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Abstract: For more than a decade, both academia and industry have focused attention on the
computer vision and in particular the computational color constancy (CVCC). The CVCC is used as
a fundamental preprocessing task in a wide range of computer vision applications. While our
human visual system (HVS) has the innate ability to perceive constant surface colors of objects under
varying illumination spectra, the computer vision is facing the color constancy challenge in nature.
Accordingly, this article proposes novel convolutional neural network (CNN) architecture based on
the residual neural network which consists of pre-activation, atrous or dilated convolution and
batch normalization. The proposed network can automatically decide what to learn from input
image data and how to pool without supervision. When receiving input image data, the proposed
network crops each image into image patches prior to training. Once the network begins learning,
local semantic information is automatically extracted from the image patches and fed to its novel
pooling layer. As a result of the semantic pooling, a weighted map or a mask is generated.
Simultaneously, the extracted information is estimated and combined to form global information
during training. The use of the novel pooling layer enables the proposed network to distinguish
between useful data and noisy data, and thus efficiently remove noisy data during learning and
evaluating. The main contribution of the proposed network is taking CVCC to higher accuracy and
efficiency by adopting the novel pooling method. The experimental results demonstrate that the
proposed network outperforms its conventional counterparts in estimation accuracy.

Keywords: human visual system (HVS); color constancy; residual neural network; semantic
information; local and global information; image dataset

1. Introduction

The appearance of an object’s color is often influenced by surface spectral reflectance,
illumination condition and relative position, which makes it very challenging for the computer vision
to recognize an object in both still image and video. However, the computer vision can benefit from
adopting the computational color constancy (CVCC) as a pre-processing step which enables the
recorded colors of the object to stay relatively constant under different illumination conditions.
Obviously, color plays a large part in the performance of computer vision applications such as human
computer vision, color feature extraction, and color appearance model [1,2]. However, it is imperative
to cope with undesirable effects arising from the significant impact of the illumination color on the
perceived color of an object in a real-life scene. While the human visual system (HVS) has the innate
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ability to recognize the actual color of an object even under different light source colors, the computer
vision finds it tough and challenging to identify the actual color of an object under the influence of
changing illumination conditions. In an effort to mimic the HVS, the CVCC is designed to predict the
actual color of an object in a real-world scene independent of varying illuminant conditions. The
CVCC algorithms roughly fall into three categories: statistics-based, physics-based, and learning-
based methods.

For several decades, the statics-based method has dominated the CVCC technology and the
three best-known algorithms are the gray-world [3], the shades-of-gray [4] and the max-RGB (red,
green, blue) [5] or the gray-edge [6]. They have a strong empirical assumption based on the statistics
of real color images. There are some other statistics-based techniques which also contributed to
solving the color constancy problem of the computer vision [7-9]. The physics-based method has
mainly evolved from the dichromatic reflectance model of Shafer [10,11]. This method uses accurate
reflection models but is still required to take complicated additional steps such as specularity
estimation [10] or image segmentation [11]. The learning-based method includes Gamut mapping
methods [12-15] and a recent patch-based approach [16]. The recent patch-based approach is
intended to estimate the color of a light source in the local region. In this approach, the network is
given a set of ground truth regions and is designed to learn and minimize their differences from the
local regions. The learning-based algorithms produce state-of-the-art results but come with several
drawbacks. For instance, to implement such a network, the computer is required to have a memory
capable of storing thousands of patches. In addition, they need to take complicated steps to estimate
local and global light sources, such as segmentation, feature extraction, and calculation of the nearest
neighbor to the training set. However, Finlayson proposes the fastest learning-based method [17].
The key idea of his method is to apply the traditional gray-world assumption to estimating the color
of the light source and devise a matrix to correct resultant estimation error. The network builds the
matrix through dataset learning. The network learns colors and edge moments of a given image and
as a result generates the elements of the matrix. Furthermore, Bianco and his colleagues [18] achieved
state-of-the-art color constancy results by introducing a new method which uses a convolutional
neural network. Their network has three parts: one convolutional layer for max pooling, one fully
connected layer, and three output nodes. With their network, illumination estimation and fine-tuning
are conducted on an image basis, not on a patch basis, and the purpose of fine-tuning is to minimize
learning loss. This approach achieves a successful outcome from experimenting with one specific
dataset only, so it needs to further experiment with more datasets. In addition, Lou et al. [19]
proposed a deep convolutional neural network (DCNN) that is pre-trained to classify the big
ImageNet dataset with labels. The performance of the network is assessed by hand-crafted color
constancy algorithms. In the DCNN, ground truth labels are used to fine-tune each single dataset.

As overviewed above, there has been a decent amount of color constancy research and a number
of proposed approaches. Given the structural nature of the computer vision, some challenges remain
unsolved. More recently, Gijsenij et al. [20] proposed a scene semantics-based color constancy method
where natural image statistics are used to identify the most important characteristics of color images.
Akbarinia et al. [21] suggested a color constancy method that intends to overlap two asymmetric
Gaussian kernels of different sizes in a similar way of changing the receptive field (RF) and the
kernels come in different sizes depending on the contrast of surrounding pixels. Hu and colleagues
[22] introduced a color constancy method which uses AlexNet and SqueezeNet in estimating
illumination. Their color constancy method outperforms conventional methods by delivering state-
of-the-art results. Despite their cutting-edge performance, the methodology is still with some
inherent problems such as overfitting, gradient degradation, and vanishing gradient. Hussain et al.
[23] proposed a color constancy method in which a histogram-based algorithm was used to determine
an appropriate number of segments and efficiently split an input image into its key color variation
areas. Zhan and colleagues [24] researched convolutional neural networks (CNNs) which use cross-
level architecture for color constancy.

In this light, this article proposes a new network architecture-based approach and the new
architecture uses the residual neural network which consists of pre-activation, atrous or dilated
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convolution and batch normalization. When receiving input image data, the proposed network crops
each image into image patches before training. Once the network begins training, local semantic
information is automatically extracted from the image patches and fed to put its novel pooling layer.
Simultaneously, the extracted information is estimated and combined to form global information
during training. While conventional patch-based CNNs handle patches sequentially and individually,
the proposed network takes into account all image patches simultaneously, which makes it more
efficient and simpler for the network to compare and learn patches during training. The illumination
estimation with the use of the image patches is formulated in this work.

Among the CNN-based color constancy approaches, some methods estimate illumination based
on local image patches like the proposed approach in this work, while others rely on full image data
in its entirety. In the case of the latter, the full image data comes in the form of various chroma
histograms. When the network takes the full image data in chroma histograms, the convolutional
filters learn to assess and identify possible illumination color solutions in chroma plane. However,
spatial information is only weakly encoded in these histograms, and thus semantic context is largely
ignored. When considering semantic information at the global level, it is difficult for the network to
learn and discern the significance of a semantically valuable local region. To supplement this,
researchers have proposed conventional convolutional networks [18,22] designed to extract and pool
local features. Especially in a study by Hu and colleagues [22], the authors proposed a pooling
method to extract the local confidence region from the original image and thus to form a weighted
map or a mask. By using fully connected CNNSs, their color constancy method shows better
performance relative to its conventional counterparts. Yet it is important to challenge the estimation
accuracy of the weighted map in their approach. In the fully connected layer method, each
convolutional layer gets the input of all the features combined as a result of output in an earlier layer
and each convolutional layer relies on local spatial coherence with a small receptive field. On the
other hand, the fully connected layers have several well-known vital problems and incur incredibly
high computational cost. Motivated to solve these problems, the proposed CNN method uses the
residual network to improve the estimation accuracy and reduce expensive computational cost. In
addition, the proposed network employs a pooling mechanism to reduce estimation ambiguities as
in previous studies [18,22].

With patch processing and semantic pooling together, the proposed network is able to
distinguish between useful data and noisy data during training and evaluating. In the proposed
network, semantic pooling designed to extract local semantic information from the original image is
performed to form a mask and the resulting image turns out a weighted map. By enabling the
network to learn the semantic information in the local region and remove noisy data, the proposed
color constancy approach becomes more robust to estimation ambiguities. In addition, the proposed
network features end-to-end training, direct processing of arbitrary-sized images and faster
computation.

To the best of our knowledge, the proposed approach is the first study to investigate and use the
residual network-based CNNs to achieve color constancy. In particular, the novelty of this approach
is the use of the residual network, mainly distinct from its conventional CNN-based counterparts.
The residual network allows the proposed architecture to predict scene illuminant on the local region,
as opposed to many previous approaches where features are extracted from the entire image to obtain
statistics and estimate the overall illuminant. In addition, the dilated convolution of the residual
network is designed to handle multiscale appearance, contributing to efficiency. While there are only
a few methods proposed to estimate spatially varying illuminants, the proposed approach has
significance and the potential to advance CNN-based illumination estimation accuracy. The
experimental results demonstrate that the proposed network stays ahead of other state-of-the-art
techniques in predicting illumination and is less likely to cause large errors in estimation as the
conventional methods. Moreover, the proposed scheme is further applicable to solving other
computer vision problems because of its strength of aggregating local estimation to determine global
estimation.
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2. Technical Approach

In recent years, deep learning techniques have become remarkably advanced and contributed to
addressing computer vision challenges. The proposed network is one of the cutting-edge deep
learning techniques based on ResNet [25]. ResNet is composed of several units: pre-activation, atrous
convolution, batch-normalization, and layers. ResNet performs better imageNet classification when
its layers use skip connection. ResNet allows researchers and developers to design much deeper
networks without gradient degradation and acquire much larger receptive fields often with highly
distinct features. On receiving different input images (or values), the proposed network crops each
input image into image patches which carry different semantic information automatically. Next, the
network learns and applies the semantic information to its novel pooling layer where all local
semantic information is estimated and combined to form global information.

2.1. Color Constancy Approach

In general, given an RGB image, F, the color constancy approach is designed to estimate the
global illuminant color I; = (r,g,b) (or color cast), using a canonical light source color, usually

perfect white (%%%)T , and normalize the estimated global illuminant color [, = Tiol g” The
approach then replaces the estimated global illuminant color with the normalized global illuminant
color. However, in real-life scenes, there exist multiple illuminants, which possibly impact on the
perceived color of an object. To address this problem, conventional methods attempt to estimate a
single global illuminant color. Similarly, the proposed approach is designed to estimate f; and get
the replacement, fy(F) = fg, and notably uses the convolutional neural network (CNN) to estimate
fo, which gets the replacement closer to the ground truth illuminant color. 6 refers to parameters.

Let [; defined as the ground truth illuminant color. During dataset learning, the CNN
minimizes a loss function. The loss function represents an angular error (in degrees) between the
estimated color fg and the ground truth illuminant color [*, described as follows:

L(1 )_—cos—1(1 x 1) (1) (1)

In the CNN, fy is the estimation of all the semantically informative regions, ideally avoiding
any repercussion of ambiguous light. Equation (2) explains how to calculate the final global
illumination estimation. Let R = {R;, R, R3,---,R,} be the local regions in F, and g(R)); i =
1,2,3,--,n be the output of the regional illuminant color estimation, R;. The f, (F) is the
normalization of the sum of the product of semantic information, c(R;), and regional illumination
estimation, g(R;), and as a result delivers the final global illuminant estimation color as follows [22]:

fo(F) = I, = norm (Z c(RJg(RL-)) @ @
ieR
Intuitively, supposing that R;; i = 1,2,3,+--,n are local regions that contain useful semantic
information for illuminant estimation, c(R;) should be large values.
In detail, the semantic pooling in Equation (2) is described as follows:

Iy = Zfiii: i=123,n(3) 3)
i€R
where
2(1) {cmeam < color_thresold c¢; 4
= other wise 0 @)

where x is the coordinate of local region in the image and N is the total number of pixels in the

local region. Cppeqn; refers to mean of local semantic information.
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I =2 =chi1i; i=123,n ©)
171, 117l

i€R
where ¢; and [; refer to semantic information and local illuminant estimation function, respectively.

Using the chain rule, Equation (5) is transformed into Equation (6) below:

oL(ly) ¢ OL(,)
— = X — 6
ol Tl ™ o, ©

In Equation (6), the estimation I; has different magnitudes with different semantic information
¢;. In estimating local illuminants, semantic information serves as a mask within the salience region,
which helps prevent the proposed network from learning noisy data. Similarly, semantic
information c; is calculated as follows:

oLy _ 1 oLy o -
g I, ol

By intuition, in global estimation which uses local illumination estimation colors, it is supposed
to get the global estimation color closer to the ground truth illumination color.

Figure 1 depicts a block diagram of the proposed color constancy method. As shown below, as
a result of performing the proposed DCNN architecture, feature maps are generated. The feature
maps turn into the weighted maps or masks through semantic pooling where the proposed network
distinguishes between useful data and noisy data. The semantic pooling is formulated in Equation
(2) to Equation (7). To achieve color constancy and improve the performance, it is important to pay
close attention to the estimation accuracy of the proposed DCNN architecture now that it has a
significant impact on the accuracy of the weighted maps and eventually on the accuracy of the global
illumination estimation. In this respect, the proposed method has adopted the proposed DCNN
architecture to accurately estimate the local semantic information and the accuracy is prove in the
experimental results and evaluation section. The next subsection focuses on the proposed DCNN
architecture.

Feature Map

Proposed DCNN Architecture
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Figure 1. Block diagram of the proposed method.

2.2. The Proposed DCNN Architecture

A deep convolutional neural network (DCNN) is a major breakthrough in image classification.
The DCNN naturally incorporates low, mid, and high-level image features and classifiers in an end-
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to-end multi-layer form. Its depth, or the number of stacked layers, can enrich the “level” of image
features. However, some deeper networks like AlexNet and VGG-16 have a degradation problem.
Increasing depth of the network accelerates accuracy degradation as well as accuracy saturation. That
is, an increasing number of layers cause some deeper network models to make more training errors.
This is why the proposed method has adopted the well-known residual block to solve the issues with
Alexnet and VGG-16 such as expensive computational cost, gradient degradation, and vanishing
gradient, which are common issues in handling deep convolutional neural networks. In the proposed
approach, a residual network is comprised of multiple convolutional layers. With the input of y;_,,
the output of the ith block is recursively defined as follows:

Vi = fiic1) + Yicq (8)

Let each layer take the sequential steps of convolution f;(x), batch normalization, and rectified
linear unit (ReLU) as nonlinearities, and f;(x) is defined as follows:

fi(x) = Wy a(BW; - a(B(x)))) ©)

where W; and W, are weight matrices and - denotes convolution, B(x) is batch normalization,
and o(x) = max (x,0). The proposed ResNet architecture shows that the resolution of feature maps
drop down to a fourth of input resolution after passing through the first three layers. This allows the
architecture to aggregate contexts and train faster. However, smaller feature maps constrain the
architecture from learning high-resolution features which is useful and required at later stages. To
support the learning of the high-resolution feature, the proposed network has an additional
convolution layer with a 3 X 3 kernel before the first convolution layer. This enables the network to
learn high-resolution features, without increasing the inference time by much. Furthermore, down-
sampling principally reduces the resolution of feature maps. Although deconvolution layers are able
to up-sample low-resolution feature maps, they cannot recover all the details completely. In addition,
this procedure requires higher computational cost as well as intensive memory. To address such
problems, the proposed method uses atrous convolution, also called dilated convolution [26]. Atrous
convolution widens the kernel and simulates a larger field of perception. For a 1D input signal x[i]
with a filter w[k] of K in length, the atrous convolution is described as follows:
k
ylil = ) i+ x Kwlk] (10)
k=1

The rate r refers to a stride with regard to sampling of the input signal. For instance, a rate of 2
represents a convolution on a 2 X 2 pooled feature map. The proposed network has changed the
stride of the last convolution from 2 to 1 and set the others at r = 2. In this way, the smallest
resolution is 16 times down-sampled, not 32 times, but still preserves the higher resolution details, as
well as aggregates the usual number of contexts. Every object in a scene potentially varies in size,
distance, and position. DCNN filters usually do not fit in this multiscale appearance. This has
motivated researchers to investigate how DCNN [27,28] learns the multiscale feature. Their finding
is that DCNN is given multi-resolution input images, which thus incur a higher computational cost.
To reduce expensive computational cost and increase estimation efficiency, the proposed method
gets the ResNet blocks made up of several different scale atrous convolutions with r > 1. In this way,
the network is enabled to learn multiscale features in every block. Furthermore, the concatenation
preserves all the features within the block so that the network can learn to combine features generated
on different scales.

Figure 2 depicts the proposed DCNN architecture. To explain in more detail, the top half of the
figure illustrates the whole process of the proposed DCNN architecture. The blue boxes are not all
residual networks. There are six residual networks: two consisting of four layers and four consisting
of three layers. A residual network is marked with its structure on its top right, which looks like a
superscript. The bottom half of the figure gives explanatory notes and illustrates the two types of
residual networks in detail. As in the explanatory notes, a convolutional layer is described in black;
and the top s stands for a stride and the bottom n indicates the n by n filter kernel size, with a symbol
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* to the middle left. A dilated convolution is described in red; and the top d stands for dilated
convolution with a stride of 1 and the bottom n indicates the n by n filter kernel size, with a symbol
* to the middle left. For instance, 1 and 1 with a symbol * in black translates as a convolutional layer
with a stride of 1 and a 1 x 1 filter kernel in size. As another example, 2 and 3 with the symbol * in
red mean that the rate r of dilated convolution is 2, as in Equation (10), and the filter kernel size is 3
x 3. The emphasis of using the proposed DCNN architecture is on increasing the accuracy of
estimating the local semantic information, which is vital to the final performance of the network, and
training the network to optimally combine the local estimates by adaptively using the corresponding
g and c, as in Equation (2), for each local region, which will suppress the impact of ambiguous
patches.

Proposed DCNN architecture
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Figure 2. Proposed deep convolutional neural network (DCNN) architecture with pre-activation,

atrous convolution, and batch-normalization.

3. Experimental Results and Evaluations

A feasibility study uses two benchmark standard datasets: the reprocessed [15] Color Checker
Dataset [15] and the NUS 8-Camera Dataset [8]. These datasets consist of 568 and 1736 raw images,
respectively. The 768 x 384 input image in Figure 2 is resized to 512 x 512 pixels and then cropped
into overlapping 224 x 224 image patches. There is a trade-off between patch coverage (and accuracy)
and efficiency. With more patches, the CNN performs higher coverage and accuracy, but gets lower
efficiency. Through additional pooling, the proposed network combines patch-based estimates to
obtain a global illuminant. The proposed network is trained in an end-to-end fashion with back-
propagation. For the proposed network, Adam [29] is used to optimize parameter setting for all
layers, which reduces overfitting and improves performance. The experiment with the proposed
network is performed to compare total training losses at four different learning rates with 10,000
iterations (or epochs) using a server with Titan XP GPU and taking 1.5 days. Figure 3 illustrates the
comparative experimental results and finds that 4 x 107 is the optimized base learning rate. The
symbol “1.00E-03” represents a learning rate of 1 x 1073. Likewise, parameters are optimized,
including a dropout probability of 0.5 for the 6 x 6 x 64 convolution layer in Figure 2, a batch size of
16, a weight decay of 5 x 107%, and so forth.
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Figure 3. Total training loss comparison in the logarithm space of four different learning rates to optimize

the base learning rate.

Figure 4 compares median angular errors with and without semantic information, recording the

errors every 20 iterations (or epochs). As a result, the errors sharply drop with semantic information.

From an illuminant estimation point of view, the choice of semantic information has the effect of
improving computational color constancy significantly.

Median Angular Error with and without SI
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Figure 4. Comparison of median angular errors with and without semantic information (SI).

Figure 5 shows Shi’s re-processed dataset [30] and their resulting images from implementing the

proposed network in Tensorflow [31]. The proposed DCNN architecture is focused on increasing the
accuracy of estimating the local semantic information to improve performance. As a result, in Figure
5e, the greenish blue illuminant of the original image is efficiently removed, and the true colors of

objects are well represented without color distortion compared with the original image in Figure 5a.
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Figure 5. Shi’s re-processed dataset and their resulting images: (a) original image, (b) illumination
estimation map, (c) weighted map, (d) image X weighted map, and (e) corrected image.

The proposed network is compared with 27 different state-of-the-art methods which include
both unitary and combinational methods. The 27 different methods are benchmarked from several
sources. Specifically, AlexNet-FCand SqueezeNet-FC are benchmarked from [22]; and except for DS-
Net, the other 22 methods are from [32-39]. DS-Net is cited from [40]. In this comparative study, the
source codes of AlexNet-FC and SqueezeNet-FC are downloaded from GitHub website [41] and DS-
Net is downloaded from GitHub as well [42]. The source codes of CCATI [23] and Zhan et al. [24] are
implemented by MATLAB and Tensorflow, with parameters fixed as suggested by those articles.

For quantitative comparison purposes only, Table 1 compares the proposed method with
previous mainstream algorithms in terms of the illuminant estimation accuracy. It illustrates several
standard metrics: mean, median, trimean, mean of the best quarter (best 25%), and mean of the worst
quarter (worst 25%) of angular error (Equation (1)). This comparative study uses the well-known
dataset, the Gehler and Shi’s dataset [15], which contains 568 images of people, places, and objects in
indoor and outdoor scenes, where the Macbeth color checker chart is placed in a known location of
every scene. This dataset includes both single- and multiple-illuminant natural images. The proposed
network surpasses all its conventional counterparts in trimean and worst 25%.
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Table 1. Comparative statistical metrics between the proposed network and conventional methods
with Shi’s re-processed dataset and the NUS-8 Camera Dataset (the lower, the better).

Methods Mean Median Trimean Best25% Worst25%
Statistics-Based Methods
White patch [3] 7.55 5.68 6.35 1.42 16.12
Gray-world [32] 6.36 6.28 6.28 2.33 10.58
1st-order grey edge [6] 5.33 4.52 4.73 1.86 10.03
2nd-order grey edge [6] 5.13 4.44 4.62 2.11 9.26
Shades of grey [4] 4.93 4.01 4.23 1.14 10.20
General grey world [6] 4.66 3.48 3.81 1.00 10.09
Modifies white patch [7] 3.87 2.84 3.15 0.92 8.38
Bright-and-dark color PCA [32] 3.52 2.14 247 0.50 8.74
Local surface reflectance [34] 3.31 2.80 2.87 1.14 6.39
CCATI [23] 2.34 1.60 1.91 0.49 5.28
Learning-Based Methods
SVR regression [32] 8.08 6.73 7.19 3.35 14.89
Edge-based Gamut [34] 6.52 5.04 5.43 1.90 13.58
Bayesian [34] 4.82 3.46 3.88 1.26 10.46
Pixel-based Gamut [34] 4.20 2.33 291 0.50 10.72
Intersection-based Gamut [34] 4.20 2.39 2.93 0.51 10.70
CART-based combination [12] 3.90 291 3.21 1.02 8.27
Spatio-spectral [36] 3.59 2.96 3.10 0.95 7.61
Bottom-up+ top-down [38] 3.48 2.27 2.61 0.84 8.01
ExemplarCC [38] 2.89 2.27 2.42 0.82 5.97
19-edge corrected-moment [17] 2.86 2.04 2.22 0.70 6.34
CNN-based method [18] 2.75 1.99 2.14 0.74 6.05
Ensemble of decision tree based method [39] 2.42 1.65 1.75 0.38 5.87
Zhan et al. [24] 2.29 1.90 2.03 0.57 4.72
DS-Net [40] 2.24 1.46 1.68 0.48 6.08
SqueezeNet-FC [22] 2.23 1.57 1.72 0.47 5.15
AlexNet-FC [22] 2.12 1.53 1.64 0.48 4.78
Proposed network 2.09 1.42 1.60 0.35 4.65

Figure 6 is an angular error (AE) histogram comparison between the proposed network and
several best-performing conventional methods selected from Table 1: CNN-based method, CCATI,
ExemplarCC, ensemble of decision (ED) tree based method, Zhan et al., DS-Net, SqueezeNet-FC, and
AlexNet-FC. Joze and Drew [40] proposed an exemplar method which estimates the local source
illuminant by finding the neighboring surfaces in the training data which consists of the weak color
constant RGB values and the texture features. Ensemble of decision tree based method [38] is a
discrete version of Gamut mapping which uses the correlation matrix, instead of the canonical Gamut
for the considered illuminants, and uses the image data to calculate the probability that the
illumination in the test image is caused by which of the known illuminants. Shi et al. [39] proposed a
branch-level ensemble of neural networks consisting of two interacting sub-networks: a hypotheses
network and a selection network. The selection network picks confident estimations from the
plausible illuminant estimations generated from the hypotheses network. Shi’s method produces
accurate results, but the model size is huge, and its processing speed is slow. That is, when the CNNs
go deeper by adding layers, fully connected layers have several well-known vital problems including
incredibly expensive computational problems. To solve these problems, the proposed CNN method
adopts the residual network to improve the estimation accuracy and reduce expensive computational
cost. Further the pooling mechanism employed by the proposed network contributes to reducing
estimation ambiguities.
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Figure 6. Comparative angular error (AE) histogram of convolutional neural network (CNN)-based,
exemplar-based, ensemble of decision (ED) tree based methods, DS-Net, AlexNet-FC, SqueezeNet-
FC, CCATI Zhan et al,, and the proposed network (proposed net.) with Shi’s re-processed dataset
and the NUS 8-Camera Dataset.

In estimating illuminants, the proposed network stays ahead of the state-of-the-art methods,
with 76.41% of the tested images under an angular error of 3° and 97% under an angular error of 6°.
Figure 7 is a comparison of the root mean square error (RMSE) results among CNN-based, exemplar-
based, ensemble of decision (ED) tree based methods, Alex-FC, CCATI, Zhan et al,, DS-Net,
SqueezeNet-FC, and the proposed network (proposed), with the input of the angular error. The
proposed network records the lower RMSE relative to its conventional counterparts. Therefore, the
proposed network is deemed to be robust and generates lower AE and RMSE in estimating
illumination of a wide range of image scenes.

RMSE
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Figure 7. Comparison of root mean square error (RMSE) results of CNN-based, exemplar-based,
ensemble of decision (ED) tree based methods, DS-Net, AlexNet-FC4, SqueezeNet-FC4, CCATI, Zhan
et al.,, and the proposed network (proposed) with the angular error as input.
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To further verify the proposed method, additional experiments were conducted using SFU-lab
dataset [33] and gray-ball dataset [43]. The SFU-lab dataset contains four different subsets: objects
with minimal specularities (consisting of 22 scenes, 223 images in total), objects with at least one clear
dielectric specularity (9 scenes, 98 images in total), objects with metallic specularities (14 scenes, 149
images in total), and objects with fluorescent surfaces (6 scenes, 59 images in total). A commonly used
subset in literature is the union of the first two subsets. Furthermore, the gray-ball dataset [43] has a
total of 11,340 images of 360 x 240 pixels from a range of scenarios, which were taken under natural
single- or mixed-illuminant lighting conditions and a gray-ball was placed in front of the video
camera. Thus, many of the images are nearly identical scenes. Figure 8 illustrates the comparative
results of median angular errors, using 321 different SFU-lab images, and Figure 9 depicts the
comparative results of mean angular errors, using 500 different gray-ball dataset images. In both
experimental results, the proposed network also records the lowest angular error in terms of median
and mean. Therefore, the proposed method gets ahead of the conventional methods.
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Figure 8. Comparison of the median angular errors of 321 different SFU-lab images.
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Figure 9. Comparison of the mean angular errors of 500 different gray-ball images.
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The NUS 8-Camera Dataset [8] was additionally chosen to assess the camera invariant
performance of the proposed method. The NUS 8-Camera Dataset is the most recent and well-known
color constancy dataset which consists of 210 individual scenes captured by eight cameras, or a total
of 1736 images. With the NUS 8-camera image dataset, 11 conventional methods and the proposed
network are evaluated and compared. Table 2 displays the camera-wise performance comparison of
the proposed network with the 11 conventional methods. As a result, the proposed network
outperforms its 11 conventional counterparts. Accordingly, the proposed method is deemed robust
regardless of camera conditions.

Table 2. Performance comparison between grey world (GW) [32], white patch (WP) [3], shades of
grey (SoG) [4], general grey world (GGW) [6], 1st-order grey edge (GE1) [6], 2nd-order grey edge
(GE2) [6], local surface reflectance statistics (LSR) [34], pixels-based Gamut (PG) [35], Bayesian
framework (BF) [35], spatio-spectral statistics (SS) [37], natural image statistics (NIS) [20], and the
proposed network (PN) with NUS dataset.

Statistics-Based Learning-Based
Method GW WP SoG GGW GEl1 GE2 LSR PG BF SS NIS PN
Camera Mean Angular Error

Canonl1Ds 516 799 3.81 3.16 345 347 343 6.13 358 321 4.18 3.18
Canon600D 3.89 1096 3.23 324 322 321 359 1451 329 267 343 235
FujiXM1 416 1020 3.56 342 313 312 331 859 398 299 405 3.10
NikonD5200 4.38 11.64 3.45 326 337 347 368 1014 397 315 4.10 2.35
OlympEPL6 344 9.78 3.16 3.08 3.02 284 322 652 375 286 322 247
LumixGX1 3.82 1341 3.22 312 299 299 336 6.00 341 285 3.70 246
SamNX2000 390 11.97 3.17 322 3.09 318 384 774 398 294 3.66 232
SonyA57 459 991 3.67 320 335 336 345 527 350 3.06 345 233
Camera Median Angular Error

Canonl1Ds 415 6.19 273 235 248 244 251 430 280 267 3.04 271
Canon600D 2.88 1244 2.58 228 207 229 272 1483 235 203 246 219
FujiXM1 3.30 1059 281 260 199 200 248 887 320 245 296 282
NikonD5200 3.39 11.67 2.56 231 222 219 283 1032 3.10 226 240 1.92
OlympEPL6 258 9.50 242 218 211 218 249 439 281 224 217 212
LumixGX1 3.06 18.00 2.30 223 216 204 248 474 241 222 228 142
SamNX2000 3.00 1299 2.33 2,57 223 232 290 791 3.00 229 277 132
SonyA57 346 744 294 256 258 270 251 426 236 258 2.88 1.65
Camera Tri-mean error

Canonl1Ds 446 698 3.06 250 274 270 281 481 297 279 330 2.69
Canon600D 3.07 1140 2.63 241 236 237 295 1478 240 218 272 233
FujiXM1 340 1025 293 272 226 227 265 864 333 255 3.06 2.88
NikonD5200 3.59 11.53 2.74 249 252 258 3.03 1025 336 249 277 195
OlympEPL6 273 954 259 235 226 220 259 479 3.00 228 242 218
LumixGX1 3.15 1498 2.48 245 225 226 278 498 258 237 267 1.81
SamNX2000 3.15 1245 245 266 232 241 324 770 327 244 294 1.65
SonyA57 3.81 878 3.03 268 276 280 270 445 257 274 295 191
Camera Mean of Best 25%

Canonl1Ds 095 156 0.66 0.64 081 086 1.06 105 076 088 0.78 0.65
Canon600D 0.83 203 0.64 0.63 0.73 080 1.17 998 0.69 0.68 0.78 0.73
FujiXM1 091 1.82 0.87 073 0.72 070 099 344 093 0.81 086 0.75
NikonD5200 092 1.77 0.72 0.63 0.79 073 116 435 092 086 0.74 0.57
OlympEPL6 085 1.65 0.76 072 065 071 115 142 091 0.78 0.76 0.80
LumixGX1 082 225 0.78 0.70 056 0.61 082 206 068 082 0.79 0.65
SamNX2000 0.81 259 0.78 077 071 074 126 265 093 0.75 0.75 0.53
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SonyA57 116 1.44 098 085 0.79 0.89 098 128 0.78 0.87 0.83 0.57
Camera Mean of Worst 25%

CanonlDs 11.00 16.75 8.52 708 7.69 776 730 1416 795 643 951 6.67
Canon600D 853 18.75 7.06 758 748 741 740 1845 793 577 576 529
FujiXM1 9.04 1826 7.55 762 732 723 706 134 882 599 937 564
NikonD5200 9.69 21.89 7.69 753 842 821 757 1593 818 690 10.01 4.86
OlympEPL6 741 18.58 6.78 6.69 6.88 647 655 1542 819 6.14 7.46 4.62
LumixGX1 845 2040 7.12 686 7.03 6.86 742 1219 8.00 590 8.74 5.74
SamNX2000 851 2023 6.92 685 7.00 723 798 13.01 8.62 622 816 5.55
SonyA57 9.85 2127 7.75 6.68 718 714 732 11.16 8.02 6.17 7.18 5.12

4. Conclusions

A color constancy algorithm is designed to remove color casts from images and manifest the
actual colors of objects, as well as preserve constant distribution of the light spectrum across the
digital images, in an effort to address the challenges faced by the computer vision algorithms or
methods in nature.

Accordingly, this article presents novel network architecture that uses the residual neural
network composed of pre-activation, atrous or dilated convolution and batch normalization. The
proposed network is intended to enable image patches to carry different semantic information
automatically, upon receiving different input values. The network learns and applies semantic
information to its novel pooling layer for global estimation.

As in the comparative experimental results of AE, the proposed network achieves much higher
accuracy than its state-of-the-art counterparts. In the comparative AE histogram, the proposed
network gets ahead of its state-of-the-art counterparts, scoring 76.41% of the number of images under
an AE of 3° and 97% under an AE of 6°. In the RMSE comparison as well, the proposed network
records the lowest value. Therefore, the proposed network proves to be robust and causes lower AE
and RMSE in estimating illumination of a wide range of image scenes. Furthermore, through
additional experiments with two more datasets of different semantic information levels: SFU-lab and
gray-ball datasets, the proposed network also results in lower median and mean angular errors,
respectively. In addition, the proposed network is evaluated on NUS 8-Camera Dataset to verify the
camera invariant performance. As a result, the proposed method outperforms its conventional
counterparts as a camera invariant color constancy model by obtaining competitive results in
uniform, non-uniform, and multiple illuminant conditions. Notwithstanding, the preprocessing
method and CNN structure still need to advance in estimating color casts of light sources regardless
of illumination condition as well as camera sensitivity. To this end, this study will continue to
advance illumination estimation accuracy.
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