PP is already in cache then

11: Retrieve costPP(i) from cache
12: Calculate the fitness f itnessPP(i) of i-th PP according to Equation (3)
13: else

14: for j = 1 to numOrdersWithDi f f erentItems do

15: Run Algorithm 2 to find the shortest route for the j-th order and its length lengthR(i, j)
16: Multiply lengthR(i, j) by the number of orders, which contain the same items Nrep(j)
17: end for
18: Calculate cost of i-th PP as the sum of the lengths lengthR of the all order best routes
19: Calculate the fitness f itnessPP(i) of i-th PP according to Equation (3)
20: Update the cache
21: end if
22: end for
23:
24: for p = 1 to popSizePP do

25: Select parents for each child PP
26: Generate the child PP with the AEX crossover operator
27: end for
28: if f itnessPP of the best PP has not improved for NBIPP iterations then

29: break
30: end if
31: Sort the parent and child population of PPs
32: promote popSizePP PPs from best parents and best children to the next generation
33: Apply mutation and update the cache for each mutated PP, which is not already in cache
34: end for
35: if numberO f ProcessRestarts > 1 then

36: Save the current population of PPs and their f itnessPP
37: end if
38: end for
39: if numberO f ProcessRestarts > 1 then

40: set numberO f ProcessRestarts = 1
41: Restore the population of the best PP and continue the optimization from line 4
42: end if
43: Return the best PP and the corresponding set of the shortest order picking routes

Appl. Sci. 2020, 10, 4817 11 of 28

Algorithm 2 Order Picking Route Optimization Process
Input 1: The matrix D of transition costs between product locations

Input 2: The list of items in the j-th orders

Input 3: The i-th product placement

Output 1: The shortest route for the j-th order completion routemin(i, j)

Output 2: The length of shortest route for the j-th order completion lengthRmin(i, j)

1: if number of products in j-th order <= Threshold1 then

2: Determine routemin(i, j) by evaluating permutations
3: else if number of products in j-th order <= Threshold2 then

4: if routemin(i, j) is in cache then

5: Retrieve routemin(i, j) and lengthRmin(i, j) from cache
6: else

7: Generate the random population of popSizeR routes
8: for k = 1 to maxIterationR do

9: for m = 1 to popSizeR do

10: Calculate the length of each route lengthR(i, m)
11: end for
12: if the length of the shortest route did not decrease for NBIroute iterations then

13: Return routemin(i, j) and lengthRmin(i, j)
14: end if
15: for m = 1 to popSizeR do

16: Calculate the fitness of the routes f itnessR(i) for the selection operator according to

Equation (5)
17: Select parents for each child route
18: Generate the child route with the crossover operator
19: end for
20: Apply mutation to routes
21: Sort the parent and the child routes
22: if the best route fitness has not improved for NBIroute iterations then

23: break
24: end if
25: promote popSizeR routes from best parents and children to the next generation
26: end for
27: Update cache
28: end if
29: else

30: Determine the routemin(i, j) with the Nearest Neighbor Algorithm
31: end if
32: Return routemin(i, j) and lengthRmin(i, j)

To calculate the remaining transition costs between each pair of locations (line 1 in Algorithm 1).
any algorithm that can do this can be used, for example Dijkstra [20], Floyd Warshall [21] or
Bellman-Ford Algorithm [22]. We use Dijkstra Algorithm, because it is the fastest one, especially
for sparse graphs (as is the case here), where each vertex is connected only with few other vertices.
For a graph of v vertices (locations) and e connecting edges (transition costs), calculating all the
distances with Dijkstra Algorithm with a priority queue has the complexity O(v(e + vlogv)), while the
complexity of the two other algorithms is O(v3) and O(ev2).

Calculating the cost matrix with the Dijkstra Algorithm takes only a very small, practically
negligible, fraction of the time of the whole optimization of the product locations. Moreover,
once calculated, the cost matrix can be re-used for other product placement as long as the physical
layout of the warehouse does not change. The A* Algorithm [23] can be faster than Dijkstra only

Appl. Sci. 2020, 10, 4817 12 of 28

when the approximate cost from the current to the target node can be assessed. However, in this
problem, we are not able to assess the approximate cost, because we do not know the coordinates of
particular locations, but only the transition cost between neighboring locations. Considering these two
factors it is not justified to demand from the user preparing additional data with coordinates of each
location in order to use the A* Algorithm, as in this case the gain of the CPU time (usually less than a
second) would not compensate the lost of the user’s time (usually several hours) spent on preparing
the additional data.

5.2. Product Placement Optimization

In this subsection we present the algorithm used to optimize the placement of particular products
in the warehouse in order to minimize the total time of completing the orders from the order
list. The main optimization process is shown in pseudo-code in Algorithm 1 and as diagrams in
Figures 2 and 3. The sub-process, which determines the shortest order picking routes is discussed in
the next section.

Figure 2. Product Placement Optimization (main process).

Appl. Sci. 2020, 10, 4817 13 of 28

Figure 3. Product Placement Optimization (inner block of the algorithm shown in Figure 2).

Now will explain the base version of the algorithm with numberO f ProcessRestarts = 1 (line 2
in Algorithm 1) and in Section 5.4.3 we will explain the use and purpose of multiple process restarts
(numberO f ProcessRestarts > 1).

The process starts in line 1, where the Dijkstra algorithm calculates the full matrix D of transition
costs (or distances) between product locations (see Section 5.1 for details). In line 3 the initial random
population of product placements (PP) is generated. In line 7 the genetic algorithm starts the
optimization. In line 10 the algorithm checks if any of the current individuals existed previously
in current or any past epoch. If so the fitness of such an individual is not calculated but retrieved
from the cache. In line 15 the shortest route for completing each different order for the current PP is
calculated with Algorithm 2. Since we need to minimize the sum of order completion times, for each
considered placement of products in the warehouse we need to calculate the time of each order
completion and then add the times. To minimize the computational complexity of this step we group
orders consisting of the same products together and assign to such an aggregated order a higher
weight, which equals the number of single orders of which the aggregate order is composed. In line 18
the cost of the current PP is calculated, next the fitness is calculated from the cost and the cache is
updated. In line 25 the parents for each child are selected and in the next line the child is created with
the AEX crossover operator. If the fitness of the best PP has not improved for NBIPP iterations (line 28)
then the optimization is finished. In line 32 the promotion of children and best parents to the next
generation takes place. In the next line the mutation is applied and the cache is updated. Finally in the
last line the algorithm returns the best product placement and the corresponding set of the shortest
order picking routes.

In order to keep the selection pressure constant and thus the exploration of the search space
stronger at earlier stages and the convergence faster at later stages of the process [24] as well in product
placement optimization as in the sub-process of order picking route optimization, we use use fitness

Appl. Sci. 2020, 10, 4817 14 of 28

function normalization. Thus the cost of a given product placement and the lengths of the order
picking routes are not used directly as fitness values, but they are re-scaled. We used roulette wheel
selection as well for the product placement optimization as for the order picking route optimization.
According to Razali [25] and to our experiments, roulette wheel selection and tournament selection
give comparable results. Also the selection pressure can be controlled in both (by number of candidates
for a parent in tournament selection and by the shape of fitness function in roulette wheel selection).
We chose roulette wheel selection for debugging purposes, as with this selection it was easier for to
analyze the detailed algorithm behaviour and to fine-tune it.

The cost of the i-th product placement costPP(i) expresses the sum of the shortest routes found
for each order picking and is given by Equation (2):

CostPP(i) =
Ndi f f

∑
j=1

Nrep(j) · lengthRmin(j) (2)

where Ndi f f is the number of different orders, Nrep(j) is the numbers expressing how many times the
j-th order is repeated on the order list and lengthRmin(j) is the best (shortest) route found for the j-th
order completion. The value costPP is used to assess the progress and the results of the optimization
(see Figure 3).

The fitness f itnessPP(i) of the i-th product placement used by the roulette wheel selection is
given by Equation (3):

f itnessPP(i) = c1 +
costPPmax − costPP(i)
costPPmax − costPPmin

, (3)

where c1 is a coefficient (the lower c1, the stronger preference for the individuals with lower cost),
costPPmax is the maximal cost, costPPmin is the minimal cost and costPP(i) is cost of the i-th product
placement in the population.

The variable f itnessPP take larger values for better individuals to ensure that better individuals
have higher probability of being selected as parents, while costPP take smaller values for better
individuals, as they express the product placement cost, which equals the sum of lengths of the
shortest routes.

We use dynamic mutation probability (the probability of exchanging some places in the
chromosome), which increases gradually during the optimization. Also the probability of mutation is
higher for the individuals with lower fitness. This minimizes the chance of disrupting a high-fitness
individual and enhanced the exploratory role of low-fitness individuals. Lower mutation rates also
allow for more effective caching of the fitness values (see Algorithm 1). The effectiveness of this
approach was based on various observations [26]. We use two different mutation operators—Reverse
Sequence Mutation (RSM) with and Partial Shuffle Mutation (PSM) with the probability of applying
RSM being three times higher. The choice of these mutation operators is based on the experimental
study by Otman et al. [27]. The total probability mutationProb(i) of applying mutation to the i-th
chromosome is expressed by Equation (4).

mutationProb(i) = (ci
√

iter + cn · iterNBI)
Fitnessmax

Fitness(i) + c f
, (4)

where ci, cn and c f are coefficients, iter is the current iteration (epoch) of the genetic algorithm, iterNBI
is the number of iterations without improvement of the best individual. Default universal values of
the coefficients for our purposes were experimentally set to ci = 0.00001, cn = 0.00001 and c f = 0.3.
Further refining of the mutation scheme, together with the mutation—crossover interactions is quite a
complex issue and it will be one of our future research topics, when we will attempt to find optimal
schemes for different situations.

Appl. Sci. 2020, 10, 4817 15 of 28

5.3. Optimization of Order Picking Routes

As previously discussed, the task of optimization of order picking routes is a part of the
optimization of product placement in the warehouse. The sum of the lengths of the order picking routes
for a given product placement is its cost costPP—the lower the better (see Equation (1)). The process is
presented in the pseudo-code in Algorithm 2 and in the diagram in Figure 4.

During the order picking route optimization the locations of products are constant. The product
locations are changed by Algorithm 1 only before each round of order picking route optimization.
As discussed in Section 5.1, the order picking route starts from the entrance, then visits all locations of
products listed in the current order and returns to the warehouse entrance. The task is to optimize the
sequence of visiting the locations to obtain the shortest route.

There are two main families of approaches to finding the shortest routes connecting a list of
locations—the local search methods (e.g., nearest neighbor or k-opt [28]) and population methods
(e.g., genetic algorithms or ant colony optimization [28]). In the Nearest Neighbor Algorithm,
we always go from the current location to the nearest yet not visited location. In this way the algorithm
implements local search. The local search guaranties finding the nearest location to the current location
with 100% probability. However, the drawback of the local search approaches is that they do not
include the global view of the situation. Although there was some research to improve these methods,
the population methods still have the advantage of applying the global search. A sample route
determined with the nearest neighbor, which shows the problems of this method, is shown in Figure 5.

Figure 4. Order picking route optimization.

Appl. Sci. 2020, 10, 4817 16 of 28

Figure 5. A sample route (in red) connecting the locations 0, 4, 6, 2, 1, 12 determined with the Nearest
Neighbor Algorithm.

As will be shown in the experimental evaluations in Section 6 and as it is also known from
previous studies [29], when the Nearest Neighbor Algorithm is used instead of genetic algorithms for
that kind of problems, the calculation time can be dramatically reduced, however at the cost of worse
results (on average 10% longer routes).

To determine the shortest route for completing each order, our method can use three
different algorithms:

• Iterating through half of the possible permutations (as the transition cost matrix is symmetric—we
can start the order completion from the end or from the beginning of the determined route, so we
do not need to check all permutations, but only half of them). This method is 100% accurate, but is
the slowest one expect for very short orders. As its complexity is O(n!), it is impractical for orders
above 10 positions and technically impossible to use for orders over 15 positions.

• Genetic algorithm with the multi-parent HGreX crossover operator. This method is faster than
iterating over permutations, but does not guarantee finding the best solution, but only the solution
close to the best one. (The basic version of the HGreX crossover is presented in Section 4.3 and
the multi-parent extension in Section 5.4.1.) The fitness of the i-th order picking route is given by
Equation (5). f itnessR(i) takes larger values for better individuals to ensure that they have higher
probability of being selected as parents, while lengthR take smaller values for better individuals,
as this value expresses the route length.

FitnessR(i) = c2 +
lengthRmax − lengthR(i)
lengthRmax − lengthRmin

, (5)

where c2 is a coefficient, which determined the strength of the selection (the lower c2, the stronger
preference for the individuals representing shorter routes) lengthRmax is the maximal and
lengthRmin is the minimal length of the order picking route in the population. This ensures
that the re-scaled proportion between the maximal and minimal fitness is constant during the
optimization (see Section 5.2 for explanations).

• Nearest Neighbor Algorithm. This is the fastest method. It also does not guarantee finding
the best solution, and in application to our problem it usually finds worse solutions than
genetic algorithms.

To provide the optimal trade-off between the accuracy and the speed of the route optimization,
the three above algorithms can be applied and the values Threshold1 and Threshold2 are used to
determine, which particular algorithm will be used for a given order, depending on the number of
products in the order (see Algorithm 2 and Figure 4).

The number of possible order picking routes is equal to the number of permutations of a k-element
set, which is k!. If there are fewer than k = 7 products in a given order than it is faster to evaluate
half of possible permutations (for k = 6 there are 6!/2 = 360 various routes to examine.) than to use
genetic algorithms. For k = 7 we need to evaluate 7!/2 = 2520 permutations. On the other hand
genetic algorithms are usually able to find the solution evaluating fewer routes (e.g., with population
of 50 individuals and 10 iteration, what gives only 500 evaluations). However, genetic algorithms

Appl. Sci. 2020, 10, 4817 17 of 28

have additional time overhead for operations as selection, crossover, generating random numbers,
and so forth. So for 7 products in the order the calculation time is comparable and for more than seven
products, genetic algorithms are faster. Thus we propose to set Threshold1 = 7.

As can be seen in Section 6, the results obtained with genetic algorithms with multi-parent
HGreX crossover are better those obtained with Nearest Neighbor Algorithms. On the other hand
Nearest Neighbor Algorithm is faster than genetic algorithms. However, its speed advantage is much
higher in a single optimization of the route, where it can be two orders of magnitude faster. In our
system, when the route optimization is an iteratively performed sub-process of the product placement
optimization, the differences in speed between these two methods is much lower, below one order
of magnitude. There are two reasons for that. The first one is that there is implemented cashing of
the already calculated routes (see details in Section 5.4.2). The caching overhead is comparable to the
computational effort of Nearest Neighbor Algorithm, so it can only accelerate the genetic algorithm
based route calculation. The second reason is that the time of running the main process (product
placement optimization) is the same in both cases.

Threshold2 indicates above which number of products in the order Nearest Neighbor Algorithm
should be used to optimize this order picking route. The recommendation to obtain the best results
is to set Threshold2 to such high value that the Nearest Neighbor Algorithm will not be used at all
(e.g., Threshold2 = 1000). However, if our data is very big and computational and time resources are
limited, we can set Threshold1 = 0 and Threshold2 = 0 and thus only the Nearest Neighbor Algorithms
will be used for the route optimization. Sometimes it happens that there are only very few long orders
(e.g., two orders of 50 products and all remaining orders below 20 products), so these few orders
will not have significant influence on the final product placement and we can use Nearest Neighbor
Algorithm for them to accelerate the calculations and genetic algorithms for all other orders (in this
case by setting for example, Threshold2 = 30).

5.4. Improvements and Accelerations of the Process

We use the following improvements to obtain better results and to accelerate the process:
multi-parent crossover operator, order grouping, caching product placement costs and order
picking routes of evaluated individuals, multiple restart, switching among permutations/genetic
algorithms/nearest neighbor for route optimization, and parallelization of the process. In the following
subsections we present particular improvements. Influence of these improvements on the obtained
results is evaluated experimentally and presented in tables and figures in Section 6.

5.4.1. Multi-Parent Crossover Operators

As the use of multi-parent crossover operators can significantly accelerate (up to three times)
the convergence speed of the classical genetic algorithms [30,31] (as well their single-objective as
multi-objective version built upon the NSGA-II algorithm [32]), one of the ideas of this work was
to apply the multi-parent approach to the crossover operators in the route and product placement
optimization problems in hope that it can provide better results.

There is also another rationale behind increasing the number of parents in the HGreX crossover
operator. In the Nearest Neighbor Algorithm the positions are added one by one to the route; each time
the closest position is appended to the last position. In the extreme case, when we have a big population
so that almost each possible two-element sequence exists in the population and the number of parents
in the multi-parent HGreX crossover equals the population size - the so constructed genetic algorithm
becomes equivalent to the nearest neighbor search. But on the other hand increasing the number
of parents only a little bit, may add the local search component to the genetic algorithms and thus
improve the results.

Let us assume that we will use four parents to create each child.

Appl. Sci. 2020, 10, 4817 18 of 28

P1 = [A B C D E F G H]
P2 = [E G F H A C B D]
P3 = [G H A E B F C D]
P4 = [E F H D B A G C]

Let us start from the fist position in P1, this is from A. Let us assume that there are the following
distance d(A,B) = 12, d(A,C) = 15, d(A,E) = 18, d(A,G) = 11. Since in this the distance d(A,G) is the
smallest the next position in the child will be G.

Ch = [A G _ _ _ _ _ _]
and the values remaining in the parents:
P1 = [A B C D E F G H]
P2 = [E G F H A C B D]
P3 = [G H A E B F C D]
P4 = [E F H D B A G C]

Then Let us assume that there are the following distance d(G,H) = 12, d(G,F) = 8, d(G,H) = 7,
Since in this the distance d(G,H) is the smallest the next position in the child will be H, and so on.
Conflict resolving is implemented in the same way as in the two-parent version of the operator. In case
of AEX we were appending the consecutive positions to the child sequentially from consecutive parents.

We conducted the experiments with various number of parents and the conclusion was that
for this problem about 8 parents is the optimal number for the modified HGreX crossover operator.
As a result of applying multiple parents for the HGreX crossover, about a two-fold reduction of the
number of iterations was observed, but what is more important, also shorter order picking routes
were obtained (see the experimental results in Section 6 for details). On the other hand, increasing the
number of parents for the AEX crossover did not significantly change the results.

5.4.2. Caching Cost of Product Placements and Lengths of Order Picking Routes

In product placement optimization the computational effort of calculating cost costPP
(see Algorithm 1) of an given product placement and then based on it the fitness value of an individual
is high, as it requires finding the shortest picking routes for all orders. Practically always either
some parents are promoted to the next generation or some children are identical to some parents
(even more in the final stages of the optimization). In this case, we do not calculate the cost of such
an individual, but instead we directly assign the already calculated and cached cost of the previous
identical individual (See Algorithm 1 and Figure 2). We also check the cache after mutation.

The situation with order picking route optimization with genetic algorithms is different. Here the
computational effort of calculating the route length and determining the fitness of an individual is
low and there is no use to implement caching for that. However, the cost of calculating the shortest
route for an order (which may require several thousands calculations of route lengths represented by
all individuals in all iteration of the optimization) is much higher and it makes a sense to implement
cache here. Thus before calculating the shortest route for a given order routemin(i, j) (See Algorithm 2
and Figure 4), the cache is checked if it already contains the route for the current order j, where all the
positions of products in the warehouse were the same. To clarify this, if the whole product placement
can be found in cache, the sub-process of route calculations is not invoked from the main process, as the
cost of this product placement costPP is retrieved from cache. However, if the product placement
differs on some positions, the sub-process is invoked and it is checked for each order, if the positions
in the product placement occupied by the products contained in the current orders already exist in
the cache. If so, the route length lengthRmin(i, j) is retrieved from the cache. Otherwise it is calculated
and the cache is updated. The order cache is used only for route calculation with genetic algorithms.
(See Algorithm 1 and Figure 2).

Appl. Sci. 2020, 10, 4817 19 of 28

The caching is not used for the Nearest Neighbor Algorithm, as the time overhead for the cache is
comparable to the time used by nearest neighbor. For the same reason the cashing is not used with
very short orders, where the shortest route is determined by permutations.

The caching obviously does not influence the results of the optimization and only allows to
accelerate it. It is also worth noticing that the caching is more effective at the later stages of the
optimization, as at the beginning the individuals change rapidly. In our experiments the caching
allowed to accelerate the product placement optimization several times (see Section 6).

5.4.3. Multiple Restart

It may take many iterations for genetic algorithms to converge to the optimal solution. However,
the fastest progress occurs at the beginning of the optimization. Genetic algorithms use some random
numbers and thus are a stochastic process and as a result different solutions can be found with
consecutive runs of the optimization. We observed that in the product placement optimization the
best approach is to run the optimization several times only for a few iterations and save the current
population. Then the optimization will continue only with the population of the best solution. It is
a reasonable approach, because most frequently the optimization, which starts as the best also ends
as the best. Thus this method allows joining time efficient optimization with good results (see the
experimental verification in Section 6).

5.4.4. Order Grouping

All orders containing the same set of products are grouped together into one order. In this way
the optimal picking route for this order has to be determined only once. For the purpose of calculating
the cost and fitness of a given product placement, the length of the obtained route is multiplied by the
number of the orders consisting of the same products (see Algorithm 1).

5.4.5. Three Route Optimization Methods

As described in Section 5.3, for the optimal balance between calculation speed and accuracy of
the results, the order picking route in Algorithm 2 can be optimized with permutations (only short
routes), genetic algorithms or the Nearest Neighbor Algorithm.

5.4.6. Process Parallelization

Genetic algorithms scale well for parallel implementations in the cases, where the cost of
calculating the fitness function is high, because in these cases there is no need for frequent
communication among threads. It is exactly the case of product placement optimization, where using
any number of CPU cores up to the number of individuals in the population results in practically a
linear increase of performance in the function of the number of CPU cores. Moreover, if there are more
CPU cores available than the population size, it makes sense to increase the population size, at least up
to three times to use more CPU cores. Although after exceeding the optimal population size the scaling
with the growth of CPU number is no longer linear, this implementation is very simple. The other
alternative with few hundreds of available CPU cores is to parallelize the calculation of particular
order picking routes, but since we did not have access to such computational resources, we were not
able to verify the efficiency of this approach.

6. Experimental Results

In this section we experimentally evaluate the method and improvements presented in the
previous sections.

We conducted the experiments with our own software, created in C# language. The source code
and the data used in the experiments (warehouse plans with lists of corresponding orders) are available

Appl. Sci. 2020, 10, 4817 20 of 28

from the web page www.kordos.com/appliedsciences2020. Three of these warehouse structures (floor
plans) and some sample orders for the warehouse w3 are additionally presented in Figures 6 and 7.

The following algorithms of order picking route optimization were evaluated—nearest neighbor,
genetic algorithms with HGreX crossover, genetic algorithms with multi-parent HGreX crossover.

The following algorithms of product placement optimization are evaluated: genetic algorithms
with AEX crossover, genetic algorithms with multi-parent AEX crossover, genetic algorithms with
multi-parent AEX crossover and multiple restart.

As we could not find in literature a complete automatic solution for product placement
optimization, which considers the order picking routes, as the solution presented here (see Sections 1
and 4.2), we obviously can not compare numerically our solution to other solutions on the same data.

First we evaluated the multi-parent modifications of the HGreX crossover operator to determine
the optimal number of parents (see Sections 5.3 and 5.4.1). The results are presented in Table 2 and
in Figure 8. Based on our tests the population sizes of about N = 80–120 allowed for the fastest
convergence of the process (the lowest number of fitness value calculations). For larger populations,
fitness function evaluations had to be performed more times to reach to the same results, so even if it
took fewer iterations, the time to reach the results was longer [33]. However, if the populations were
smaller it also required more evaluations of the fitness function and if the populations were too small,
the convergence of the algorithm was impossible. Only for route optimization, when the number of
products in the order was 20 or less, lower sizes of population were used and larger populations may
be useful for longer chromosomes than those we used in the experimental evaluation.

Figure 6. Samples warehouse structures (floor plans) of the warehouses w5 and w1 used in the
experiments. Each numbered cell represents one product location. Blue lines show the distance of 1
unit, red lines of 2 units and green lines of 3 units.

www.kordos.com/appliedsciences2020

Appl. Sci. 2020, 10, 4817 21 of 28

Figure 7. A sample warehouse structure (floor plan) of the warehouse w2 used in the experiments.
Each numbered cell represents one product location. Blue lines show the distance of 1 unit, red lines of
2 units and green lines of 3 units.

Figure 8. The obtained route length lengthR (the lower the better) and product placement cost costPP
(the lower the better) and the number of iterations for route optimization iterR with MP-HGreX and
for product placement optimization iterP with MP-AEX (graphical representation of the data from
Tables 2 and 3).

The stopping criterion for experiments shown in Table 2 was 20 iterations without improvement
of the best individual. The number of reported iterations is the number after which the best individual
was found. As it can be seen, increasing the number of parents in the crossover operator definitely
reduces the number of required iterations (up to two times for 8 parents in this case) and what is more
important, allows for obtaining better fitness values. However, when using more parents than the
optimal number, the optimization again slows down and using more than 20 parents also the obtained
route lengths are beginning to deteriorate (to increase). As discussed in Section 5.3, for large number
of parents the HGreX operator behaves almost like the nearest neighbor search method, and also its
performance tends to the same value.

Appl. Sci. 2020, 10, 4817 22 of 28

Table 2. A sample route length lengthR and number of iterations iterR to obtain this length for a
modified multi-parent HGreX crossover operator for an order of 60 products with fixed product
placement (averages of 10 runs). NN in the last column denotes the result obtained for the Nearest
Neighbor Algorithm.

Number of Parents 2 3 4 6 8 10 14 20 35 50 80 NN

avg. lengthR 325 323 320 315 310 312 315 321 326 331 339 355
agv. iterR 217 199 147 128 103 124 155 182 191 220 243 -

std. dev. lengthR 3.5 3.8 3.9 3.4 3.4 3.8 4.0 5.4 5.2 9.2 8.8 -
std. iterR 46 52 39 26 33 31 38 68 70 79 67 -

The number of iterations used by the genetic algorithm with the HGreX crossover is comparable to
that required by other modern crossover operators to find the shortest route for comparable population
size [34]. Even if running the optimization for more iterations may find a little shorter route, there is
usually no further gain for the product placement cost, as this only very rarely triggers the change of
product locations. For the very rarely occurring orders it is enough to run the optimization for fewer
epochs or to use Nearest Neighbor Algorithm, independently of the order length, because the quickest
improvement occurs at the beginning of the optimization and the influence on the optimal product
placement of very rare orders is also very low, as they are dominated by the more frequent orders.

Next we tested the usefulness of the multi-parent AEX crossover in product placement
optimization. Since AEX does not use the cost of transitions between two elements, the parents
for each element were chosen randomly. The results for a warehouse with 232 locations (chromosome
length was 232 elements) are presented in Table 3. Based on the experiments we concluded that it
is enough to use two-parent AEX crossover in product placement optimization, as increasing the
number of parents did not cause any gain and if the number was 20 or more, the drop in the method
effectiveness was observed.

Table 3. The product placement cost costPP as sum of order picking route lengths (the lower the
better—see Equation 2) and number of iterations iterP to obtain this cost for a modified multi-parent
AEX crossover operator for the warehouse size of 232 locations and a list of 80 orders, using an 8-parent
HGreX for route optimization (averages of 10 runs).

Num. Parents 2 3 4 6 8 10 14 20 35 50

avg. costPP 24,397 24,456 25,054 25,410 24,969 25,511 24,785 26,607 27,949 30,014
best costPP 21,731 21,410 21,615 22,535 22,861 21,945 21,476 21,474 25,455 26,878
agv. iterP 177 200 186 190 180 202 182 213 234 280

std. dev. costPP 2586 2777 2158 1831 3165 3110 2660 3106 3250 2996
std. iterP 44 79 76 86 101 104 79 98 112 106

Multiple restart of the product placement optimization with AEX crossover (MR-AEX) proved
quite useful (see Algorithm 1). In the last row of Table 4 the optimization was restarted 5 times and
each time it was run for 10 iterations and then we continued only with the population of the best
individual, as described in Section 5.4.3. It allowed not only to obtain lower cost, but also the standard
deviation of the results was about twice lower.

In the experiments presented in Table 4 we used the population size of 100 individuals for product
placement optimization. For order picking route optimization we used a size of 100 individuals if the
number of items was 25 or more and four times the number of items for shorter orders. The reason
for choosing that population size is based on this fact, that the main cost of genetic algorithms is the
evaluation of the fitness function (especially for product placement optimization). The number of
the fitness function evaluations can be expressed by the multiplying population size by the number
of epochs. Using larger populations, we can obtain the same results in fewer epochs. For smaller
populations we also need to increase the mutation rate. However, the dependence between the
population size and number of required epochs is not linear and there exists an optimal population

Appl. Sci. 2020, 10, 4817 23 of 28

size, which allows for the lowest number of fitness function evaluations [33]. The number also depends
on the problem and on other parameters of genetic algorithms. In our experiments, the minimum was
usually obtained for the population sizes between 80 and 120 individuals for the number of locations
in the warehouse between 60 and 300 and then it very slowly grew, but much slower than linearly,
with the increase of the warehouse. The dependence was very flat around the minimum (changing the
population size e.g., from 80 to 100 individuals did not make a statistically significant difference in the
number of required fitness function evaluations). However, outside of this range the dependence was
more significant and for example using 1000 individuals allowed to decrease the number of epochs
only about 3 times, what effectively increased the number of fitness function evaluations about 3-fold.
Moreover, when the population was too small, not only the process time increased, but the process
also began to be unstable and frequently was not able to converge. For this reason, a population size of
100 individuals was a safer choice than of, for example, 80 individuals.

We used the default mutation coefficients in Equation (4): ci = 0.00001, cn = 0.00001, c f = 0.3 as
well in product placement as in route optimization.

Below we present some sample orders for the warehouse w3. The products in the orders are
encoded by numbers, which are the products Ids (we cannot use letters as in the examples in previous
sections, because there are not enough letters in the alphabet). The last number (Nrep) of each order
shows how many times such order occurs in the order list, so its completion route length can be
evaluated only once and then multiplied by Nrep while calculating the final product placement cost.

order1: 41 99 97 7 20 89 12 24 51 66 79 61 1 56 109 Nrep = 40
order2: 71 90 9 29 84 94 19 26 64 114 100 42 81 30 108 107 101 47 6 32 96 33 28 7 Nrep = 20
order3: 78 31 91 35 93 87 22 50 100 1 28 38 84 16 48 112 76 110 95 47 72 113 23 61 101 68 67 53 45 41 97 18
109 89 65 74 Nrep = 3
order4: 53 61 18 36 94 24 103 38 35 12 42 89 6 30 50 14 84 114 29 15 79 95 48 52 28 25 110 22 64 109 44 11
73 33 98 97 23 75 99 87 7 51 92 93 72 17 3 Nrep = 1

Table 4. The obtained product placement cost (the lower the better) as the sum of all order picking
routes (see Equation (2)) for product placement and order picking route optimization methods with
various improvements (see Section 5.4) for the six sample warehouses: w1, w2, w3, w4, w5, w6 with
corresponding lists of orders, averaged over 10 optimization runs. The running times are presented
in Table 5.

Prod. Plc. Route Cost w1 w2 w3 w4 w5 w6 Cost t-Test
Optimiz. Optimiz. vs. Rnd. Wilcox.

random random average 29,346 49,374 42,942 14,156 16,934 40109 1.000
std.dev. 5445 9447 9050 2872 3747 7792 0.207 0.0001

random N.Neighbor average 16,931 32,879 27,501 9325 9102 20314 0.596 0.00001

std.dev. 2399 4444 3686 1354 1220 2915 0.083 0.0104

random HGreX average 14,889 31,382 26,543 8950 8080 19060 0.575 0.00001

std.dev. 2238 4139 3246 1047 995 2328 0.071 0.0102

random MP-HGreX average 14,342 30,660 26,004 8206 7917 18667 0.544 0.00001

std.dev. 1529 3074 2042 684 712 1529 0.048 0.0001

AEX N.Neighbor average 6398 11,198 10,039 7274 3278 7400 0.262 0.00001

std.dev. 418 747 619 525 212 498 0.018 0.0001

AEX HGreX average 5989 10760 9516 6048 3160 6898 0.238 0.00001

std.dev. 550 809 826 453 253 544 0.019 0.0038

AEX MP-HGreX average 5694 10,767 9003 6000 3164 6778 0.227 0.00026

std.dev. 382 649 533 403 221 441 0.015 0.0011

MR-AEX MP-HGreX average 5394 9676 8543 5312 3023 6428 0.213 0.00001
std.dev. 171 339 289 174 101 226 0.007

Appl. Sci. 2020, 10, 4817 24 of 28

Table 4 presents the detailed results for six sample warehouse structures and order lists (this is
the maximum number of warehouses, which can fit in one row of the table). MP-HGreX stands for
Multi-Parent HGreX with 8 parents, MR-AEX is Multiple-Restart AEX with 5 restarts, saving the
population afters 10 iterations, and then continuing with the population of the best individual (see
Section 5.4.3 and Figure 2 for explanations). Table 5 presents the real running times of the optimization
processes (including I/O operations and Dijkstra Algorithm).

Table 5. The real running time of the optimization processes in seconds using a computer with two
Xeon X5-2696-v2 CPUs, averaged over 10 optimization runs for the experimental data presented in
Table 4 and additionally for AEX/HGreX without cache (see Section 5.4.2).

Prod. Plc. Route w1 w2 w3 w4 w5 w6

random random 0 0 0 0 0 0
random N.Neighbor 1.4 2.0 2.0 1.0 1.0 1.8
random HGreX 3.1 4.4 3.7 2.0 2.1 3.4
random MP-HGreX 3.2 4.8 3.7 2.0 2.1 3.4

AEX N.Neighbor 130 204 169 59 77 186
AEX HGreX 744 1329 1121 423 495 1077
AEX MP-HGreX 762 1334 1077 385 450 1133

MR-AEX MP-HGreX 1441 1989 1667 762 827 1998
AEX/HGreX, no cache 3127 5678 4465 1710 2077 5225

The possible reduction of product placement cost depends on the character of the orders.
The biggest improvement due to route optimization can be obtained for the orders containing long
list of products. The highest improvement due to product placement optimization can be achieved
when the orders frequently contain products of particular groups and the frequency with which
particular products appear in the orders differs a lot. Thus the improvement possible to achieve is
determined mostly by the properties of the orders. Thus, particular methods must be compared among
each other for the same warehouse structure and for the same list of orders (This is similar, like in
classification, where the possible accuracy depends on the dataset properties and various classifiers
must be compared on the same data).

The cost vs. rnd. column in Table 4 contains the average relative reduction of the product placement
cost calculated as cost vs. rnd. = Average(Sum(F1p(w)/random(w)), where w = 1...6 is the warehouse
number. The last column contains statistical significance tests calculated on the whole data between
two adjacent methods and therefore it is printed in-between rows of the compared methods. Since some
persons prefer the T-test and others the Wilcoxon Signed Rank Test for this kind of data, we used both
tests to satisfy everyone. As all the p-values in the last column of Table 4 are smaller than 0.05, it can
be assumed that all the methods are significantly different from one another.

As can be seen in Figures 9 and 10, the best results are obtained for the multiple restart of
genetic algorithms with AEX crossover operator (MR-AEX) for product placement optimization (see
Section 5.4.3 and Algorithm 1) together genetic algorithm with multi-parent HGreX crossover operator
(MP-HGreX) for order picking route optimization (see Figure 4).

Appl. Sci. 2020, 10, 4817 25 of 28

Figure 9. Graphical representation of the data from Table 4). On horizontal axis: the optimization
methods with various improvements (see Section 5.4). On vertical axis: the product placement cost
costPP (the lower the better) obtained with particular methods for the warehouses w1, w2, w3, w4, w5,
w6 with corresponding lists of orders.

Figure 10. Comparison of the performance of the presented methods with various improvements (see
Section 5.4). On horizontal axis: the optimization method. On vertical axis: the average obtained
product placement cost (the lower the better) as percentage of the cost with the random product
placement and random routes over the six warehouses with order lists presented in Table 4

7. Conclusions

Shortening the time of order picking is the most important and most beneficial factor in reducing
the costs of operating the warehouse (where typically 60% are the costs are generated by order
picking [1]). It can be achieved without significant investment by optimizing the locations for particular
products in a warehouse and then determining the fastest order completion routes. As the search
space of the solutions is enormous (9.3× 10157 possible placements of 100 products, 3.1× 10614 of
300 products) the problem cannot be analyzed by brute force methods. Thus we presented a complete,
fully automatic system based on genetic algorithms, which due to applying intelligent search allows
to find the optimal product placements within minutes or tens of minutes for that size of problem
(depending on the computer hardware and process parameters). Even though it is not guaranteed that
the optimal solution will be found with genetic algorithms, it is possible to find a very close solution to
the optimal one, so that in practice it will not make a significant difference.

Appl. Sci. 2020, 10, 4817 26 of 28

The presented system takes as inputs the warehouse structure (in the form of partial transition
costs) and the list of orders and returns the optimal product placement and corresponding shortest
order picking routes. Implementation of such a system can accelerate order picking and thus reduce
the warehouse operating costs. This allows to serve more customers by the same number of employees
in the same time and thus to further increase the sales and profits.

The experiments showed that using the multi-parent HGreX crossover improves the results,
while for the AEX crossover adding more parents does not change its efficiency. The best results
were obtained for the multiple restart genetic algorithm with AEX crossover operator (MR-AEX) for
the product placement optimization process together genetic algorithm with multi-parent HGreX
crossover operator (MP-HGreX) for order picking route optimization. The cost or route length caching
can be used to accelerate the process. Additionally the Nearest Neighbor Algorithm can be used for
route optimization to even more accelerate the process, but this is usually at the expense of a little
worse result.

In the future works we are planing to implement other modifications to further improve the speed
of the optimization and the quality of the obtained solutions. First we want to evaluate new crossover
operators and mixtures of various operators. In the experimental comparison of Puljic [19] the mix
of different crossover operators performed slightly better than HGreX. Also more advanced mixes of
genetic operators were proposed [35,36]. However, we did not decide to use this approach because the
implementation was definitely more complex. Instead we modified the HGreX to use multiple parents,
what significantly improved the results. Łapa et al. [37] proposed the use of different operators (not
only crossovers but also different mutations and other operators) for different individuals in standard
genetic algorithms. We are going to adjust these approaches to the route and product placement
optimizations and investigate various options.

The other branch of our future research refers to constraints in the genetic algorithm operations
as in some warehouses such constraints may exist and may limit the possible locations of particular
products. In the literature the typical approach to constraints in genetic algorithms is the use of penalty
functions [38]. Sometimes also dominance-based methods are used [39]. However, we are going
to implement it differently by embedding the mechanism directly into the crossover and mutation
operators specific to that problem in order to be able to enforce the constraint effectively and to limit
the computational complexity of the optimization.

Author Contributions: Conceptualization, M.K. and S.G.; Formal analysis, M.B. and S.G.; Funding acquisition,
M.B. and S.G.; Investigation, M.K. and J.B.; Methodology, M.K., S.G. and J.B.; Software, M.K. and J.B.; Validation,
M.B. and S.G.; Visualization, M.B. and S.G.; Writing—original draft, M.K., J.B., M.B. and S.G. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Silesian University of Technology project: BK-204/2020/RM4.

Acknowledgments: The authors want to thank Michał Krzyżowski, Łukasz Mysłajek, Antoni Kopeć and Jakub
Gawęda for their help in collecting and preparing the data used in this study.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Bartholdi, J.J.; Hackman, S.T. Warehouse and Distribution Science. 2019. Available online: https://www.
warehouse-science.com/book/index.html (accessed on 30 May 2020).

2. Avdeikins, A.; Savrasovs, M. Making Warehouse Logistics Smart by Effective Placement Strategy Based on
Genetic Algorithms. Transp. Telecommun. 2019, 20, 318–324. [CrossRef]

3. Bolaños Zuñiga, J.; Saucedo Martínez, J.A.; Salais Fierro, T.E.; Marmolejo Saucedo, J.A. Optimization of
the Storage Location Assignment and the Picker-Routing Problem by Using Mathematical Programming.
Appl. Sci. 2020, 10, 534. [CrossRef]

4. Van Gils, T.; Ramaekers, K.; Caris, A.; De Koster, R. Designing efficient order picking systems by combining
planning problems: State-of-the-art classification and review. Eur. J. Oper. Res. 2018, 267, 1–15. [CrossRef]

https://www.warehouse-science.com/book/index.html
https://www.warehouse-science.com/book/index.html
http://dx.doi.org/10.2478/ttj-2019-0026
http://dx.doi.org/10.3390/app10020534
http://dx.doi.org/10.1016/j.ejor.2017.09.002

Appl. Sci. 2020, 10, 4817 27 of 28

5. Wang, W.; Gao, J.; Gao, T.; Zhao, H. Optimization of Automated Warehouse Location Based on Genetic
Algorithm. In Proceedings of the 2nd International Conference on Control, Automation and Artificial
Intelligence (CAAI 2017), Sanya, China, 25–26 June 2017; pp. 309–313.

6. Grosse, E.H.; Glock, C.H.; Neumann, P.W. Human factors in order picking: A content analysis of the
literature. Int. J. Prod. Res. 2016, 55, 1260–1276. [CrossRef]

7. Dijkstra, A.; Roodbergen, K. Exact route-length formulas and a storage location assignment heuristic for
picker-to-parts warehouses. Transp. Res. Part E 2017, 102, 38–59. [CrossRef]

8. Rakesh, V.; Kadil, G. Layout Optimization of a Three Dimensional Order Picking Warehouse. IFAC-PapersOnLine
2017, 48, 1155–1160. [CrossRef]

9. Davarzani, H.; Norrman, A. Toward a relevant agenda for warehousing research: literature review and
practitioners’. Logist. Res. 2015, 8, 1–18. [CrossRef]

10. Zunic, E.; Besirevic, A.; Skrobo, R.; Hasic, H.; Hodzic, K.; Djedovic, A. Design of Optimization System
for Warehouse Order Picking in Real Environment. In Proceedings of the XXVI International Conference
on Information, Communication and Automation Technologies, Sarajevo, Bosnia and Herzegovina,
26–28 October 2017; Volume 26.

11. Dharmapriya, U.; Kulatunga, A. New Strategy for Warehouse Optimization—Lean warehousing.
In Proceedings of the 2011 International Conference on Industrial Engineering and Operations,
Kuala Lumpur, Malaysia, 22–24 January 2011.

12. Affenzeller, M.; Wagner, S.; Winkler, S.; Beham, A. Genetic Algorithms and Genetic Programming:
Modern Concepts and Practical Applications; CRC Press: Boca Raton, FL, USA, 2018.

13. Simon, D. Evolutionary Optimization Algorithms; Wiley: New York, NY, USA, 2013.
14. Ławrynowicz, A. Genetic Algorithms for Advanced Planning and Scheduling in Supply Networks; Difin: Warsaw,

Poland, 2013.
15. Xu, W.; Jia, H. Research on Storage Location Optimization Based on Genetic Algorithms. J. Phys. Conf. Series

2019, 1213, 032020. [CrossRef]
16. Hassanat, A.B.A.; Alkafaween, E. On Enhancing Genetic Algorithms Using New Crossovers. Int. J. Comput.

Appl. Technol. 2017, 55. [CrossRef]
17. Hwang, H. An improvement model for vehicle routing problem with time constraint based on genetic

algorithm. Comput. Ind. Eng. 2002, 42, 361–369. [CrossRef]
18. Tan, H.; Lee, L.H.; Zhu, Q.; Ou, K. Heuristic methods for vehicle routing problem with time windows.

Artif. Intell. Eng. 2001, 16, 281–295. [CrossRef]
19. Puljić, K.; Manger, R. Comparison of eight evolutionary crossover operators for the vehicle routing problem.

Math. Commun. 2013, 18, 359–375.
20. Davarzani, H.; Norrman, A. A note on two problems in connexion with graphs. Numer. Math. 1959,

1, 269–271.
21. Floyd, R.W. Algorithm 97: Shortest Path. Commun. ACM 1962, 5. [CrossRef]
22. Bellman, R. On a routing problem. Q. Appl. Math. 1958, 16, 87–90. [CrossRef]
23. Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths.

IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [CrossRef]
24. Kreinovich, V.; Olac, L.F.; Quintana, C. Genetic Algorithms: What Fitness Scaling Is Optimal? Cybern. Syst.

2001, 24. [CrossRef]
25. Razali, N.M.; Geraghty, J. Genetic Algorithm Performance with Different Selection Strategies in Solving TSP.

In Proceedings of the World Congress on Engineering WCE 2011, London, UK, 6–8 July 2011.
26. Hassanat, A.E.A. Choosing Mutation and Crossover Ratios for Genetic Algorithms—A Review with a New

Dynamic Approach. Information 2019, 10, 390. [CrossRef]
27. Otman, A.; Tajani, C.; Abouchabaka, J. Analyzing the Performance of Mutation Operators to Solve the

Travelling Salesman Problem. arxiv 2012, arXiv:1203.3099.
28. Nilsson, C. Heuristics for the Traveling Salesman Problem; Technical Report; Linkoping University: Linkoping,

Sweden, 2003.
29. Kaabi, J.; Harrath, Y. Permutation rules and genetic algorithm to solve the traveling salesman problem.

Arab. J. Basic Appl. Sci. 2019, 26, 283–291. [CrossRef]
30. Kordos, M.; Łapa, K. Multi-Objective Evolutionary Instance Selection for Regression Tasks. Entropy 2018,

20, 746. [CrossRef]

http://dx.doi.org/10.1080/00207543.2016.1186296
http://dx.doi.org/10.1016/j.tre.2017.04.003
http://dx.doi.org/10.1016/j.ifacol.2015.06.240
http://dx.doi.org/10.1007/s12159-014-0120-1
http://dx.doi.org/10.1088/1742-6596/1213/3/032020
http://dx.doi.org/10.1504/IJCAT.2017.084774
http://dx.doi.org/10.1016/S0360-8352(02)00033-5
http://dx.doi.org/10.1016/S0954-1810(01)00005-X
http://dx.doi.org/10.1145/367766.368168
http://dx.doi.org/10.1090/qam/102435
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1080/01969729308961696
http://dx.doi.org/10.3390/info10120390
http://dx.doi.org/10.1080/25765299.2019.1615172
http://dx.doi.org/10.3390/e20100746

Appl. Sci. 2020, 10, 4817 28 of 28

31. Kordos, M.; Arnaiz-González, A.; García-Osorio, C. Multi-Objective Evolutionary Instance Selection for
Regression Tasks. Neurocomputing 2019, 358, 309–320. [CrossRef]

32. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Trans. Evol. Comput. 2002, 6, 182–197. [CrossRef]

33. Kordos, M. Optimization of Evolutionary Instance Selection. Lect. Notes Artif. Intell. 2017, 10245, 359–369.
34. Xin, J.; Zhong, J.; Yang, F.; Cui, Y.; Sheng, J. An Improved Genetic Algorithm for Path-Planning of Unmanned

Surface Vehicle. Sensors 2019, 19, 2640. [CrossRef]
35. Contreras-Bolton, C.; Parada, V. Automatic Combination of Operators in a Genetic Algorithm to Solve the

Traveling Salesman Problem. PLoS ONE 2015, 26. [CrossRef]
36. Contreras-Bolton, C.E. Algorithms for Variants of Routing Problems. Ph.D. Thesis, Università di Bologna,

Bologna, Italy, 2019.
37. Łapa, K.; Cpałka, K.; Laskowski, Ł.; Cader, A.; Zeng, Z. Evolutionary Algorithm with a Configurable Search

Mechanism. J. Artif. Intell. Soft Comput. Res. 2020, 10, 151–157. [CrossRef]
38. Chehouri, A.; Younes, R.; Perron, J.; Ilinca, A. A Constraint-Handling Technique for Genetic Algorithms

using a Violation Factor. J. Comput. Sci. 2016. [CrossRef]
39. Ponsich, A.; Azzaro-Pantel, C.; Domenech, C.; Pibouleau, L. Constraint handling strategies in Genetic

Algorithms application to optimal batch plant design. Chem. Eng. Process. Process. Intensif. 2008, 47, 420–434.
[CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.neucom.2019.05.055
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.3390/s19112640
http://dx.doi.org/10.1371/journal.pone.0137724
http://dx.doi.org/10.2478/jaiscr-2020-0011
http://dx.doi.org/10.3844/jcssp.2016.350.362
http://dx.doi.org/10.1016/j.cep.2007.01.020
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Statement
	Contribution
	Related Works
	Warehouse Planing and Operations
	Genetic Algorithms in Warehouse Optimization
	Crossover Operators

	The Proposed Method
	Data Format and Problem Encoding
	Product Placement Optimization
	Optimization of Order Picking Routes
	Improvements and Accelerations of the Process
	Multi-Parent Crossover Operators
	Caching Cost of Product Placements and Lengths of Order Picking Routes
	Multiple Restart
	Order Grouping
	Three Route Optimization Methods
	Process Parallelization

	Experimental Results
	Conclusions
	References

