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Abstract: Simultaneous occurrence of metocean variables can present a multihazard to maritime systems.
However, simplified design approaches to assess simultaneous significant wave heights and wind
velocities are lacking, especially if seasonality is considered. This is addressed in this study by using
extreme significant wave heights and companion wind velocities recorded in the Gulf of Mexico.
Time-dependent, generalized extreme value (GEV) models and classical regression are the basis to
propose a simplified approach to estimate correlated extreme significant wave heights and wind velocities
associated with given return periods, accounting for seasonality and including measures of uncertainty.
It is found that the proposed approach is a new but simple method to adequately characterize the
concurrent extreme metocean variables and their uncertainty. It is concluded that the method is an
effective probabilistic design tool to determine simultaneous extreme significant wave heights and
companion wind velocities for desired return periods and seasonality.
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1. Introduction

Maritime structures, such as offshore facilities, breakwaters and other systems, are subjected to the
effect of metocean variables, including extreme waves and extreme winds. These metocean variables can
be considered as hazards that impose demands to these systems. Metocean variables can be characterized
with a probability density function (PDF) frequently adopted from extreme value theory [1]. Among the
metocean variables, extreme waves and winds can impact offshore facilities [2]; correlation of these two
variables is important for design because they can occur simultaneously [3].

Recent studies on extreme waves and winds include the assessment of significant wave heights in the
South China Sea using hindcast data [4], wind models to simulate waves in the South China Sea and the East
China Sea [5], the use of radar images to estimate significant wave height [6], wave height forecasting during
extreme events [7], assessment of wave heights by using generalized Pareto and Gumbel distributions [8],
uncertainty assessment in extreme significant wave height by using different techniques [9] and a review
on available wind–wave models and their limitations [10]. Additionally, hindcast for wind–wave for
several decades was calculated and compared with observed data for estimating wave climate change and
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for risk analysis [11,12]. Regarding studies on generalized extreme value (GEV) distribution, they are used
lately to model different variables. For instance, GEV distributions resulted in a very adequate model of
precipitation and evapotranspiration in India [13], and are also implemented in software to model annual
maximum precipitation [14]; some variants of the method that consider nonstationarity are also found in
the literature applied to river water levels [15]. The use of GEV for modeling extreme typhoon heading
directions [16], joint PDFs for wave height and period [17] and for modeling extreme wave heights in the
Mediterranean and at Portuguese locations [18,19] are also reported in recent literature. This shows that
GEV models are a tool used currently to effectively characterize metocean and other variables. Nevertheless,
no single study in recent literature on GEV reports a proposal like the one contained in the present study.

Studies regarding correlation of metocean variables are also available in the literature. Contour maps
and joint distribution of environmental variables are used for marine and coastal design. Current approaches
are summarized in [20], where nonparametric methods, copula models, hierarchical conditional models
and conditional extremes models are used to compute contour maps for joint occurrence of significant wave
height and wave period. Some of the important highlights reported in [20] include: that joint probabilities
are important for reliability analysis as stipulated in guidelines and standards, that simultaneous occurrence
of extreme events at prescribed return periods is of interest, that the values associated with such return
periods are not uniquely defined (except by independent or perfectly correlated cases), that the problem
may need to be studied in a case-by-case basis, that different techniques may be more suitable than others
depending on the problem to be addressed, among other issues.

Studies on correlated metocean variables accounting for seasonality are also found in the literature.
For instance, Vanem [21] develops weekly contour maps for wave height and wave period using selected
return periods. The season-specific variability of simultaneous metocean variables can be important for
planning [21]. In [21], a proposal is based on normalizing the data using the mean and standard deviation
to remove seasonality, which can be added back later; it is argued that the whole set of data (i.e., from
all the seasons) can be taken advantage of, opposite to fitting the data into separate bins, which results
in a decrease in the fitted data. Nevertheless, the use of separate bins to fit the data is also used as an
alternative to account for seasonality of metocean variables [22–25].

In the literature review, the use of hindcast data, consideration of seasonality and the use of different
PDFs are found. However, most studies are based on complex or time-consuming methodologies.
Nonetheless, Bitner-Gregersen [26] reports a summary of simplified expressions of practical applicability
contained in guidelines, which will be useful later in this study. The study of concurrent metocean variables
at different locations is important, since specific features of metocean climate depend not only on the
region but also on the specific location [26]. Simple techniques to assess simultaneous significant wave
heights and companion wind velocities are lacking, especially to account for seasonality.

The main objective of this study is to develop a simple approach to correlate extreme significant
wave height and companion wind velocity for given return periods and accounting for seasonality.
Time-dependent GEV models and classical regression applied to data from a buoy located in the Gulf of
Mexico are used as the basis of this study. The results can be useful for design projects on multihazards of
maritime systems, since extreme waves and companion winds can translate into simultaneous demands
imposed on these systems.

2. Significant Wave Height and Wind Velocity Data Used

The significant wave heights and wind velocities are obtained from a buoy in the Gulf of Mexico
operated by the National Data Buoy Center (NDBC, www.ndbc.noaa.gov). It is in the Gulf of Mexico
at 25.942◦ N 89.657◦ W, denoted as buoy 42,001 [27]; its data were used in a previous study [28]. It is
selected to illustrate the proposed approach because of its location at open sea and because it has recorded
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simultaneous information of metocean variables since 1975, but the method can be readily extended
to other buoys at open sea in the Gulf of Mexico or anywhere else. For the scope of the present study,
the maximum monthly significant wave heights, Hs, recorded at buoy 42,001 are used, together with
the wind velocity, Vw, recorded and listed in [27] within the same time bin. It is pointed out that Vw is
not necessarily the monthly maximum wind speed, but the one which occurred simultaneously with the
monthly maximum significant wave height (level of resolution within [27]); thus it is also referred to as
companion wind. The significant wave height and wind speeds used are those defined in [27], denoted as
WVHT and WSPD [27], respectively. The wind velocity is averaged over an eight-minute period and is
recorded at 3.6 m above sea level [27]. For the scope of this study, the data are used as directly given
in [27]. Both metocean variables, Hs and Vw, are to be probabilistically characterized with a model that can
represent seasonality effects, as described in the following sections.

3. Extreme Value Analysis Considering Seasonality

In this section the method to perform the extreme value analysis considering seasonality is briefly
summarized, since details are described in a previous study [28]. In the next section, the model is to be
first applied separately to the significant wave height and wind velocities.

The model employs the generalized extreme value (GEV) family of distributions [29]. Instead of
characterizing a random variable with the Gumbel, Weibull or Frechet PDF or cumulative functions (CDF),
a single mathematical expression can be used, since it can represent the three. This is the GEV model used
here and given by:
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if the PDF is to be used. In Equations (1) and (2), [a]+ implies the max (a,0), −∞ < µ <∞ is the location
parameter, ψ > 0 is the scale parameter and ξ the shape parameter; ξ leads to the Gumbel distribution
when equal to zero, and to the Frechet and Weibull distributions when ξ > 0 and ξ < 0, respectively.

For the GEV models of Hs and Vw, the block maxima concept is used. The monthly maximum Hs
values are considered as the samples for the extreme value analysis, while for the samples of Vw, they
do not necessarily correspond to the maximum, but to the companion wind velocities recorded when Hs
occurred. The seasonality is a cyclic behavior linked to climatic patterns, which behave in a sinusoidal
way every year. The common stationary model for extreme value analysis is extended to include time
dependency. It is assumed that monthly maxima and companion values are independent random variables.
Furthermore, it is assumed that the maximum (or companion) monthly values Zt of observed Hs and Vw

in month t follows the GEV distribution referred to above, which location µ(t) > 0, scale ψ(t) > 0 and shape
ξ (t) parameters are a function of time.

The CDF of Zi is given by:
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Ft(z) =
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where [a]+ = max [a,0].
The GEV parameters account for nonstationarity with the following expression:

θ =


µ(t) = β0 + β1 cos(2πt) + β2sin(2πt) + β3 cos(4πt) + β4sin(4πt)
ψ(t) = α0 + α1 cos(2πt) + α2sin(2πt) + α3 cos(4πt) + α4sin(4πt)
ξ(t) = γ0 + γ1 cos(2πt) + γ2sin(2πt) + γ3 cos(4πt) + γ4sin(4πt)

(4)

where mean values are denoted with β0, α0 and γ0, harmonic amplitudes by βi, αi and γi (for i = 1, 2)
and subharmonic amplitudes by βi, αi and γi (for i = 3, 4); t is given in years. The maximum likelihood
estimators for the locationµ, scaleψ and shape ξ parameters vary during the year; the regression coefficients
and the probability distribution parameters are determined through the method of maximum likelihood
(MML), in which the likelihood function for the GEV model is given by:
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As previously noted, the location µ(t) > 0, scale ψ(t) > 0 and shape ξ (t) parameters are expressed in
terms of harmonic functions, whose amplitudes are regression parameters to be mathematically estimated.

The selective search methodology known as stepwise approach is used to find the best model,
which encompasses the forward selection and backward elimination methods, which are described
elsewhere [30]. The uncertainty of the selected model is accounted for by standard errors and confidence
intervals [30]. The present study proposes an approach to compute concurrent metocean variables (Hs and
Vw) associated with given return periods, for which the individual values associated with each variable
are required. The values associated with return periods for each variable considered separately can be
obtained with the following equation:

Xq(t,θ) = Xq(µ(t),ψ(t), ξ(t)) =


µ(t) − ψ(t)

ξ(t)

{
1− [− log(1− q)]−ξ(t)

}
i f ξ(t) , 0

µ(t) −ψ(t) log[− log(1− q)] i f ξ(t) = 0

(6)

where q corresponds to the exceedance probability as defined by G t(x) = 1 − q and the estimated quantile,
and Xq(t,θ) corresponds to the time-dependent value associated with the return period T-yr = 1/q for a
metocean variable of interest.

The model described in this section is applied to Hs and Vw in the following sections; first, for each
individual variable, and then subsequently, the approach to correlate both metocean variables is presented.

4. Correlating Extreme Metocean Variables

4.1. Nonstationary Models Considered Separately

The time-dependent GEV model described in the previous section is first applied separately to each
of the metocean variables. The significant wave height Hs and wind velocity Vw described before are
employed. Recall that while for the GEV analysis of Hs the monthly maxima from buoy 42,001 are used,
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the Vw data do not necessarily correspond to the monthly maximum recorded values, but to the companion
wind velocities that occurred simultaneously with the monthly maximum Hs.

Figure 1 shows the maximum Hs recorded monthly (depicted with dots) and the 30 yr return period
values, T-30, estimated with the GEV model (depicted with a solid line). As in a previous study [28],
clear peaks approximately around the seasons of December–February and August–October, associated
with cold fronts and hurricanes, respectively, are observed in Figure 1.
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Figure 1. Monthly maximum and 30-yr return period values of Hs using different time ranges.

To inspect whether a difference using the updated information in the present study (i.e., with data
up to 2019) and that from the previous study [28] (with data up to 2012) exists, the T-30 values reported
in [28] are also depicted in Figure 1 (dashed lines). It can be observed that inclusion of recent data points
in the analysis does have an effect in the projected values, leading to a decrease in the peak Hs values for
hurricane and cold front seasons—more noticeable for the former—and an increase at midyear months.

To further investigate the impact of selecting different time windows in the assessment of projected
values associated with a given return period, two more lines are shown in Figure 1, which were computed
using the oldest (dotted line) and the newest (dashed–dotted line) maximum 20 available recorded monthly
data per year; selection of at least a 20 years range for the analysis is recommended to properly characterize
metocean variables probabilistically [3]. There is a noticeable impact of using these different time windows
to assess the Hs values for T-30.

Determining if this could be attributed to climate change is feasible, since studies in the literature [31]
report that higher or lower metocean variables could be attributed to climate change, which depends
on region and location, although it is important to acknowledge uncertainty in claiming any categorical
trend [31]. This potential variation in wave climate could importantly impact maritime structures [31].
Future studies are desirable to further investigate this topic; nevertheless, it can be concluded that selection
of different time ranges does have an impact in the projected return values of Hs (and other metocean
variables). Moreover, it is accepted that using more metocean data leads to more reliable extreme value
analyses [2,3], but the use of less data and more recent data could lead to a higher projected return period
value for some months. Consequently, future research and discussion on this issue is recommended.
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Figure 2 is analog to Figure 1, except that Vw values are shown. Less accentuated peaks can be
observed for hurricane and cold front seasons in Figure 2, perhaps because not the maximum, but the
companion values are employed, even though the trends are similar, at least for the updated (solid line)
and previously used [28] time ranges (dashed lines).
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For the scope of this study, only models corresponding to the solid lines in Figures 1 and 2 are used
(i.e., the whole set of available data at buoy 42,001 is considered), although projected metocean variables
for other return periods are also used. The values for other return periods, used later in this study, for each
month are listed in Appendix A in Tables A1 and A2 for Hs and Vw, respectively. No details in this
study are given about the parameters of the GEV models as were provided in previous studies (e.g., [28]),
since attention is focused on proposing a simplified approach to correlate extreme Hs data and their
companion Vw data associated with given T-yr values. This is developed in the following section.

4.2. Simplified Approach for Return Period Correlated Values

The proposal to estimate the simultaneous occurrence of extreme metocean variables is based on a
modified version of the classical linear regression technique. This consists in including estimated values
from the time-dependent GEV models in the previous section—together with the simultaneously observed
monthly data for maximum Hs and companion Vw—in the regression analysis, to assess how adequate is
the use of the return period value of the explanatory variable (in the regression analysis sense) to predict the
return period value of the other variable and its uncertainty. This is to be carried out for each month of the
year to estimate seasonal extreme (and companion) values associated with given return periods, so that they
can be considered as a demand which is applied simultaneously to a maritime system (or other system).
From this standpoint, significant wave heights and wind velocities can be considered as concurrent extreme
metocean hazards accounting for seasonality, since they can be translated into load effects affecting a given
maritime structure at the same time, at any desired season of the year. Moreover, such demands are usually
related to given return periods for design purposes; consequently, it is convenient to establish them in
terms of return periods. This is also the case for using contour maps in ocean engineering [20].
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Before proceeding to introduce the proposal, the classical regression analysis using Hs as the
explanatory variable and Vw as the variable to be predicted is described as follows by using the observed
data only. Buoy 42,001 is used to illustrate the procedure, but this can be extended to any buoy with
simultaneous recorded metocean data. Hs is selected as the explanatory variable because it was used
in a previous study [28] to investigate maxima. As noted before, Vw is not necessarily the maximum,
but the wind velocity observed simultaneously with the monthly maximum Hs. Naturally, it could be
considered otherwise, e.g., maximum Vw and associated simultaneously recorded companion Hs, but also
other pairs of concurrent values of Hs and Vw could be selected. This aspect is discussed later. From a
designer perspective, it can be thought of as selecting an Hs value and using it to predict a Vw value that
is expected to occur simultaneously; then, both can be used to estimate the imposed (adding) effects of
both metocean variables acting over a system, which capacity is to be designed to withstand such demand.
Since both metocean variables are random, this can be expressed in mathematical terms [32,33] as:

E[Vw|Hs = hs] = b + α hs (7)

where the expected value of Vw, given that Hs = hs, is a linear function of hs; b and α are constants to
be determined by linear regression analysis. However, guideline expressions that relate wind velocities
and wave heights, as well as fitted functions found in the literature [26], commonly have the following
mathematical form:

Vw = bHα
s (8)

which can be linearized by taking the natural logarithm, leading to:

ln Vw = β+ α ln Hs (9)

where β = ln b; the notation in terms of the expected value is skipped for simplicity. Equations (7) and (9)
are used in the linear regression analysis. For using Equation (9), the wind velocities and significant wave
heights are first transformed into logarithmic space [33].

Figure 3a,b shows the linear regression analysis by using the nonlinear model (i.e., Equation (9)) and
the linear model (i.e., Equation (7)), respectively, for October (around hurricane season); the residuals
versus the fitted values of ln Vw (Figure 3c) and Vw (Figure 3d) are also shown.A4l. Sci. 2020, 10, x FOR P9R REVIEW 8 of 25 
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As mentioned before, the regression is first performed by using only the historical observed data,
shown by circles in Figure 3a,b. It can be observed that the regression line (solid line) in both cases
(i.e., Equations (9) and (7)) predicts increasing Vw for increasing Hs. This is consistent with what is reported
in the literature. The 95% confidence intervals, which are measures of uncertainty for mean and future
values of Vw [33,34], are also shown in Figure 3a,b (inner and outer dashed lines for mean and future
values, respectively). Analysis of residuals versus predicted values indicates that the nonlinear model
leads to a better scattering of the data along the horizontal axis (i.e., the model is uncorrelated) and better
symmetry in the vertical axis (i.e., the zero mean assumption), indicating that the nonlinear model is
better for the values observed in October. Both models roughly exhibit a normal distribution behavior
in the residuals, as can be observed in Figure 4a for the model in logarithmic space and 4b for the linear
model, where the normal probability papers are plotted using the cumulative probability given by i/(n + 1),
where n is the number of samples (i.e., the number of residuals) and i corresponds to the number of a
datapoint (a residual) in ascending order.A4l. Sci. 2020, 10, x FOR P9R REVIEW 9 of 25 
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Figure 5 is analogous to Figure 3, except that February instead of October is considered (i.e., around
cold front season). Opposite to what occurs in the regression analysis for October, the analysis for February
is better represented using the linear model (Figure 5b), rather than by using the linearized model in
the natural logarithmic space (Figure 5a); this can be inspected in the residuals and normal probability
papers in Figure 5c,d and Figure 4c,d, for Equations (9) and (7), respectively. It is found in this study that
correlation of significant weight height and wind velocity can be better represented (in terms of classic
linear regression) by linear (Equation (7)) or power (Equation (9)) expressions, depending on the month of
the year (e.g., hurricane season, cold front season or others). This is not clearly stated in other studies.

Nevertheless, it can be observed that both the linear or the nonlinear regression analysis lead to a
fairly normal behavior of the residuals, and to a relatively uniform distribution of the variance around
the mean, which could be associated with a homoscedastic behavior [33], although this varies depending
on the month and type of regression considered (i.e., on using Equation (7) or Equation (9)). The error
variance, σe

2 is an indication of the uncertainty in the regression, and its squared root is known as the
root mean squared error (RMSE). Overall, the residual analyses for all months indicate that the usual
assumptions in the regression approach are met [34], and that Equation (7) and Equation (9) can be suitable
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alternatives. Although Equation (8) is frequently encountered in codified design and the literature [26] as
indicated above, functional forms like those of Equation (7) are also found, as in the standard of the North
Atlantic Treaty Organization, Standardized Wave and Wind Environments and Shipboard Reporting of
Sea Conditions (NATO-STANAG 4194, see [26]), which can be expressed as:

Vw = b + αHs (10)

where the nomenclature used in the present study applies (for the NATO-STANAG 4194, b = 0 and α = 3.2).
Equations with the functional form of Equations (8) and (10) are used for open sea and coastal waters;
those employed for coastal waters are also linked to the fetch as an important variable [26]. In the present
study, the fetch is not considered since the buoy used is located in open sea.
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As shown in Figures 3 and 5, the data are approximately contained within the confidence intervals for
future values in all cases. It is noticed that the confidence intervals for future values can be simplified by
using Equation (11a,b), for the lower and upper interval, respectively.

Vwlow = b + αHs− δσe (11a)

Vwupp = b + αHs + δσe (11b)

where σe =

√
σ2

e is the so-called RMSE which—advantageously—is part of the information that can be
obtained when a regression analysis is performed; δ is a constant value to be discussed. If Equation (8) is to
be considered to derive simplified expressions for the confidence intervals, expressions like Equation (11)
can be written by including ±δ times the RMSE in Equation (9), except that the RMSE corresponds to the
regression in logarithmic space. If the equation in the original space is to be used to compute the expected
value (i.e., Equation (8)), it can be shown with some algebraic manipulations that the 95% confidence
intervals for future values can be approximated by using Equation (12a,b):

Vwlow = bHα
s

( 1
eδσe

)
(12a)
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Vwupp = bHα
s

(
eδσe

)
(12b)

The value of δ is adequate to represent the 95% confidence intervals (denoted simply as confidence
intervals from now on) for future values by adopting constant values approximately between 1.9 and 2.3,
depending on the season considered and for both sets of equations (i.e., Equations (11) or (12)).

Exact confidence intervals (dashed lines) and approximated confidence intervals (Equations (11) or
(12); dotted lines) are shown in Figure 6a–d for the four cases depicted in Figure 3a,b and Figure 5a,b,
respectively; the original instead of the logarithmic scale is used for the cases corresponding to Equations (8)
and (12). A value of δ equal to 2.3 is used for October (Figure 6a,b), while δ = 2.2 is employed for February
(Figure 6c,d). It can be observed that Equations (11) and (12) are reasonable alternatives to represent the
uncertainty in a simplified (practical) way. Even though simple, as far as the authors know, Equations (11)
and (12) are not reported in the literature for extreme values accounting for seasonality; therefore, they are
an important contribution of this study that include the uncertainty in correlated metocean variables for
design purposes.A4l. Sci. 2020, 10, x FOR P9R REVIEW 11 of 25 
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Figure 6. Comparison of exact and approximated (Equations (11) and (12)) 95% confidence intervals,
considering October (upper row; (a) and (b) for non-linear and linear cases, respectively) and February
(lower row; (c) and (d) for non-linear and linear cases, respectively).

The proposed approach to estimate concurrent metocean variables (Hs and Vw in this case), is based
on using the time-dependent GEV model for Hs obtained in the previous section, to compute a Hs value
associated with a selected return period in years, T-yr (the subscript is used to denote the selected return
period, e.g., T-30 corresponds to a 30-yr return period); the Hs for a given T-yr can then be used as input for
Equations (8) and (10)–(12), to determine the corresponding expected companion Vw for the same T-yr,
including an uncertainty measure (i.e., the confidence intervals).

To investigate whether the previous proposal is consistent with both time-dependent GEV models
in the previous section, estimated values of Hs and Vw associated with T-20, T-30, T-50, T-75 and T-100 are
included in the scattergrams and regression analyses as can be observed in Figure 7, where the T-yr values
for October are indicated by black filled circles with embedded perpendicular lines (lines to be explained
below). Selection of these return periods is somewhat arbitrary but based on the usage of such return
periods for design.
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Figure 7. Regression lines and confidence intervals including (solid and dashed lines, respectively) and
excluding (dashed–dotted and dotted lines, respectively) T-yr values for October; (a) and (b) for logarithmic
space and linear space, respectively. Filled circles are given by T-yr values with embedded perpendicular
lines indicating confidence intervals from GEV models.

Figure 7a,b correspond to the logarithmic and linear cases as before, with the regression line depicted
with a solid line and confidence intervals with dashed lines (it is emphasized once more that they are
derived by including the set of T-yr values from the GEV models in the regression). In fact, the regression
lines and confidence intervals previously obtained (i.e., without including the black filled circles in the
regression) are also plotted in Figure 7a,b using dashed–dotted and dotted lines, respectively. It can be
observed that the regression lines are almost coincidental, that the estimated T-yr values are very near or
over the regression line (especially for Figure 7b), and that the inclusion of T-yr values in the regression
slightly decreases the uncertainty in terms of confidence intervals (i.e., the previously computed intervals
are wider), which applies to both, Figure 7a,b.

Additionally, the amplitude between the lower and upper limits of the 95% confidence intervals
from the GEV models for Hs and Vw are depicted with the perpendicular embedded lines in the T-yr

values (i.e., embedded lines in the black filled circles) in Figure 7; vertical and horizontal embedded lines
correspond to the confidence intervals for Vw and Hs, respectively. The confidence intervals from the
GEV models (the embedded lines in Figure 7) are obtained by using return period values (Equation (6))
and their variance, linked to the variance–covariance matrix and obtained through the delta method [29].
It can be observed in Figure 7a,b that confidence intervals from the GEV models surpass the limits of
the confidence intervals for mean values (inner dashed and dotted lines) but are contained within the
boundaries of those corresponding to future values (outer dashed and dotted lines) from the regression
analysis; it can also be observed that intervals for Hs are wider than for Vw. If it were of interest to delimit
in a simplified way the confidence intervals from the GEV models for a given T-yr, Equations (11) and (12)
could be an option by providing a suitable δ value. Neither this comparison between the uncertainty of
the GEV models and the uncertainty from the linear regression, nor the idea of using Equations (11) and
(12) to relate both uncertainties, are found in the literature. Therefore, this can be also considered as a
contribution of the present study.

Figure 8 shows the residuals and normal probability papers by including the T-yr values in the
regression, where the residuals of T-yr values lie very close to or on the zero-mean line, and the probability
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papers preserve roughly similar trends than without considering the T-yr values and follow an approximately
normal distribution.
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Figure 9a,b is analogous to Figure 6a,b and they are comparable, as can be observed in these figures,
with slightly less wider confidence intervals in Figure 9; as in Figure 6 for October, δ = 2.3 is also used
in Figure 9. For illustration purposes, the expression of Pierson–Moskowitz (PM), the one from the
International Towing Tank Conference (ITTC) recommendations and a fitted equation for West Shetland at
a North Atlantic location, are shown in Figure 9a, and the equations recommended by the NATO-STANAG
4194 and the 2013 Interim Guidelines proposed in MEPC 232 (65) are shown in Figure 9b; all these equations
are retrieved from [26], where details and proper citation can be found. Some of these equations are
given as a function of Vw instead of Hs [26]; in such cases, equations are solved for Vw as a function of
Hs. The PM, ITTC and West Shetland expressions have the functional form of Equation (8) with values of
b equal to 6.376, 4.636 and 5.31, respectively, and values of α equal to 0.5, 0.709 and 0.603, respectively.
Likewise, for the NATO-STANAG and 2013 Interim Guidelines, the corresponding functional form is
given by Equation (10) with parameters b equal to 0 and 6.9 and α equal to 3.2 and 2.2, respectively. For the
previous expressions Hs is given in m and Vw in m/s. Note that the NATO-STANAG and 2013 Interim
Guidelines equations are developed for coastal waters but included in Figure 9b for comparison. Figure 9
shows that the ITTC and the 2013 Interim Guidelines equations are similar in shape to those developed
in this study, but under- or overestimating the predicted values for October the former and the latter,
respectively. The other equations lead to not so dissimilar results as those reported here, and they are
roughly in between the confidence intervals for future values.

To inspect how the proposed approach varies when considering seasonality, and how results compare
with respect to the equations reported in [26] for other seasons, results like those shown in Figure 7 are
also shown in Figures 10 and 11, but for the months of February and August, when the highest predicted
T-yr values are obtained at cold front and hurricane seasons, respectively; in addition, results like those in
Figure 9 are plotted in Figures 12 and 13. Unlike Figure 9, δ = 2.0 is used in Figures 12 and 13, since it leads
to a better approximation of the exact confidence intervals. As mentioned before, δ can be varied to better
represent the exact confidence intervals; nevertheless, the range of values is not large and δ can be roughly
set between 1.9 and 2.3.
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Figure 10. Regression lines and confidence intervals including (solid and dashed lines, respectively) and
excluding (dashed–dotted and dotted lines, respectively) T-yr values for February; (a) and (b) for logarithmic
space and linear space, respectively. Filled circles represent T-yr values with embedded perpendicular lines
indicating confidence intervals from GEV models.

It can be observed from Figures 7, 10 and 11 that expected Vw values as function of Hs depend on
the season and month considered, that the uncertainty also varies for each case and that the regression
is relatively irrespective of the selected scheme (linear or logarithmic space) for October and February,
but it does vary when August is considered. Figure 11 for August corresponds to the largest estimated T-yr

values for Hs (hurricane season) and, as shown in Figure 11, the regression line predicts better estimates
when the regression is performed in the logarithmic space; in fact, when the T-yr values are included in the
regression (solid line), there is not significant deviation from the regression with the observed data only
(dashed–dotted line); conversely, an important change in the slope of the regression line is observed for
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Figure 11b, implying better estimates of correlated values for given T-yr if the regression is carried out in
the logarithmic space.
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Figures 9, 12 and 13 show that a single equation cannot capture the seasonality of correlated metocean
variables, because it can overestimate or underestimate the correlated values when comparing against the
equations compiled in [26], at least for the case of Vw and Hs and buoy 42001, but it is possibly the case
for other metocean variables and buoys, in the Gulf of Mexico or anywhere else. Therefore, suitable sets
of region-specific and site-specific equations should be developed to take into account seasonal effects.
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Nonetheless, it is interesting to note that the equation developed in [26] for West Shetland is practically
coincident with the regression line in Figure 13a at hurricane season.
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For values associated with T-yr levels in Figure 11a (or in other figures), the uncertainty from the
GEV models for each T-yr (i.e., the embedded perpendicular lines in the black filled circles) are a sort of
envelope roughly covered by the confidence intervals for mean values in Figure 11a. Furthermore, such an
envelope can be covered by using Equation (12) and a smaller value of δ (e.g., δ = 1) than that used for
the confidence intervals of future values. Therefore, Equations (8) and (10) can be considered as possible
design aids—simple expressions for design—like those contained in guidelines [26], but also accounting
for the uncertainty in a simplified way (Equations (11) and (12)), either based on simplified confidence
intervals for future values or confidence intervals within which the GEV uncertainty is confined. Since sets
of such equations can be obtained for any desired season, the proposal here represents a simpler alternative
than the more complex models reported in the introduction; consequently, they could be more attractive
for designers since they are consistent with expressions recommended in guidelines.

Results for other months (not shown before) are reported in Figures A1–A9 in Appendix B. By observing
Figures 7, 10 and 11 and Figures A1–A9, it can be concluded that the regression in the logarithmic or linear
space could be both alternatives, with better results depending on the month considered. An exception is
shown by Figure A8 for November, where neither a good fit is obtained for the logarithmic case (Figure A8a)
nor for the linear one (Figure A8b) (also see Table 1). This is attributed to atypical simultaneous occurrence
of larger Hs and smaller Vw values, as can be observed in Figure A8, but also to a large dispersion of the
data along the whole range of Hs values, leading to a regression line somewhat horizontal (and roughly
around 12 m/s), implying no correlation of Hs and Vw for November. It would be interesting to investigate
in the future why this behavior is found specifically for November at buoy 42,001 in the Gulf of Mexico.
For all the residual analyses shown in Figures 7, 10 and 11, and Figures A1–A9 for the observed data,
mean values of these residuals are listed in Table A3 of Appendix C. In general, it can be observed in
Table A3 that the zero mean assumption is met.
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Table 1. Fitted parameters of regression analysis for buoy 42,001 in this study considering seasonality.

Month
For Equations (8) and (12) For Equations (10) and (11)

1 b α σe εV(%) b α σe εV(%)

January 6.3130 0.5050 0.1323 12.6 6.0266 1.6565 1.8380 9.4
February 4.6311 0.7332 0.1448 0.48 4.4597 2.0891 1.7735 0.73

March 6.2270 0.5223 0.1692 6.92 6.5585 1.5731 2.0592 5.87
April 4.7280 0.7117 0.1757 0.16 3.914 2.1898 1.7927 0.44
May 4.6922 0.6616 0.4018 9.5 5.0670 1.5891 2.7234 13.1
June 6.3611 0.4104 0.3205 16.1 5.2639 1.7290 2.5623 4.2
July 6.0159 0.5132 0.4005 5.7 4.3002 2.3281 2.9474 18.5

August 5.5229 0.5648 0.3529 8.7 3.8972 2.1768 2.6075 9.3
September 4.6209 0.7596 0.2295 5.4 2.7402 2.6259 2.607 11.2
October 5.1243 0.6823 0.1626 4.7 3.8933 2.3476 2.0973 0.03

November 10.3253 0.1050 0.1742 34.0 10.5871 0.3736 1.9726 31.7
December 4.6688 0.6860 0.1899 10.1 3.3722 2.2109 2.2703 5.5

1 b = exp(β), where β is the intercept obtained from the regression in the logarithmic space.

Results of the regression are listed for each month in Table 1 for buoy 42,001. Table 1 includes the
regression parameters using only the observed data and the two approaches described above, i.e., the direct
linear regression and the regression in the logarithmic space. It also includes σe and relative errors of the
predicted correlated Vw in relation to those obtained from the GEV model for a selected return period
(50 years) using:

εV =

∣∣∣∣∣Vbench −Vest

Vbench

∣∣∣∣∣× 100 (13)

where the relative error is given in percentage, Vbench is the computed T-50 value of Vw using the GEV
model and Vest is obtained as proposed in this study, i.e., by using Hs for T-50 obtained from the GEV
model as input value of Equations (8) and (10) (with regression parameters estimated from observed data
only). Selection of T-50 is somewhat arbitrary and used to compare deviations of Vw estimated with the
GEV model with respect to this study’s proposal, but any other T-yr could be considered. For a more
detailed inspection of these deviations, Figures 7, 10 and 11 and those in the Appendix B can be used.
Errors in Table 1 are an additional aid to compare which regression scheme leads to better results for any
given month.

The proposal in this study can be summarized in the following steps:

(1) Select an Hs value associated with a T-yr and month of interest (e.g., see Table A1 in Appendix A) as
input for Equations (8) or (10).

(2) Select the season (month) for which the correlated values are desired, and the corresponding
parameters (Table 1) to be also plugged into Equation (8) or (10), and compute Vw.

(3) Use Hs in step (1) and Vw in step (2) as simultaneous demands associated with the selected T-yr and
month acting over a maritime system to be designed.

(4) If uncertainty is to be used by the designer, the corresponding σe together with Equations (11) or
(12) can be used to establish upper (or lower) limits by using a δ value (e.g., δ = 2 could be used to
approximate the 95% confidence intervals for future values).

5. Discussion

For the proposal briefly outlined in the four steps of the previous section, it is noted that for step (1)
the T-yr values of Hs are related to the GEV model, but any projected return level of the significant wave
height available to the designer could be useful, at least as an approximation. Also, since for any given



Appl. Sci. 2020, 10, 4794 17 of 25

month selected, two options are available in step (2), namely, Equation (8) or Equation (10), the decision
for the more suitable option can be based on the εV reported in Table 1, as well as on Figures 7, 10 and 11
and Figures A1–A9. Justification for considering Hs and Vw for T-yr in step (3) as simultaneously occurring
metocean variables is based not only on the correlation of recorded (observed) data, but also in checking
that the correlation of projected Hs and Vw for T-yr, obtained from the time-dependent GEV models, are
consistent with the trend of the observed data. Finally, the uncertainty obtained as per Equations (11)
or (12) in step (4) approximately delimits all data points if δ = 2 is used (confidence intervals for future
values); if the uncertainty from the GEV models is to be employed as reference (perhaps considering
the perpendicular embedded lines as an envelope), lower δ values could be used, for instance δ = 1.5,
which would be a conservative value to delimit the uncertainty given by the GEV models. Use of Equations
(11) or (12) using δ values could be seen as factored demands like the ones used in codified design.

The proposed method allows the possibility of using other metocean variables, data from other buoys
and hindcast data. It could use other probabilistic models. More than two variables could be considered
if multilinear regression analysis is implemented. If additional recorded data becomes available for any
month, the matrix approach in [35] can be implemented to update the parameters in Table 1.

Since the maximum Hs and companion Vw may not yield the maximum demand in a given system—like
the points in an environmental contour associated with a T-yr may not lead to the maximum demand in the
system [20]—other pairs of simultaneously recorded data could be considered; one obvious combination is
using maximum monthly Vw and companion Hs, but also other data pairs could be used, for instance
the second largest monthly Hs and companion Vw, the second largest Vw and companion Hs, the third
largest monthly Hs and companion Vw and so on. Each of the previous combinations would lead to
pairs of T-yr values to which a system could be subjected to for estimating load effects, and the maximum
demand could be used for design (in fact, different pairs of T-yr values could be more critical to different
elements of the system). It could be investigated whether these pairs of T-yr values correspond to points of
environmental contours proposed by other authors. Nonetheless, the idea is consistent with the approach
of using multiple points from the contours to evaluate a system [20].

6. Conclusions

In this study, a simplified methodology to compute maximum significant wave heights and companion
wind velocities associated with given return periods, accounting for seasonality, is presented. Simultaneous
data from a buoy in the Gulf of Mexico are used. The approach is developed from projected return levels
of significant wave heights based on a time-dependent GEV model and classical regression of the two
metocean variables. A time-dependent GEV model for the companion wind velocities is also developed,
to assess the adequacy of the method to predict the wind velocity as a function of significant wave height
for a given return period.

It is found that the time window selected to estimate return period values of metocean variables can
have an important impact in the predicted return levels for some seasons.

It is concluded that correlation of significant weight height and companion wind velocity can be
adequately represented by linear or power equations, which could be easily implemented for design
purposes, with different parameters to account for seasonality, but with the same functional form.
Results are not very dissimilar with predictions from simplified equations in the literature or guidelines;
however, it is found that a single equation with given parameters cannot capture the seasonality effects.

It is also found that the uncertainty in the predicted companion wind velocities as a function of
significant wave height can be determined in a simplified way by using the root mean squared error from
the regression analysis, expressed as a set of proposed equations to determine approximately (but closely)
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the 95% confidence intervals of future values. These same equations can be used to represent the envelope
of the uncertainty estimated from the GEV models for different return periods.

It is considered that the proposed approach is a simple but adequate method to determine concurrent
metocean hazards associated with given return periods, which could be imposed on a system to estimate
the demand for design purposes, while also providing measures of uncertainty. The proposed expressions
do not differ substantially to those provided in guidelines; thus, they could be amenable to designers,
while also incorporating the seasonality effects in a simpler way as compared to other methods available in
the literature. To the authors’ knowledge, some of the findings in the present study—like the simplified
proposal to include the uncertainty in the correlated metocean variables—are not reported elsewhere.
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Appendix A

Table A1. Selected return period values for Hs in each month.

Hs (m)

Month\Tr (yr) 20 30 50 75 100
January 6.08 6.34 6.62 6.83 6.97

February 6.09 6.36 6.68 6.91 7.06
March 5.65 5.94 6.29 6.55 6.73
April 4.78 5.08 5.46 5.76 5.97
May 3.92 4.25 4.71 5.09 5.38
June 4.03 4.53 5.25 5.88 6.36
July 5.03 5.81 6.92 7.93 8.73

August 5.99 6.87 8.13 9.27 10.16
September 6.17 6.84 7.77 8.57 9.18

October 5.90 6.33 6.88 7.34 7.67
November 5.76 6.05 6.41 6.69 6.88
December 5.89 6.14 6.43 6.64 6.78

Table A2. Selected return period values for Vw in each month.

Vw (m/s)

Month\Tr (yr) 20 30 50 75 100
January 17.39 18.03 18.76 19.29 19.64

February 17.36 17.92 18.55 19.00 19.29
March 16.41 16.92 17.48 17.88 18.14
April 14.77 15.25 15.80 16.20 16.46
May 13.23 13.79 14.45 14.93 15.26
June 13.30 14.06 14.97 15.66 16.14
July 14.88 15.92 17.22 18.23 18.95

August 16.88 18.14 19.75 21.03 21.95
September 17.98 19.22 20.81 22.09 23.01

October 17.71 18.74 20.05 21.09 21.83
November 17.15 17.99 19.01 19.81 20.37
December 17.08 17.79 18.62 19.25 19.68
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indicating confidence intervals from GEV models.
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indicating confidence intervals from GEV models.
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indicating confidence intervals from GEV models.
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Table A3. Mean values of residuals for each month and regression scheme. 

Month Log. Space Lin. Space 
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March –5.1 × 10−16 1.4 × 10−15 
April 1.8 × 10−17 1.4 × 10−15 
May –3.3 × 10−16 9.1 × 10−17 
June 4.8 × 10−17 –1.3 × 10−15 

Figure A8. Regression lines and confidence intervals including (solid and dashed lines, respectively)
and excluding (dashed–dotted and dotted lines, respectively) T-yr values for November; (a) and (b) for
logarithmic space and linear space, respectively. Filled circles represent T-yr values with embedded
perpendicular lines indicating confidence intervals from GEV models.
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Appendix C

Table A3. Mean values of residuals for each month and regression scheme.

Month Log. Space Lin. Space

January 7.8 × 10−17 –4.5 × 10−16

February 3.4 × 10−16 1.9 × 10−15

March –5.1 × 10−16 1.4 × 10−15

April 1.8 × 10−17 1.4 × 10−15

May –3.3 × 10−16 9.1 × 10−17

June 4.8 × 10−17 –1.3 × 10−15

July 1.4 × 10−16 8.9 × 10−16

August 4.3 × 10−16 –3.2 × 10−15

September –4.4 × 10−16 9.5 × 10−16

October 0.0 8.9 × 10−16

November 9.9 × 10−17 –1.4 × 10−15

December –5.6 × 10−17 –2.4 × 10−16
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