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Abstract: A rock mass often contains joints filled with a viscoelastic medium of which seismic response
is significant to geophysical exploration and seismic engineering design. Using the propagator matrix
method, an analytical model was established to characterize the seismic response of viscoelastic filled
joints. Stress wave propagation through a single joint highly depended on the water content and
thickness of the filling as well as the frequency and incident angle of the incident wave. The increase
in the water content enhanced the viscosity (depicted by quality factor) of the filled joint, which
could promote equivalent joint stiffness and energy dissipation with double effects on stress wave
propagation. There existed multiple reflections when the stress wave propagated through a set of
filled joints. The dimensionless joint spacing was the main controlling factor in the seismic response of
the multiple filled joints. As it increased, the transmission coefficient first increased, then it decreased
instead, and at last it basically kept invariant. The effect of multiple reflections was weakened by
increasing the water content, which further influenced the variation of the transmission coefficient.
The water content of the joint filling should be paid more attention in practical applications.

Keywords: rock mass; filled joint; seismic response; viscoelastic filling; water content; propagator
matrix method; thin-layer medium model

1. Introduction

The study on the seismic response of the rock mass is of great significance to geophysical
exploration and seismic engineering design. Usually, a rock mass contains joints that are discontinuous
interfaces and that significantly influence mechanical behaviors of the rock mass [1–7]. Due to
the weathering effect, the natural joint was often filled with loose and soft materials such as sand with
pore space containing normal air with high moisture content which significantly controlled the joint
mechanical behaviors [1,2,8–10]. It was found that the thickness and water content of the filling had
great influences on the seismic response of the filled joint [11–13]. It was found that saturated soils
behaved viscoelastic in response to the dynamic loads, which can be characterized by the Kelvin
viscoelastic model [14,15]. Previous studies also showed that the viscosity had an important effect
on the dynamic response of the joint and could also dissipate wave energy [16–23]. Meanwhile, when
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the density of the filled material could not be neglected compared with the rock density, the initial mass
of the filled joint could affect wave propagation [20]. Therefore, it is crucial to investigate the seismic
response of the joints filled with a viscoelastic medium.

Many analytical models were proposed to characterize the seismic response of the filled joints.
Ref. [24] applied the displacement discontinuity model (DDM) to study wave propagation through
a filled rock joint. The model assumed that the stress was continuous, but the displacement was not
when the stress wave impinged on the filled joint which was controlled by the fracture compliance [25].
Based on the DDM, [26] proposed a three-phase medium model for the filled rock joint considering
the interaction of the three-phase system consisting of gas, liquid and granular solid. Ref. [20] proposed
a displacement and stress discontinuity model (DSDM) to study wave propagation through filled
joints considering the initial mass effect of the filled material. This model assumes that not only
the displacement but also the stress is discontinuous in the front and rear interface of the filled joint.
However, the above studies mainly have two limitations: (1) Wave reflection in the filled layer was
neglected when it needs to be considered as the ratio of filled thickness to the wavelength is relatively
large; (2) There are many parameters in these analytical models which are difficult to determine by
laboratory tests, such as the viscosity and stiffness of the filled joint. To overcome these problems,
a simple and feasible way is to model the filled joint as a layer of independent continuum solid medium.
Properties of the filled joint are controlled by those of the filled medium such as the density, filled
thickness (aperture), wave velocity and quality factor (Q) that can be readily determined. Furthermore,
multiple reflections in the filled layer can be taken into account. It was found that a joint or an interface
between two solids can be represented as a thin-layer interface [27]. Ref. [28] pointed out that
a thin-layer interface or a zero-thickness interface for a joint should be essentially the same from
the physical point of view. The thin-layer medium model (TLMM) was also proved to be reasonable
and feasible to characterize stress wave propagation through filled joints in previous studies [29].
They found that predicted results of stress wave propagation through joints by the purely elastic
TLMM are nearly the same as the zero-thickness interface model if the ratio of the wavelength to
the filled thickness is large enough. Zhu et al. in 2012 [30] investigated the propagation of the stress
waves normally impinging on a single rock joint filled with a viscoelastic medium. By modeling
the interface between two solids as a thin viscoelastic layer with stiffness and inertia term, wave
propagation through a single filled joint was addressed by [31]. However, thus far, analytical models
based on the TLMM were rarely reported to investigate seismic response of viscoelastic filled joints as
the water content of the filling varied.

The purpose of this paper is to establish an analytical model on the seismic response of the rock
joints filled with a viscoelastic medium, considering the water content, the filled thickness (aperture),
viscosity of the filled material (quality factor), the joint spacing (related to joint density) as well as
the incident angle and frequency of the incident wave.

2. Method

When the stress wave impinges on a viscoelastic filled joint, only one portion of the stress wave
can pass through the filled joint while the other portion will be reflected. Meanwhile, wave conversion
happens for the case of the oblique incidence at the joint [18], as shown in Figure 1. There are
multiple reflections at joint interfaces [32,33]. The overall transmitted wave, after propagating through
a set of filled joints, is the superposed wave consisting of the first-arriving transmitted wave and
the later-arriving transmitted waves induced by multiple reflections at each joint. In previous studies,
three types of analytical methods were mainly proposed to solve the multiple-reflection problem,
i.e., the method of characteristics (MC) [33,34]; the virtual wave source method (VWSM) [35,36];
the recursive method (RM) [21–23,30]. MC was mainly applied to solve the 1-D problem of stress wave
propagation through joints. For the VWSM, it is necessary to clarify the analytical solution of the wave
propagation through a single joint. The propagator matrix method (PMM) is one of the RMs, that was
widely applied to solve wave propagation problems of stratified medium [37,38]. The algorithm needs
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not to identify the analytical solution of wave propagation through a single interface or joint. Ref. [39]
first introduced the PMM to study the propagation of the stress wave through unfilled joints satisfying
purely elastic deformational behavior. Ref. [21] extended the PMM from the purely elastic case to
the viscoelastic case and studied the seismic response of the rock mass containing viscoelastic unfilled
joints. Combining with the TLMM, the PMM is also used to derive formulas of wave propagation
through rock mass containing joints filled with viscoelastic medium in this paper.
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Figure 1. (a) A P wave impinges on a rock mass containing joints filled with a viscoelastic medium,
(b) the schematic view of the sandwiched element.

As shown in Figure 1, a 2-D plane is considered and both the local coordinates (xi, zi) and the global
coordinates (X, Z) are applied. The rock mass is divided by the multiple parallel filled joints with
identical joint spacing hr as shown in Figure 1a. The filled joints are numbered from 1 to n and the rock
layers from 1 to n + 1, respectively, with Z increasing towards the lower layers. When a P wave
impinges on the upper boundary, wave conversions, reflection and transmission occur. θ denotes
the incident and the reflection angle of the incident P wave and ϕ represents the reflection angle of
the converted SV wave. An element surrounded by the dash frame (see Figure 1a) is chosen to derive
the stress and displacement relations between two adjacent rock layers. The sandwiched element
consists of two layers rocks and one filled layer with a thickness of hf, which are numbered as i, f and
i + 1 from the upper to the low layer, respectively.

Each rock layer is assumed to be a linearly elastic, homogeneous and isotropic medium with
the density of ρr, P- and S-wave velocity of Vp

r and Vs
r. Deformation of each filled medium is

characterized by the Kelvin viscoelastic model, which has the density of ρf, P- and S-wave velocity of
Vp

p and Vs
p, and P- and S-wave quality factor of Qp and Qs, where Vp

p and Vs
p denote the purely

elastic wave velocity when the viscosity is not considered. The interface between the rock and the filled
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medium is assumed to be welded, in which both stresses and displacements are continuous. Two
local coordinates xf-of-zf and xi+1-oi+1-zi+1 are applied as shown in Figure 1b. The symbols “+” and
“−“ represent the upper boundary and the lower boundary of a layer (e.g., in the (i + 1) th layer, “+”
represents the upper boundary (zi+1 = 0), whereas “−“ represents the low boundary (zi+1 = hr).

For the linearly elastic rock layer, the 2-D wave equation can be written as:

ρr
∂2ux

∂t2 =
∂σx

∂x
+
∂τxz

∂z
(1)

ρr
∂2uz

∂t2 =
∂τxz

∂x
+
∂σz

∂z
(2)

σz = λr
∂ux

∂x
+ (λr + 2µr)

∂uz

∂z
(3)

τxz = µr(
∂uz

∂x
+
∂ux

∂z
) (4)

where ui denotes the particle displacement and σij denotes the stress, λr and µr are Lamé constants for
rock and λr = ρr (Vp

r)2-2ρr (Vs
r)2, µr = ρr (Vs

r)2.
For the Kelvin viscoelastic filled layer, the 2-D wave equation can be written as:

ρ f
∂2ux

∂t2 =
∂σx

∂x
+
∂τxz

∂z
(5)

ρ f
∂2uz

∂t2 =
∂τxz

∂x
+
∂σz

∂z
(6)

∂σz

∂t
= λp

∂2ux

∂t∂x
+ (λp + 2µp)

∂2uz

∂t∂z
+ λ f

′
∂3ux

∂x∂t2 + (λ f
′ + 2µ f

′ )
∂3uz

∂z∂t2 (7)

∂τxz

∂t
= µp

∂2uz

∂t∂x
+ µp

∂2ux

∂t∂z
+ µ f

′
∂3uz

∂x∂t2 + µ f
′
∂3ux

∂z∂t2 (8)

where λp and µp are the purely elastic Lamé constants of the filled layer when the viscosity is not
considered, λp = ρf (Vp

p)2-2ρf (Vs
p)2, µp = ρf (Vs

p)2 and λf
′

and µf
′

denote the viscoelastic modulus
for the filled medium. Equations (1)–(8) are transformed into frequency domains by Fourier transform.

For the rock layer,

− ρrω
2ũx = (

∂σ̃x

∂x
+
∂̃τxz

∂z
), (9)

− ρrω
2ũz = (

∂̃τxz

∂x
+
∂σ̃z

∂z
) (10)

σ̃z = λr
∂ũx

∂x
+ (λr + 2µr)

∂ũz

∂z
(11)

τ̃xz = µr(
∂ũx

∂z
+
∂ũz

∂x
), (12)

where, variables with the symbol “~” over them denotes the Fourier transform.
For the filled layer,

− ρ fω
2ũx = (

∂σ̃x

∂x
+
∂̃τxz

∂z
) (13)

− ρ fω
2ũz = (

∂̃τxz

∂x
+
∂σ̃z

∂z
) (14)

σ̃z = (λp + iωλ′f )
∂ũx

∂x
+

[
(λp + 2µp) + iω(λ′f + 2µ′f )

]
∂ũz

∂z
(15)

τ̃xz = (µp + iωµ′f )(
∂ũx

∂z
+
∂ũz

∂x
) (16)
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where ω is angular frequency and i =
√
−1.

The quality factors related to energy attenuation can be defined as [40]:

Qp =
λp+2µp
λ f
′+2µ f

′
1
ω

Qs =
µp
µ f
′

1
ω

(17)

When Qp→∞ and Qs→∞, Equations (13)–(16) represent the pure elastic case without viscosity
energy loss. When Qp→0 and Qs→0, the filled medium has a very large viscosity. Based on
Equations (15)–(17), we can obtain corresponding complex equivalent Lamé constants and an equivalent
wave velocity of the filled medium as follows:

λ f = λp + iωλ f
′ = λp[1 + i

QsVp
p

2
−2QpVp

s
2

QpQs(V
p
p

2−Vp
s

2)
]

µ f = µp + iωµ f
′ = µp(1 + i 1

Qs
)

(18)

V f
p =

√
λ f +2µ f
ρ f

V f
s =

√
µ f
ρ f

(19)

Substituting the Equation (18) into Equations (15) and (16), we can obtain the following equations:

σ̃z = λ f
∂ũx

∂x
+ (λ f + 2µ f )

∂ũz

∂z
(20)

τ̃xz = µ f (
∂ũx

∂z
+
∂ũz

∂x
) (21)

It can be seen that Equations (20) and (21) have the same form as those of purely elastic wave
equations. Based on the Helmholtz decomposition theory [41], the 2-D dynamic equation can be
expressed as two displacement potential functions. Assume that the ϕ̃i(the displacement potential
of the P wave) and ψ̃2i(the second component of the displacement potential of the S wave) are
the potential functions of the ith layer in the frequency domain which can be expressed by following
two Equations [21,39].

ϕ̃i(x, z,ω) = Upie
i(−kxix+kzpiz) + Dpiei(−kxix−kzpiz) (22)

ψ̃2i(x, z,ω) = Usiei(−kxix+kzsiz) + Dsiei(−kxix−kzsiz) (23)

where kxi, kzpi are the P-wave numbers of the ith layer in the x and z directions, and kzsi is the S-wave
number of the ith layer in the z direction. As shown in Figure 1b, the sandwiched element consists of
two types of materials in turn. When the wave propagates in the rock layer, the wave numbers kxi, kzpi

and kzsi can be expressed as kx
r = kp

r sin θ, kzp
r = kp

r cos θ, kr
zs =

√
(ω/Vr

s)
2
− kr2

x , where kp
r = ω/Vp

r is
the wave number of the P wave. Similarly, when the wave propagates in the filled layer, the wave

numbers kxi, kzpi and kzsi can be expressed as kx
f = kp

f sin θ, kzp
f = kp

f cos θ and k f
zs =

√(
ω/V f

s

)2
− k f 2

x ,

where kp
f = ω/Vp

f is the wave number of the P-wave propagation through the filled medium.
The particle displacement can be written as:

ũxi =
∂ϕ̃i

∂x
−
∂ψ̃2i

∂z
(24)

ũzi =
∂ϕ̃i

∂z
+
∂ψ̃2i

∂x
(25)
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Substituting Equations (22) and (23) into Equations (24) and (25), we can form:

ũxi = [(−ikxieikzpiz)Upi + (−ikxie−ikzpiz)Dpi + (−ikzsieikzsiz)Usi + (ikzsie−ikzsiz)]Dsi]e−ikxix (26)

ũzi = [(ikzpieikzpiz)Upi + (−ikzpie−ikzpiz)Dpi + (−ikxieikzsiz)Usi + (−ikxie−ikzsiz)]Dsi]e−ikxix (27)

Based on the constitutive Equations (20) and (21) and Equations (26) and (27), we can also form:

σ̃zi =

 (−λiω
2

V2
pi
− 2µik2

zpi)e
ikzpizUpi + (−λiω

2

V2
pi
− 2µik2

zpi)e
−ikzpizDpi

+2µikxikzsieikzsizUsi + 2µi(−kxikzsi)e−ikzsizDsi

e−ikxix (28)

τ̃xz =

 2µikxikzpieikzpizUpi − 2µikxikzpie−ikzpizDpi

−µi(k2
xi − k2

zsi)e
ikzsizUsi − µi(k2

xi − k2
zsi)e

−ikzsizDsi

e−ikxix (29)

Equations (26)–(29) can be written as the matrix form:


ũx

ũz

σ̃z

τ̃xz


i

=



−ikxieikzpiz − ikxie−ikzpiz − ikzsieikzsiz ikzsie−ikzsiz

ikzpieikzpiz − ikzpie−ikzpiz − ikxieikzsiz − ikxie−ikzsiz

(−λiω
2

V2
pi
− 2µik2

zpi)e
ikzpiz (−λiω

2

V2
pi
− 2µik2

zpi)e
−ikzpiz 2µikxikzsieikzsiz − 2µikxikzsie−ikzsiz

2µikxikzpieikzpiz − 2µikxikzpie−ikzpiz − µi(k2
xi − k2

zsi)e
ikzsiz − µi(k2

xi − k2
zsi)e

−ikzsiz


·


Up

Dp

Us

Ds


i

e−ikxix = PiQi


Up

Dp

Us

Ds


i

e−ikxix

(30)

For the rock layer,

Pi = Pr =


−ikr

x −ikr
x −ikr

zs ikr
zs

ikr
zp −ikr

zp −ikr
x −ikr

x

(−λrω2

Vr
p

2 − 2µrkr
zp

2) (−λrω2

Vr
p

2 − 2µrkr
zp

2) 2µrkr
xkr

zs −2µrkr
xkr

zs

2µrkr
xkr

zp −2µrkr
xkr

zp −µr(kr
x

2
− kr

zs
2) −µr(kr

x
2
− kr

zs
2)


and

Qi = Qr =


eikr

zpz 0 0 0

0 e−ikr
zpz 0 0

0 0 eikr
zsz 0

0 0 0 e−ikr
zsz


the subscripts ‘i’ denote the layer number.

For the filled layer,

Pi = P f =



−ik f
x −ik f

x −ik f
zs ik f

zs

ik f
zp −ik f

zp −ik f
x −ik f

x

(−
λ fω

2

V f
p

2
− 2µ f k f

zp
2) (−

λ fω
2

V f
p

2
− 2µ f k f

zp
2) 2µ f k f

xk f
zs −2µ f k f

xk f
zs

2µ f k f
xk f

zp −2µ f k f
xk f

zp −µ f (k
f
x

2
− k f

zs
2) −µ f (k

f
x

2
− k f

zs
2)
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and

Qi = Q f =



eik f
zpz 0 0 0

0 e−ik f
zpz 0 0

0 0 eik f
zsz 0

0 0 0 e−ik f
zsz


Equation (30) establishes the relation between stress and displacement and the potential amplitudes

in each layer. Note that the matrix Qi is related to z coordinate. As shown in Figure 1b, two local
coordinate systems (xf-of-zf and xi + 1-oi+1-zi+1) are adopted, respectively. For the upper boundary of
a layer, z = 0 and Qi can be expressed as Qi

+. For the low boundary of a layer, z = hi and Qi can be
expressed as Qi

−. Therefore, we can form:

Q+
r = Q+

f =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



Qr
− =


eikr

zphr 0 0 0

0 e−ikr
zphr 0 0

0 0 eikr
zshr 0

0 0 0 e−ikr
zshr


and

Q f
− =



eik f
zph f 0 0 0

0 e−ik f
zph f 0 0

0 0 eik f
zsh f 0

0 0 0 e−ik f
zsh f


The relation of the potential amplitudes between two adjacent rock layers can be derived from

the sandwiched element as shown in Figure 1b. As mentioned before, the stress and the displacement
at the interface between the rock layer and the filled layer are continuous. In addition, based on
Equation (30), we can easily form:

ũx

ũz

σ̃z

τ̃xz


−

i

=


ũx

ũz

σ̃z

τ̃xz


+

f

= P f Q f
+


Up

Dp

Us

Ds


f

e−ik f
x x (31)


ũx

ũz

σ̃z

τ̃xz


−

f

=


ũx

ũz

σ̃z

τ̃xz


+

i+1

= P f Q f
−


Up

Dp

Us

Ds


f

e−ik f
x x (32)


ũx

ũz

σ̃z

τ̃xz


−

i+1

= PrQr
−


Up

Dp

Us

Ds


i+1

e−ikr
xx (33)
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From (31)–(33), we can form: 
ũx

ũz

σ̃z

τ̃xz


−

i+1

= Ri


ũx

ũz

σ̃z

τ̃xz


−

i

(34)

where, Ri = PrQr
−P−1

r P f Q−f P−1
f .

Note that Ri can be regarded as the stiffness matrix of the filled joint which is related to the thickness,
density, P- and S- wave velocity, and viscosity (quality factor) of the filled medium. It has the similar
form compared with that of the unfilled joints [21,39], which additionally considers the effect of
the wave impedance of the filling.

The relation of Equation (34) can be extended from the first layer to the nth layer by chain rule:
ũx

ũz

σ̃z

τ̃xz


−

n

= Rn−1 · · ·R2R1


ũx

ũz

σ̃z

τ̃xz


−

1

(35)

When the wave impinges on the lower boundary of the first layer, the propagation distance is
0, therefore: 

ũx

ũz

σ̃z

τ̃xz


−

1

= Pr


Up

Dp

Us

Ds


1

e−ikr
xx (36)

Meanwhile, after the wave propagating through n filled joints, the wave propagates into the (n + 1)th
layers in fact. The displacement and stress vector at the upper boundary of the (n + 1) rock layer
should be expressed. 

ũx

ũz

σ̃z

τ̃xz


−

n

=


ũx

ũz

σ̃z

τ̃xz


+

f

= P f Q+
f


Up

Dp

Us

Ds


f

e−ik f
x x (37)


ũx

ũz

σ̃z

τ̃xz


+

n+1

=


ũx

ũz

σ̃z

τ̃xz


−

f

= P f Q−f


Up
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From Equations (37) and (38), we can form:


ũx

ũz
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−
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Substituting Equations (36) and (39) into (35), we can form:
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Dp
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n+1

= P−1
r P f Q−f P−1

f Rn−1 · · ·R2R1Pr


Up

Dp

Us

Ds


1

(40)



Appl. Sci. 2020, 10, 4797 9 of 19

For the (n + 1)th layer, there only exists down-going P- and S- waves, therefore Up = 0 and
Us = 0. Because only the P-wave impinges on the first layer, Ds is equal to 0. Based on Equation
(40), the reflected and transmitted waves can be calculated. We can obtain reflection–transmission
coefficients that are defined as ratios of reflected and transmitted wave amplitudes to the incident wave
amplitude. Specifically, the reflection–transmission coefficients can be written as Rp→p = max(abs(Up

1)),
Rp→s = max(abs(Us

1)), Tp→p = max(abs(Dp
n+1)) and Tp→s = max(abs(Ds

n+1)). For these symbols, the first
subscript letter represents the incident wave and the second subscript letter stands for the transmitted or
reflected wave. Details can be found in [21]. During calculation, the wave has to be first transferred into
frequency domain signals by the fast Fourier transform (FFT) to calculate the reflected and transmitted
waves. Finally, these waves in the frequency domain are transferred into signals in the time domain by
the inverse fast Fourier transform (IFFT). In the following section, the experimental incident wave is
first used as the input incident wave for model validation and then one cycle of sinusoidal wave is
used as the input incident wave for parametric studies. According to [21], the start time to oscillate
needed to have enough delay rather than from 0 to eliminate the aliasing effect as much as possible
in the processing of FFT. Meanwhile, some amplitude compensations are also needed.

3. Results

3.1. Experimental Calibration

In this section, the analytical model is calibrated according to the experimental data from [12].
In their study, a layer of quartz sand with a fixed thickness of 2 mm but varied water content of 0%,
2%, 5%, 10%, and 15% (saturated) was sandwiched between two norite bars to simulate filled joints
with different water contents. The stress wave was induced by a split Hopkinson rock bar (SHRB)
system. The quartz sand had a porosity of around 0.4 and material density of 2620 kg·m−3 (solid
density). The density of fillings with different water contents can be calculated and listed in Table 1.
The norite had a P-wave velocity of 6000 m·s−1 and density of 2900 kg·m−3 [12,42]. The S-wave velocity
of the norite was taken as 2/3 of its P-wave velocity (4000 m·s−1). The experimental incident wave
was adopted as the incident wave to predict transmitted waves after propagating through filled joints
with different water contents. The start time of the wave signal to oscillate has a delay of around
0.0012 s compared with that in [12]. Table 1 shows the calibrated parameters in cases of different water
contents. Except the density of the filled medium, other parameters all decrease with increasing water
content. According to Section 2, the decrease in the quality factor indicates the increase in the viscosity
of the filled joint.

Table 1. Calibrated parameters of filled joints with different water contents.

Parameters of the Filled Medium
Water Content

0% 2% 5% 10% 15%

ρf (kg·m−3) 1572 1603 1650 1729 1807
Vp

p (m·s−1) 296 270 240 220 185
Vs

p (m·s−1) 197 180 160 146 123
Qp 300 120 30 6 1.5
Qs 200 80 20 4 1.0

Figure 2 shows the experimental incident wave, transmitted waves through a single filled joint
with different water contents and predicted transmitted waves. The amplitude of the experimental
transmitted wave obviously decreases with increasing water content. Predicted transmitted waves
are basically consistent with experimental results except that their durations are a bit larger than
those in the experiment. Figure 3 shows a comparison of the transmission coefficient between
the experimental and predicted results. We can see that the experimental transmission coefficient
decreases with increasing water content, which agrees well with the experimental result. From
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Figures 2 and 3, it can be inferred that our analytical model basically has the capability to characterize
the seismic response of the filled joint considering different water contents.Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 21 
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Figure 2. Variation of waveforms with the water content by experiments (reproduced with permission
from [12], Springer Wien, 2015) and predicted results by our analytical model.
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Figure 3. Variation of the transmission coefficient versus the water content by experiments (reproduced
with permission from [12], Springer Wien, 2015) and predicted by our analytical model.

3.2. Parametric Studies

In this section, reflection–transmission coefficients when a P wave obliquely impinges on a single
filled joint and set parallel filled joints with identical spacing were investigated, respectively, considering
the incident angle θ and the frequency f of the incident wave, as well as the filled thickness hf and
the quality factor of the filled material Qp and Qs. One of these parameters was studied while other
parameters were fixed. Parameters of the rock material are taken as those of the norite introduced
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in Section 3.1. Parameters of the filled medium for different water contents are taken according
to Table 1.

3.2.1. Case of One Single Filled Joint

When a P wave obliquely impinges on a single filled joint, there are reflected P and SV waves as
well as transmitted P and SV waves as shown in Figure 4.
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Figure 4. Reflected and transmitted waves when a P wave obliquely impinges on a single filled joint.

Figure 5 shows reflection–transmission coefficients versus the filled thickness hf considering
different water contents of the filled medium. It displays that Rp→p first increases abruptly with
the increase in hf, then its increase tends to be gentle while Tp→p decreases basically in a negative
exponential form. For the conversion waves, Rp→sv first increases sharply with hf increasing then
it basically increases in a linear manner while Tp→sv basically keeps invariant. In general, Rp→sv varies
more violently with the increase in hf compared with Tp→sv. As the water content increases, Tp→p

decreases evenly, and corresponding curves become divergent; Rp→p and Rp→sv have an increasing
trend on the whole; Tp→sv curves for different water contents basically overlap with each other.
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Figure 5. Reflection–transmission coefficients of a P wave impinging on a single filled joint versus
the filled thickness hf considering different water contents. The incident P wave has the frequency of
50 Hz and the incident angle of 20◦.
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Figure 6 shows the reflection –transmission coefficients varying with wave frequency f. We can
see that Tp→p decreases basically in a negative exponential form with increasing f. Rp→p and Rp→sv

first increase abruptly with increasing f, then they only have slight changes. Compared with the other
three types of coefficients, Tp→sv is relatively insensitive to f. Cases of different water contents present
similar variation of reflection–transmission coefficients versus f except for the magnitude difference.
As the water content increases, Tp→p decreases evenly and corresponding curves become divergent;
Both Rp→p and Rp→sv generally have an increasing trend of which the variation is smaller than that of
Tp→p; Tp→sv curves for different water contents basically overlap with each other which indicates that
it is independent of the water content of the filled medium.
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Figure 6. Variation of reflection–transmission coefficients versus the wave frequency f when a P wave
impinges a filled joint with a thickness of 20 mm. The incident wave has the incident angle of 20◦ and
the frequency of 50 Hz.

Figure 7 shows the reflection–transmission coefficients versus the incident angle θ when a P wave
obliquely impinges on a single filled joint considering the different water contents. It shows that Tp→p

does not change much with increasing θ until θ approaches the critical angle 90◦, and it suddenly
decreases to 0. When θ is smaller than around 40◦, Rp→p first decreases with increasing θ. As θ is
larger than around 40◦, it gradually increases to a peak and then it deceases instead. When θ is larger
than around 83◦, Rp→p increases rapidly. Tp→sv changes gently with the increase in θ. Rp→sv first
increases to the maximum value at θ of approximately 40◦ and then it decreases with increasing θ
instead. Generally, Tp→sv is much smaller than Tp→p. As the water content increases, Tp→p decreases
evenly and related curves become divergent when θ is smaller than 83◦; When the water content
increases from 0% to 5%, both Rp→p and Rp→sv have an obvious increase while they have very limited
changes as the water content increases from 5% to 10%; Tp→sv is basically independent on the water
content of the filled medium.
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Figure 7. Reflection–transmission coefficients versus the incident angle θ when the P wave impinges
on a single filled joint with a thickness of 10 mm. The incident wave has the frequency of 50 Hz.

Figure 8 shows the reflection –transmission coefficients versus the quality factor when a P wave
impinges on a single filled joint with a thickness of 40 mm. For convenience, a variable Q is introduced
to express Qp and Qs as Qp = Q and Qs = 2/3Q, respectively. To only investigate the influence of
the quality factor of the filled medium, the density, thickness and wave velocity of the filled medium
were fixed as constant values (Vp

p = 185 m·s−1, Vs
p = 123 m·s−1 and ρf = 1807 kg·m−3). It shows

that Tp→p decreases abruptly with Q increasing, after achieving a minimum value, it increases with
an increment of Q instead and eventually it basically keeps invariant. Tp→sv does not change much
with increasing Q. Both Rp→p and Rp→sv increase rapidly with Q increasing and then they increase
gently, and they basically keep invariant as Q is larger than 20. Generally, Q has a more significant
effect on Tp→p, Rp→p and Rp→sv than Tp→sv.Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 21 
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Figure 8. Reflection–transmission coefficients of a P wave impinging on a single filled joint versus
the quality factor Q. The incident P wave has the frequency of 50 Hz and an incident angle of 20◦.



Appl. Sci. 2020, 10, 4797 14 of 19

Due to the viscosity of the filled medium, the wave energy dissipated after propagating through
the filled joint, which can be defined as follows [21,40]:

Eloss = 1− T2
p→p −R2

p→p − T2
p→sv −R2

p→sv (41)

Figure 9 shows the energy loss versus the quality factor Q corresponding to Figure 8. It displays
that the energy loss Eloss first increases abruptly with the increase in Q. After achieving a peak,
Eloss decreases rapidly with an increment of Q. When Q is larger than 25, Eloss changes gently with
Q increasing.
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Figure 9. The energy loss Eloss versus the quality factor Q corresponding to Figure 8.

3.2.2. Case of Multiple Parallel Filled Joints

When the stress wave propagates though a rock mass containing a set of joints, multiple reflections
occur at each joint [33,34,43]. In this section, involved filled joints are assumed to have the same
properties such as filled thickness, density, wave velocity, quality factor of the filled medium, etc.
The rock mass is assumed to contain a set of joints with the identical joint spacing. A cycle of sinusoidal
P wave with unit amplitude and frequency of 50 Hz was used to be the incident wave. The start
time of the wave signal to oscillate has a delay of around 0.1 s. According to [21], the actual central
frequency of the incident wave is 42.5 Hz for one cycle of sinusoidal wave with an input frequency
of 50 Hz. It is reasonable to use the central frequency of 42.5 Hz to represent the frequency of
the incident wave. The ratio between the joint spacing and wavelength have an important effect
on the transmission coefficient because of the multiple reflections at filled joints [21,33–35]. Therefore,
it is convenient to study the dimensionless joint spacing which is defined as ξ = hr/χ = (hrf )/Vp

r, where
χ is the P-wave wavelength.

Figure 10 shows transmitted waveforms (P-wave component) after a P wave obliquely propagates
through four parallel filled joints with an identical filled thickness hf of 40 mm and joint spacing hr

of 50 m, considering different water contents. It displays that each transmitted wave is made up of
several cycles of waveforms arriving at different times induced by multiple reflections at joints. We can
clearly see the wave superposition presenting multiple peaks and valleys in turn. As the water content
increases, the transmitted wave decreases in the amplitude and the component of the later-arriving
wave gradually fades away. When the water content is 15%, it is difficult to observe the later-arriving
transmitted wave (after 0.18 s).
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Figure 10. The incident P wave and transmitted waves (P-wave component) after propagating through
four parallel filled joints with an identical spacing of 50 m considering different water contents.
The incident P wave has the frequency of 50 Hz and the incident angle of 20◦.

Figure 11 shows that variation of transmission coefficients Tp→p and Tp→sv versus ξ after the P
wave obliquely propagates through four parallel joints considering different water contents. It shows
that there exists two threshold lines ξ1 and ξ2 dividing each curve into three parts, which is similar
to results in published papers [21,33–35,44]. Tp→p first decreases with increasing ξ (ξ < ξ1) and then
it decreases instead (ξ1 < ξ < ξ2) and at last it basically keeps invariant (ξ > ξ2). With the water
content increasing, Tp→p decreases and the position for the first threshold point moves to the left
while the second one moves to the right. The increasing part of the curve (ξ < ξ1) shortens while
the decreasing part (ξ1 < ξ< ξ2) widens. Tp→sv first increases with increasing ξ, then it decreases
after achieving a peak in general. When the water content is low, there exist fluctuations on the curve.
As the water content becomes higher, these fluctuations gradually fade away and the curve becomes
more and more flat. From Figures 10 and 11, it indicates that the effects of multiple reflections at
joints on the transmitted wave and transmission coefficient were significantly reduced when the water
content increased.
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Figure 11. Variation of the transmission coefficient (a) Tp→p and (b) Tp→sv versus dimensionless joint
spacing ξ after the P wave propagates through four parallel joints considering different water contents.
The incident P wave has a central frequency of 42.5 Hz and the incident angle of 20◦.

4. Discussion

It was found that not only the displacement but also the stress at the front and rear interfaces of
the filled joint were discontinuous when loaded by the stress wave [20,45]. This attributes to the inertial
effect of the mass of the filled medium. Both the stress and the displacement at the interface between
the rock and filled material are assumed to be continuous in the current study. It can be shown
that the sandwiched element surrounded by two interfaces as shown in Figure 1b can characterize
the stress and displacement discontinuities at the filled joint according to Equation (34). Therefore,
our model can simulate the discontinuous response of stress and the displacement at the filled joint,
which has similar physics to DSDM by [20]. Additionally, our model can automatically consider
the wave reflection inside the filled layer while DSDM loses the capability. However, the influence
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of the wave reflection is prominent and cannot be neglected when the ratio of the filled thickness to
the wavelength is large enough. As described in Section 3.1, our analytical model was suitable to
characterize the seismic response of the filled joint considering different water contents. Properties of
the filled joints can be simply described by several common parameters such as the filled thickness,
the density, the wave velocity, and the quality factors of the filled medium. These parameters have
definite physical meanings and can be obtained relatively more readily compared with those of
DSDM [20], i.e., the viscous stiffness.

The water content has a significant effect on the dynamic mechanical characteristics of the filled
joint. As shown in Table 1, the increase in the water content can increase the density but reduce
the wave velocity and quality factor of the filled medium. As a result, the transmission of the stress
wave was significantly influenced. Especially, the variation of the quality factor stands for the variation
of the viscosity. As derived in Equations (7) and (8), the viscoelastic wave equations have complex
forms composed of a real part and imaginary part. The increase in the imaginary part has double
effects, not only can it increase the equivalent dynamic modulus to let more wave energy pass through
the filled joint (positive effect), but it can also cause energy loss (negative effect) [21]. For Tp→p,
the negative effect first plays the domain role and the positive effect plays the domain role in turn when
the quality factor increases. For Rp→p, Rp→sv and Tp→sv, the positive effect always plays the domain
role. When the quality factor is large, the viscous effect of the filled medium is not prominent. In this
case, the reflection–transmission coefficients are independent of the quality factor. We can now
understand the variation of the reflection–transmission coefficients versus the quality factor as shown
in Figure 8 as well as the energy loss with quality factor in Figure 9. The transmitted waves after
propagating through multiple parallel joints are the superposed waves consisting of the first-arriving
wave and the later-arriving waves caused by multiple reflections. When the water content increases,
the wave reflection increases while the wave transmission decreases (see Figures 5–7). According
to this, the multiple reflections at the joint should increase with increasing water content. However,
the multiple reflection decreases with increasing water content instead (see Figures 10 and 11). It can
be inferred that this phenomenon may result from the increase in the viscosity of the filled medium
with the water content increasing, which significantly dissipated the energy of waves by multiple
reflections at the filled joints. Thus, the change of the quality factor (viscosity) of the filled medium
with increasing the water content has a significant influence on the seismic response of the filled joints
which should be paid more attention in practical applications.

5. Conclusions

We established an analytical model to characterize stress wave propagation through rock joints
filled with a viscoelastic medium considering different water contents. Some important conclusions
were reached. The seismic response of the single filled joint highly depended on the water content,
thickness of the filling as well as the frequency and incident angle of the incident wave, etc. The increase
in the water content enhanced the viscosity (depicted by quality factor) of the filled joint, which
could promote equivalent joint stiffness and energy dissipation with double effects on stress wave
propagation. When the stress wave propagated through a set of filled joints, there existed multiple
reflections at the joints. The dimensionless joint spacing was the main controlling factor in the seismic
response of the multiple parallel filled joints, which exhibited three-stage variation. The transmission
coefficient first increased with the dimensionless joint spacing, then it decreased instead, and at last
it basically kept invariant. The increase in the water content could weaken the effect of multiple
reflections. It mainly resulted from the increase in the viscosity of the filled joint which significantly
dissipated the energy of waves by multiple reflections at the filled joints. The water content of the joint
filling should be paid more attention in practical applications.
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