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Featured Application: Visually interpretable phase space representations can aid the development
of new methodologies in digital holography in general and can be evaluated for any digital hologram.
Concrete applications presented in the paper are: coarse scene depth estimation, scene analysis, and
digital hologram (processing) artifact analysis.

Abstract: Digital holograms are a prime example for signals, which are best understood in phase
space—the joint space of spatial coordinates and spatial frequencies. Many characteristics, as well
as optical operations can be visualized therein with so called phase space representations (PSRs).
However, literature relies often only on symbolic PSRs or on, in practice, visually insufficient PSRs
like the Wigner–Ville representation. In this tutorial-style paper, we will showcase the S-method, which is
both a PSR that can be calculated directly from any given signal, and that allows for a clear visual
interpretation. We will highlight the power of space-frequency analysis in digital holography, explain why
this specific PSR is recommended, discuss a broad range of basic operations, and briefly overview several
interesting practical questions in digital holography.

Dataset: www.erc-interfere.eu

Dataset License: CC-BY-NC-SA

Keywords: digital holography; phase space representation; time-frequency representation;
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1. Introduction

The phase space of a signal is the joint space of the signals native domain and its Fourier domain.
It can consist of time and frequency for temporal signals or spatial positions and spatial frequencies for
spatial signals. Phase space representations (PSRs; in signal processing literature the term time-frequency
representations is more common) are an essential tool initially proposed to aid phase space analysis, which
tries to understand systems whose frequency spectrum changes over the course of the signal by visualizing
quasi-instantaneous frequencies as they change. They quickly proved themselves useful in many
applications of science and engineering. Examples are: incoherent optics [1], biomedical engineering [2,3],
radar [4,5]/sonar/seismic wave-processing [6], telecommunications [7], power generation [7], combustion
analysis [7], machine-condition monitoring [7], geophysics [7], or quantum mechanics [7]. When PSRs
are applied to temporal signals and are equipped with a logarithmic decrease in frequency resolution,
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favoring frequency over time resolution at low-frequencies, they are used in auditory applications such as
instrument or musical score identification [8], or even reconstruction of long lost antiquities as for example
Brahms Hungarian Rhapsody [9]. Even in the recent past, PSRs continue to provide vital, new insights in
research, such as the S-method applied to gravitational waves [10].

In digital holography (DH) the Fourier conjugated variables are usually spatial position ξ, η

and spatial frequency fξ , fη , loosely speaking the number of fringe oscillations per unit of space.
To avoid confusion, we shall continue to refer to the joint space-frequency domain as phase space,
and representations thereof as PSRs. Several authors have recognized the potential of phase
space discussions in DH, since point-spread functions P (PSFs) are a prime example of signals
whose frequency distribution varies with space. Figure 1a shows the real parts of two exemplary
PSFs, recorded at some distance z along the optical axis in an off-axis position denoted by ∆x.
Note, the oscillations in the spatial domain are more rapid the further off-axis the recording is
considered. We will elaborate in more depth on this later on.

In Figure 1b we provide an overview of how to use PSRs to perform phase space analysis on
DH and over the involved dimensions. Although 2D holograms span a 4D phase space, it will
be often sufficient for analysis to consider only 2D cross-sections of phase space obtained from 1D
cross-sections of the hologram. Most of this paper will use horizontal or vertical cross-sections centered
on the hologram.
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Figure 1. (a) Real part of a 1D point-spread function of a spherical (dashed, black; Rigorous form) and a
quadratic wavefront (continuous, red; Fresnel approx.). (b) Application of phase space representations
(PSR) to digital holograms.

The majority of previously published work about the application of PSRs to DH is based
on the Wigner–Ville (WV) distribution (Section 9.6 in [11]) and the short-term Fourier transform
(STFT) (Section 9.2.6 in [11]). These are vital for performing calculations, as they are invertible;
however, upon visualizing phase space they suffer from substantial artifacts as we shall see later on.
Henceforth, most of the time only qualitative WV charts are used for visualization, which are not as
useful to practitioners confronted with imperfect, partially unknown, or processed data.

In science, the intuition for finding a solution to a problem is often guided by appropriate
visualizations, therefore we propose the use of the S-method [12] for visual exploration of phase
space in DH and performing a diagnostic of processing artifacts that are not easily visible otherwise.
For this, it is sufficient to evaluate it on individual 1D slices of 2D holograms even for deep 3D scenes
(see Figure 1b). We show that this representation stands out from many other PSRs by being fast to
calculate, generic, and allowing for a good visual interpretation.
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Aided by this PSR, we discuss a variety of different applications in DH—some of which may only
be most easily addressed with visual interpretations. By doing so, we hope to raise awareness of the
reader to this valuable tool in the context of DH. Furthermore, we aim to provide a concise collection
of all relevant details required to perform this analysis.

After a short literature review, we will motivate the use of phase space analysis for DH in general in
Section 2. Section 3 will then introduce visually interpretable PSRs and outline the S-method. In Section 4,
we utilize PSRs to discuss the interference of object and reference wavefields. The main part of our paper
will discuss different applications of PSRs to DH in Section 5. We will briefly explain in Section 5.1 what
one can learn through phase space analysis about a given macroscopic DH, for which no knowledge on its
scene composition is available. Thereafter, we elaborate more on details concerning the space-bandwidth
product of DHs in Section 5.2 and on scene depth estimation in Section 5.3. In Section 5.4 the S-method is
demonstrated in the analysis of DH processing artifacts. The effects of common operations applied to DHs
are provided in Section 5.5. In Section 5.6, we show how the degree of surface roughness influences the PSR
footprint of a DH. We close with an outlook to three advanced applications where visually interpretable
PSRs aid conceptual understanding. Namely, we touch on multi-object holographic scene segmentation
(Section 5.7), perceptual quality assessment of DH (Section 5.8), and provide some thoughts on design and
understanding limitations of DH setups (Section 5.9). We conclude our work in Section 6.

This paper is predominantly written as a tutorial for researchers that are unfamiliar with thinking
about DH in terms of phase space analysis. Any expert reader, interested only in the novelties, might
skip ahead and read about the S-method, newly proposed for DH analysis, in Sections 3.3–3.5, as well
as about advantageous applications thereof in Sections 5.3–5.9 .

1.1. Related Work

The most renown work on phase space analysis in DH is certainly the book by Goodman on
Fourier optics [13] discussing phase space implicitly, the diffraction equation, the space-bandwidth
product, the form and shape of exemplary diffraction patterns stemming from various apertures and
gratings, as well as a definition of instantaneous frequency based on the Wigner–Ville (WV) distribution.
An even more comprehensive book on phase space optics was published by Testorf et al. [14],
emphasizing the importance of phase space methods in the entire optics domain, and proposing
these methods as unifying modality to capture light propagation within any of the common light
models may it be rays, scalar waves, or Gaussian beams. A wide range of applications are discussed in
detail to that end. [15] issued another investigation into phase space methods for DH as well as light
field and integral imaging. Other authors make use of the phase space methods in order to: perform
3D triangulation of sparsely scattering scenes from 1D DHs [15,16]; devise view-dependent [17,18]
or general compression schemes [19] for DH; speed up the generation of holograms [20]; derive
generalized sampling theorems [21]; better understand optical operations in DH [22,23]; understand
the optical bandwidth of a system [24]. In [25,26], different PSRs were studied for DH microscopy of
extremely sparse scenes. These works might be thought of as a predecessor to the current work, where
we present a general discussion – applicable also for very dense and macroscopic scenes. We omit any
works on temporally resolved holography as therein temporal dynamics are analyzed, whilst we focus
on the spatial dimensions and frequencies of static holograms.

Several contributions by the authors have made use of phase space methods, too,
e.g., for compression [27–29]; segmentation of holograms with multiple occluding objects [30];
faster computer generation [31]; development of more efficient propagation schemes [32];
comparison of angular and spatial multiplexed spatial-light modulator setups [33] and the study
of their perceptual quality [34]; or to design orthoscopic display setups [35]. Despite this certainly
non-exhaustive list of references it is evident how important phase space analysis and PSRs are in
optics in general and in DH especially.
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2. Point-Spread Functions in Phase Space

Now, we introduce the fundamental concepts of DH required for the subsequent phase space
analysis. The diffraction pattern, recorded on a given manifold, for example a (detector-)plane,
generated by a single point-source is called point-spread function (PSF) P. A vast amount (> 105) of
super-positioned PSFs, each from a different illuminated point-source in the scene, is what we refer to
as a hologram H(ξ, η, 0). Within scalar diffraction theory PSFs are complex-valued and described in
every point of the recording manifold by one amplitude and one phase. Given an amplitude-phase
distribution h(x, y, z) ∈ C of point-sources located between the (x, y, z = const) planes with z ∈ [z1, z2],
H can be calculated via the first Rayleigh–Sommerfeld integral solution as

H(ξ, η, 0) = ER(ξ, η, 0)
∫ z2

z1

∫ ∞

−∞

∫ ∞

−∞
h(x, y, z)P(ξ, η, 0; x, y, z)dxdydz︸ ︷︷ ︸

O(ξ,η,0)

, (1)

whereas ER is a conjugated reference wave used for recording. O is called object wave and this
point-wise multiplication of two complex-valued wavefields is called interference. Interference is
vital in practical setups. For the sake of clarity, we will split the discussion of the phase space of
the object and reference waves. The main part of this paper will be concerned only with the object
wavefield O. Reference waves and the interplay of both waves will be covered in Section 4. For now,
we shall assume a plane wave with phase 0, i.e., ER = 1. Given the complex-valued, continuous object
wavefield on a surface, a digital hologram can be obtained through pixelation [36]—a sampling with a
given pixel pitch p and discretization by some bit-depth. A complex-valued matrix of size Nη × Nξ is
obtained where ξ enumerates the columns.

For a PSF, the spatial frequency distribution, i.e., the way spatial frequencies vary with space,
encodes the position of the corresponding point-source in scene space and its relative phase offset.
We visualized the dependence on lateral and longitudinal positioning in Figure 2 for two different
expressions of the PSFs.

z

x

zFr

Propagation

zEx

Figure 2. 1D hologram genesis starting from 3 specific points, and phase space footprint in the rigorous
form at zEx and within the Fresnel approximation at zFr.

The two most common PSF expressions are the rigorous form, which corresponds to working
with spherical wavefronts, and the Fresnel approximation, corresponding to quadratic wavefronts.
Rarely, a more crude PSF approximation finds use as well which is called the Fraunhofer approximation.
These approximations are used to simplify analysis and substantially speedup calculations as through
Equation (1) a different diffraction regime, i.e., a way of (approximate) light propagation, is associated to
each of the specific PSF shapes.
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One way to classify diffraction regimes is by the Fresnel number NFr, see [13], defined as

NFr(r) :=
(0.5 ∅(aperture))2

λ |z| =
0.5 max(|ξ − x|) · 0.5 max(|η − y|)

λ |z| . (2)

If NFr > 1 the PSF takes the rigorous form and its Fourier transform, the phase accommodation
kernel of the angular spectrum method, is typically used for propagation of holograms in this regime. If
NFr . 1 the Fresnel approximation is sufficiently accurate for propagation and if NFr � 1 propagation
can be approximated even further by the Fraunhofer approximation. The reminder of this section will be
devoted to analyzing the phase space behavior of these PSF forms.

2.1. Rigorous Form

Let x, y, z be a right-handed Cartesian coordinate system in scene space and let ξ, η be spatial
coordinates of the hologram plane located in z = 0, such that ξ, η are parallel to x, y, respectively
and the z axis is aligned with the optical axis of our system. Without loss of generality let the
scene be located at z > λ � 0 where λ is the wavelength of the illuminating light. Then the PSF
P(r) = P(ξ, η, z; x, y, 0) of a spherical wave diverging from (x, y, z) towards z = 0 is given as

P(r) :=
zeiϕ(r)

iλr2 with ϕ(r) := −2π

λ
r and r :=

√
(ξ − x)2 + (η − y)2 + (0− z)2 . (3)

ϕ is its (instantaneous) phase and can be used for the definition of its (instantaneous) frequencies fξ

and fη .

fξ(r) :=
1

2π

∂ϕ

∂ξ
= − (ξ − x)

λr
and fη(r) :=

1
2π

∂ϕ

∂η
= − (η − y)

λr
, (4)

with r given by Equation (3). This definition is based on the principle of stationary phase, which states
that the (instantaneous) phase ϕ, Equation (3) is approximately sinusoidal while varying ξ, η over
several λ. It is worth mentioning, that other definitions for instantaneous frequency, which are not
based on the principle of stationary phase, do exist. One example is the definition based on marginals
evaluated for the WV PSR [14] or higher order derivatives of the phase functions. A detailed list is
provided in [37].

Irrespective of the chosen definition, the spatial frequencies of a monochromatic wave may not
exceed ±1/λ. For a DH, it furthermore may not exceed (2p)−1. Equation (4) describes the rigorous
mapping from space ξ, η to frequency fξ , fη for an ideal PSF without any aberrations. Its phase space is
shown in Figure 3c for a 1D PSF, i.e. with ∆x := (ξ − x) and r :=

√
(∆x)2 + (0− z)2. The real part of

the same PSF, which is shown in spatial domain in Figure 1a, is presented in Fourier space in Figure 3a.
Its instantaneous phase function in spatial domain is depicted in Figure 3b.

Spatial frequencies are linked to diffraction angles by the grating equation. For example a
discretized fξ determines the angle θ in the ξ − z plane

sin(θ) = λ fn with fn =
n

Np
and n ∈ [−N/2 + 1, N/2] (5)

where N is the number of pixels of the hologram along ξ and p is its pixel pitch.
Let us now study the effects of translations along x, z on the instantaneous frequency fξ .

Translations along x correspond directly to translations of fξ along ξ as fξ = 0 ⇔ ξ = x.
Translations along the optical axis z change the steepness of the frequency transition. As z appears
only in the denominator for z → ∞ the change of frequencies will happen imperceptibly slow,

i.e., ∂ fξ

∂ξ

∣∣
ξ=x ≈ 0. For z ≈ 0 the step function is obtained. If z < 0 then ξ and x trade places and thereby

induce a sign change of fξ . If as shown, a down-chirp (decreasing frequency) is present, the recorded
wave is diverging from a point-source located at z > 0 towards z = 0. A spherical wave diverging
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from z < 0 towards z = 0 is approximated by up-chirps. In Figure 2 we color-coded the footprints of
the PSFs belonging to 3 different point-sources.
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Figure 3. A comparison of the Fresnel approximation with the rigorous form of a single 1D point-spread
function in terms of: (a) real part in Fourier space; (b) instantaneous phase in space; (c) instantaneous
frequency in space-frequency domain.

2.2. Fresnel Approximation

Within the Fresnel approximation each spherical wavefront is approximated as a parabola

PFr(r) :=
1

iλz
eiϕFr(r) with ϕFr(r) := −2π

λ

(
z +

r2 − z2

2z

)
. (6)

Instantaneous phase and instantaneous frequencies are given by

fξ(r) :=
1

2π

∂ϕFr(r)
∂ξ

= − (ξ − x)
λz

and fη(r) :=
1

2π

∂ϕFr(r)
∂η

= − (η − y)
λz

. (7)

As a result that a quadratic instantaneous phase yields a linear instantaneous frequency, the latter
can grow unbound in the Fresnel approximation whenever |ξ − x| & z. In Figure 3a we can observe
nicely how the spectrum of a parabolic wavefront extends across the entire Fourier domain for any
|z| < ∞.

Note, how the Fresnel approximation is hard to grasp for PSFs from either their spatial (Figure 1a)
or frequency profiles (Figure 3a) alone. When both domains are jointly regarded in Figure 3c, the
nature of the approximation is immediately revealed. Its instantaneous frequency is a 1st order
(linear) Taylor expansion to the rigorous PSF around the point fξ = 0 and gives rise to quadratic
wavefronts. It also becomes immediately evident under which conditions the Fresnel approximation
holds. Loosely speaking, it holds when the maximal frequency in the hologram is smaller than 1/λ

and that max (ξ − x)/z and max (η − y)/z are small. This is at the heart of the requirement NF ≤ 1.

2.3. Fraunhofer Approximation

The Fraunhofer approximation is more crude than the Fresnel approximation, as it approximates
the collection of all spherical wavefronts in a scene by a single parabolic wavefront. With a far-field
z� 2π/(2λ)max(

∣∣ξ2 + η2
∣∣) we find from Equation (6) for the instantaneous phase

PFh(r) :=
1

iλz
eiϕFh(r) with ϕFh(r) := −2π

λ

(
z +

x2 + y2 − 2xξ − 2yη

2z

)
(8)

and for the instantaneous frequency therefore

fξ(r) :=
1

2π

∂ϕFh(r)
∂ξ

=
x

λz
and fη(r) :=

1
2π

∂ϕFh(r)
∂η

=
y

λz
. (9)
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The phase space footprint will be in shape identical to that of the Fresnel approximation in Figure 3 for
ξ = 0 fixed. Note, the Fraunhofer approximation may also be obtained in the focal plane of a lens [38].

3. Explicit Calculation of Phase Space Representations of Arbitrary Digital Holograms

Thus far we have regarded individual point-sources and used precise instantaneous frequency
laws to describe their phase space behavior. However, in physical recordings, where the exact positions
of point-sources are unknown and aberrations can occur, for DH after a long processing pipeline
which can introduce artifacts, or for holograms of large and dense objects, which consists of ≥ 105

PSFs, this approach is no longer feasible. Instead of mapping out the occupied phase space volume
PSF by PSF for each point-source, we will analyze the phase space of the fully assembled hologram.
Although, phase space analysis can be used for different purposes as well, we will regard only visually
interpretable PSRs in this paper, as they can provide great intuition to problem solving.

3.1. Selecting the Right Phase Space Representation

There exist many PSRs, which is explained by the fact that it is impossible to craft one
representation that can precisely analyze instantaneous frequencies at every point in space due to the
Heisenberg–Pauli–Weyl uncertainty principle [39]. Henceforth, there are various trade-offs to be made with
respect to properties that shall be retained, such as: visual interpretability, positivity, energy conservation,
covariance with space and frequency, invertibility, degree of adaptivity, and many more. We will
restrict ourselves to Cohen’s class [40], which is the general set of bilinear PSRs that are invariant under
space-frequency translations and encloses all off the most frequently used PSRs.

Most of the references cited earlier on, chose the Wigner–Ville (WV) PSR, because it offers a
variety of nice mathematical properties such as invertibility, compatibility with linear filtering and
modulations, conservation of scalar product and instantaneous frequency (in terms of marginals),
and invertibility. Put differently, it lends itself naturally to many mathematical derivations and offers
perfect localization (“best resolution") for any signal described by a single, straight line in phase space;
such as: pure sinusoids, impulses, or linear frequency chirps. However, visual interpretation becomes
unfeasible for signals described in phase space by either multiple lines and/or arbitrary curves because
of the introduction of interference terms and their specific placement.

This is illustrated by two examples shown in Figure 4 where several PSRs are evaluated on the central
horizontal cross-section of 2D holograms. The holograms consists of PSFs from point-sources placed at
different positions and recorded in the Fresnel approximation using 2 parabolic wavefronts, Equation (6),
on top and in the close-proximity near field using 1 spherical wave, Equation (3), below. In Figure 4a the
WV PSR is shown to exhibit an interference pattern stronger in intensity than the signals themselves and
located in between them. Self-interference in the vicinity of non-linear sections of non-linear signals can be
observed well in Figure 4d by the broadening along the curved sections of the PSF.

Another common PSR is the spectrogram. As can be seen in the middle column of Figure 4,
it does not introduce new false signals; however, it has lower resolution. Although its resolution can be
increased by means of high-resolution STFTs [11], it will always remain inferior to the comparatively
recent S-method [12] depicted in the right column of Figure 4. A similar argument was already made
for the superior resolution of the smoothed pseudo Wigner–Ville representation over the spectrogram
in [41]. The smoothed pseudo Wigner–Ville representation is a special case of the S-method.

In the following, we will introduce first the spectrogram and then the S-method, because
the efficient computation of the more general S-method is based on the spectrogram. Section 3.4
and Section 3.5 thereafter will explain how to apply the PSRs to DHs and list the advantages and
disadvantages of both methods essential for a visual interpretation of holograms.



Appl. Sci. 2020, 10, 4766 8 of 27

Space

F
re

q
u

e
n

c
y

(a)

Space

(b)

Space

(c)

Space

F
re

q
u

e
n

c
y

(d)

Space

(e)

Space

(f)

Figure 4. Comparison of phase space representations evaluated on two examples of wavefronts
expanding along z illustrate the arising interference terms—2× parabolic (top); 1× spherical (bottom).
(a) Wigner–Ville; (b) spectrogram; (c) S-method; (d) Wigner–Ville; (e) spectrogram; (f) S-method.

3.2. Introduction to Spectrograms

Let g ∈ CN be a discrete 1D complex-valued signal of length N and w ∈ CM be another function,
called (spatial) window w with M ≤ N, e.g., Figure 5a. We will refer to M := 2M′ + 1, M′ ∈ N0 as the
window length. Contrary to analyzing the signal in its native (space) domain or its Fourier domain,
we strive to understand when which frequency components are active. Due to the perfect delocalization
of sinusoids, the elementary components of a Fourier transform, we can only do so by taking the Fourier
transform of our signal over many small intervals. This is where the window function comes into play.
The element-wise (Hadamard) product g(ξ px + m)w(m), ξ px ∈ {0, . . . , N − 1}, f px

ξ ∈ {0, . . . , M− 1}
will have only at most M non-zeros (in case ξ px + m exceeds [0, N − 1] the signal g is continued
periodically). A discrete Fourier transform of gw will provide a frequency analysis localized on the
at most M coefficients of the signal selected by the window. This local frequency analysis will be
quasi-stationary in that it assumes a periodic continuation of the signal beyond the M non-zeros of the
window and constant frequencies within, see Figure 5b. Shifting the window with respect to the signal
and re-evaluating the Fourier transform each time, will provide a (quasi-stationary) representation
of excited frequencies over space. Mathematically this concept of a windowed Fourier transform is
known as the short-term Fourier transform (STFT), which is given at a location ξ px ∈ {0, . . . , N − 1}
(around the window center) and a frequency f px

ξ ∈ {0, . . . , M− 1} (excited within this window) as

STFTw(g; ξ px, f px
ξ ) :=

M−1

∑
m=0

g
(
m−M′

)
w
(
ξ px + m−M′

)
e−2πi f px

ξ m/M (10)

and the spectrogram SPw(g; ξ px, f px
ξ ) is then defined as

SPw(g; ξ px, f px
ξ ) :=

∣∣∣STFTw(g; ξ px, f px
ξ )
∣∣∣2 . (11)
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Figure 5. (a) Exemplary spatial short-term Fourier transform window. (b) Illustration of quasi-stationary
frequency analysis of the signal (red). Within each spatial window (within gray verticals) frequencies are
stationary. Here, the strongest response per window occurs at its average frequency.

While general window functions are possible, we shall content ourselves here with the simplest case
of a symmetric, non-negative (real-valued), Hann window ([11], p. 532) of length M ≥ 1, defined as

w(m) :=
1
2

(
1− cos

(
2πm

N

))
= sin

(πm
M

)2
, m ∈ [0, M− 1] . (12)

and normalized in the `2-norm via
M−1

∑
m=0
|w(m)|2 = 1 , (13)

to preserve the `2-energy of the signal.
A window of length M allows for M distinct frequencies to be analyzed. Thus if M is decreased,

the spatial resolution is increased (as more distinct windows exist) but the frequency resolution (per
window) decreases. If the converse is true, the frequency resolution is increased and traded for
spatial resolution. A formal result of this is Lieb’s uncertainty principle for the short-term Fourier
transform [39]. Selecting M = b

√
Nc, where b·c is the nearest lower integer, will provide the most

balanced space-frequency resolution. In practice, overlapping windows are used to enhance the
resolution through an increase of the redundancy in the representation. Good results are achieved by
choosing maximal overlap M− 1 between long windows, e.g., setting M = 4b

√
Nc as was done in

Figure 4. [42] describes how window size affects the confidence of instantaneous frequency estimates.
Despite these measures, the joint resolution of the spectrogram remains low.

Further enhancements are possible by abolishing the invertibility of the underlying STFT. For
narrow-band signals, which excite only a few frequencies at every location, high-resolution schemes
can be found in [11,43]. However, as the considered DHs of diffusely scattering, macroscopic scenes
are wide-band signals, another way of increasing the resolution is required and will be shown in the
next section.

3.3. Introduction to the S-Method

Given Equation (10), the S-method is defined with the STFT and an arbitrarily chosen frequency
filter window v ∈ CL of length L := 2L′ + 1, L′ ∈ N0 as

SMv,w(g; ξ px, f px
ξ ) :=

L′

∑
l=0

[v(L′ + 1− l) + v(L′ + 1 + l)] ·

STFTw

(
g; ξ px, f px

ξ + L′ + 1− l)
)

STFTw

(
g; ξ px, f px

ξ + L′ + 1 + l
)

,

(14)

with complex conjugation . The length and functional form of the spatial window w(m) can be chosen
as described in the previous section. One good candidate for v is a short Hann window. Its length
determines the frequency resolution of the transform and thus should be small, e.g., L = 5. In addition,
all other parameters influencing the quality of the STFT, will affect the visual performance of the
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S-method. The most simplistic and efficient implementation for symmetric and real-valued frequency
windows v is explained in great detail in the original contribution [12] and in [11]. It is restated in
Listing 1.

Listing 1. An efficient S-method implementation

S-method ( STFT ∈ CM×N , frequency window v(l) ∈ RL, l ∈ {0, . . . , L− 1} with peak at L′ + 1 )
SM = |STFT|2 v(L′ + 1) .0.th term is the spectrogram
For ( l ∈ {0, . . . , L′} ) .l.th refinement

For ( f px
ξ ∈ {l, . . . , M− 1− l} )

For ( ξ px ∈ {0, . . . , N − 1} )
u = Real(STFT( f px

ξ + L′ + 1− l, ξ px)STFT( f px
ξ + L′ + 1 + l, ξ px))

SM( f px
ξ , ξ px) = SM( f px

ξ , ξ px) + [v(L′ + 1− l) + v(L′ + 1 + l)]u
return SM ∈ RM×N

As with the spectrogram, there exist also extensions to the S-method [11,44], which can improve its
resolution further, but they are not considered here for the sake of clarity. Instead we note, that several
other PSRs are contained in the S-method (not to be confused with the S-transform) as special cases.

1. If v(0) = δ(0), L′ = 0 one obtains the spectrogram, that is SMv,w = SPw. Thereby w(m) is
commonly normalized by Equation (13).

2. If v(0) = 1, L′ = 0 one obtains the pseudo Wigner–Ville representation [40], which initially
was constructed as restriction by windowing of the space-lags w(m) considered during the
computation of the Wigner–Ville representation. It is SMv,w = PWVw.

3. If v(0) = 1, L′ = 0, and w(0) = 1, M′ = 0 one obtains the regular Wigner–Ville representation,
that is SMv,w = WV.

4. If v(l), w(m) are of even parity, and the following standard requirements hold F (v)(ζ = 0) = 1,
v(l) ∈ R, w(m) ∈ R, one obtains the smoothed pseudo Wigner–Ville representation [40], that is
SMv,w = SPWVv,w. F signifies the discrete Fourier transform.

3.4. On the Application of Phase Space Representations to Digital Holograms

Rather than studying the entire 4D phase space of DHs, we will consider only 1D cross-sections
(see Figure 1b) in the form of individual rows or columns sampled from the DH. Those provide,
sufficient information for most analysis tasks. For near-field holograms, the row/column positions
correspond to horizontal or vertical slices in scene space and should be chosen according to the
objects of interest. For far-field holograms, they correspond to frequency sub-bands and thus reveal
information about the entire scene at once. Unless stated otherwise, we will evaluate the PSRs on the
middle row of the DHs, for example given a hologram H ∈ CNη×Nξ as SMv,w(H(:, bNη/2c); ξ px, f px

ξ ).

3.5. Important Properties for Phase Space Visualization of Digital Holograms

The spectrogram and the S-method are both visually faithful representations in that they share two
mathematical properties which are essential for an accurate visual interpretation. First, as members of
Cohen’s class they transform linear under space, frequency shifts of the signal and, second, they largely
avoid introducing artificial signal components. Thus, if a signal component is visible in either PSR, it was
actually present in the signal at these phase space coordinates.

The first property is captured by the notion of covariance under space and frequency translations.
That is, if a signal g is shifted in space or frequency, the PSR ρ shifts by the same amount:

∀∆ξ, ∆ fξ ∈ R : h(ξ) = g(ξ − ∆ξ)e2πi∆ fξ →
ρ(h; ξ, fξ) = ρ(g; ξ − ∆ξ, fξ − ∆ fξ) .

(15)
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Covariance is essential to locate a holographic signal in phase space, see for example Figure 2. For near-field,
non-Fourier hologram lateral translations of the object are reflected by lateral translations in the phase
space of the object wave. Frequency shifts of the recorded hologram occur, for example when tilting a
plane wave illumination. We will show explicit examples in Section 4 and Section 5.5.

Artificial signal components introduced through “cross-talk” of multiple signal components in the
original signal are a mathematical necessity and their position and shape has been thoroughly studied
in the past. It is understood for the entire Cohen class [40], and can render PSRs useless for the visual
interpretation of many component signals such as DHs. Thus, it is worth understanding how they are
handled in the spectrogram and the S-method, as to still allow for a clear visual interpretation.

The spectrogram hides cross terms by locating the “cross-talk” on top of the actual signal. One speaks
of inner interference terms in this case. Inner interferences lead to a broadening of the signal in phase space,
perceivable as low resolution.

The S-method follows a different strategy. Implicitly it introduces outer interferences, which are
located next to the original signal, but they are filtered out via the frequency filter window. This guarantees
a high-definition of the signal components itself, which is comparable to that of the WF PSR. We quote [11],
p. 647: "The S-method can produce a representation of a multi-component signal such that the distribution
of each component is its [pseudo] Wigner distribution, avoiding cross-terms, if the STFTs of the components
do not overlap in time-frequency plane." (Note: time-frequency plane = phase space). As the frequency
filtering is imperfect, weak cross-terms can occur when signals overlap in phase space or are in very close
proximity. In either case they do not impair visual interpretation and the visual degradation is trumped by
far by the increased phase space resolution compared to the spectrogram.

In Figure 6 both PSRs were computed with equal parameters (N = 8192, M = 1024, overlap
length M− 1, L = 5) and the spatial separation of the dices is better visible with the S-method. Note,
because the Fourier transform of a Hann window is given as a sum of 3 delta distributions, for M > 3
its frequency resolution is better than its spatial resolution. Thus, a long spatial Hann window will act
as a stronger frequency filter than a spatial filter. This is why the inner interferences in the spectrogram
appear to be smeared out in the spatial domain in Figure 6a. Conversely, the additional Hann frequency
filter window of the S-method, acts as a stronger spatial than frequency filter and recovers the spatial
phase space resolution.
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(b) S-method (c) Scene

Figure 6. A hologram of 2 dices in close proximity is used to contrast the phase space resolution of
the spectrogram and the S-method. A back-propagation of the scene is shown in (c). (a) Spectrogram;
(b) S-method; (c) scene.

Both the spectrogram and the S-method can be computed much faster than the WV PSR, due to
the reliance on small filter windows.
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4. Capture of Holograms: Interference of Object and Reference Waves

Interference is an essential concept used in physical implementations of holography. It enables to
record off-axis holograms [45] where the image of the light source, the conjugated, and the real image
are laterally separated in space upon back-propagation of the hologram. While the optical wavefront
may only be partially characterized in specific setups, solely four types of reference waves, denoted in
Equation (1) as ER, are common.

Diverging spherical wave This is the wavefront of an ideally isotropic (reference) point-source. It is
used for rigorous propagation within the confines of scalar diffraction theory. An exemplary phase
space footprint is shown in Figure 3c.

Parabolic wave This is an approximation to a spherical wave in the Fresnel or paraxial approximation.
It is used for Fresnel propagation. An exemplary phase space footprint is shown in Figure 3c.

Planar wave (also: plane wave) These form a dual basis to spherical waves, in the sense that they
can be interpreted as spherical waves with infinite curvature. This wavefront is used for accurate
propagation with the angular spectrum method. In phase space the footprint will be line parallel to
the spatial axis. A planar wave incident with an angle θ 6= 0◦ will appear as a line at frequency f given
by Equation (5).

Other Other forms can arise e.g., in shearing interferometry when the object wave is used to interfere
with itself. The phase space footprint will depend on the object.

In case the individual object and reference wavefronts are known, one can study the interference in
phase space with PSRs—where it is understood intuitively as a sum of the corresponding instantaneous
frequencies. We showcase the phase space footprint of exemplary holograms obtained from the
interference of an object and multiple reference waves in Figure 7. As object wave we use the scene of
Figure 6, recorded in the paraxial limit, after complex conjugation and up-sampling it by a factor of 4.
Whilst the former modification merely aids visualization, the second avoids the occurrence of aliasing
after interference.

Object O
(conjugated)

Reference ER Combined H

Planar

Div. parabolic

Div. spherical

Figure 7. Geometric interpretation in phase space of the Hadamard product of an object wave O
and distinct reference waves ER, see Equation (1), yielding a hologram. O used in this figure is the
complex-conjugated wave of Figure 6, after up-sampling it by a factor of 4 in order to avoid aliasing.

5. Applications of Phase Space Representations in Digital Holography

5.1. Exploring an Arbitrary Hologram

Now, let us consider some typical questions posed for a hologram. Imagine being presented with
a hologram, in its complex-valued representation, without any additional information aside from pixel
pitch and its wavelength.
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1. What is the type of hologram? If a single recording wavelength has been used, the hologram is
monochrome and the reasoning from Section 2 may be used as follows: for holograms of macroscopic
objects, recorded at some out-of-focus plane, the amplitudes in the spatial and in the frequency domain
(shown as projections in Figure 8c) usually do not reveal anything about the content of the 3D scene.

(a) (b)

Fr
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 f
ξ

0

0

Space ξ

Object 2

Object 1

(c) Phase
space

(d)
Point-cloud

Figure 8. (a,b) Front and rear back-propagation of a hologram containing two objects. Only by joint
consideration the entire scene is visible. (c) The S-method evaluated on a 1D cross-section of the
hologram, shows a clear separation of (all) objects in phase space. Objects are indistinguishable in
either spatial or frequency domain alone. (d) For reference, the point-cloud model of the scene is given.
Parts of this figure are reused from [30].

Note, the intensity variation in frequency domain does not exclusively correspond to the
individual objects. However, the S-method calculated from the central 1D cross-section immediately
aids understanding of the scene composition. The phase space footprint is composed of parallelograms,
suggesting that Fresnel propagation is sufficient for back-propagation, compare with Figure 3c.

2. What is depicted in the hologram? If the hologram is of sufficiently large resolution and shows
in the S-method wide parallelograms instead of thin lines, compared with Figure 4c, then it depicts
dense sets of point-sources in close proximity. This can be understood by reinterpreting the object
wavefield O in Equation (1) as a spatial convolution of the amplitude-phase distribution h(x, y, z) of
point-sources in the scene with a slightly varying PSF located at (x, y, z > 0), corresponding to a single
line such as in Figure 3c. We can thus identify 2 objects in the present hologram. Using Equation (7),
we see that the smaller slope of object 2 corresponds to a larger depth. For reference, we provided a
point-cloud model of the scene in Figure 8d. It consists of a partially occluding spyhole in front of a
dice. Using this as reference, we identify the rear object, object 2, as the dice.

5.2. Optimizing Space-Frequency Bandwidth Product

The part of the signal in phase space, that is actually conveyed by a pixel-matrix depends
exclusively on its pixel pitch p and number of pixels Nξ × Nη . Due to physical limitations on the pixel
pitch and addressable number of pixels, the phase space of visible light holograms is never captured
in full. In case of in-line or on-axis holography, these limitations of any row/column of said matrix
defines a rectangular, axis-aligned bounding box around the optical axis (ξ, η) = 0 in the phase space.
If we assume effectively a complex-valued modulation/detection capabilities per pixel, the bounding
box is given by the pixel matrix—bandwidth 1/p times the spatial extent of the hologram given by
Np in absolute units of frequency [Hz] and space [m]. This holds for digital and optical setups [36]
alike, if aberrations and intermediate limiting numerical apertures of optical setups are neglected.
The space-bandwidth product (SBP) of a spatial light modulator (SLM) is given as SPBSLM := Nξ Nη

and cannot be enlarged with additional optics. It characterizes a passive optical system through its
entendu (active area times angular spread) [36].
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We illustrate the bounding box using normalized coordinates in Figure 9c. For this we selected
a hologram depicting a single model of a diffusive scattering “Earth” (from the INTERFERE-II
database [46], see Figure 9a) with a resolution of 8192× 8192, 1 µm pixel pitch, and a wavelength of
633 nm. The model is located at a depth of 1.18–1.64 cm and therefore comparatively shallow.

The ramifications of this bounding box interpretation are substantial. It allows to predict and
subsequently tune systems towards more effective use of the SBP by maximizing the ratio

SPBH

SPBSLM
, (16)

where SPBH is the SPB of a signal H—see [13], p. 33f. Conceptually SPBH equals the area occupied by
the signal within the bounding box and we will discuss two ways of obtaining a numerical estimator
in Appendix A. For example, a holographic capture of only object 2 of Figure 8 requires about half the
frequency bandwidth (i.e., only a hologram of double the pixel-pitch and half the number of pixels)
than a recording of object 1.
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Figure 9. (a) Standard back-propagation of a hologram of a diffuse Earth recorded in the Fresnel limit
using a numerical aperture of 1/4 of its size. (b) Back-propagation after undersampling the hologram
by a factor of 1/0.65 without using a numerical aperture. Phase space footprints of 1D cross-sections are
shown after refocusing to different distances in (c–e). In (c) the space-frequency bandwidth boundary
box is marked. (f) Shows a hologram of the same object in a different diffraction regime.

All signal components that exceed the maximal supported frequency of a DH 1/(2p) (also: Nyquist
frequency) cause aliasing. Aliased frequency components appear as being wrapped around said frequency
range. During the reconstruction of weakly aliased holograms, parts of the scene appear mirrored along
the boundaries. See for example Figure 9b where we reconstructed the hologram (without any aperture
and increased contrast) after resampling the hologram with a pixel pitch of 1/0.65 µm. As the hologram
is now undersampled, aliasing artifacts arise along the borders. For more more severe undersampling,
the aliased images and the original will overlap and greatly reduce visual quality.
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In optical display setups aliasing will be visible in the form of higher diffraction orders.
Two contributing factors are to be distinguished, see Figure 5 in [36]. One hand the pixelated structure
of the SLM can give rise to “SLM orders” in the far-field. On the other hand the displayed content
gives rise to “CGH orders” due to undersampling or due to imperfect modulation. In the on-axis case,
the CGH orders are located at lateral extents larger than (λz)/p after propagating the distance z [47].

The maximal frequency occupied by the hologram within its SBP, is proportional to its
transversal spatial resolution in scene space for small to medium numerical apertures. The resolution
(defined by the Rayleigh criterion [13]) after propagation of z can be calculated within the paraxial
approximation [47] via Equation (7) as

Res =
Np
λz

. (17)

5.3. Depth Estimation

The discussions of Sections 2 and 4 can be combined to provide a rough scene depth estimate for
holograms where such information is not accessible, as we indicated in Section 5.1. For microscopic scenes
with only a few scattering centers even accurate 3D positioning is possible [16,25].

As a starting point, we note that the combined wavefields in Figure 7 are in general of unique
shape and through analysis it is possible to estimate their focal distances. Figure 9 demonstrates
how the phase space footprints shape varies for the hologram of a comparatively shallow object
(NFr ∼ 1650− 2250).

In case a signal shows as impulses (lines parallel to frequency axis), e.g., Figure 9d, the hologram
is in focus, and all point-sources located within the depth of focus are already converged to points
(Dirac impulses in the 1D cross section). The impulses will be bandwidth-limited by the holograms phase
space bounding box. The lateral resolution is limited by the pixel pitch in the object plane and potentially
by diffraction—see the Rayleigh criterion in the former section, in the case of the paraxial approximation.
These holograms have been recorded as image plane holograms or have been refocused prior to their
analysis. Note, that Figure 9d shows the phase space footprint associated with a horizontal center cut
through Figure 9a. Curiously, in Figure 9d it is possible to make out individual PSF clusters with the
S-method that remain slightly out of focus, due to the sparsity of the point cloud model. Their slope
informs about whether they are located in front or behind the current focal plane. This proves helpful in
identifying the ordering of multiple sparse objects in depth [25]. A situation which appears frequently
in digital holographic microscopy, where usually sparse, multi-component signals are being analyzed.
Traditional methods create a depth map relying on exhaustive back-propagations to different scene depths.

In case a signal extends over entire spatial domain and appears to be made up of horizontal
lines, e.g., Figure 9e, the wavefield does not converge at any finite distance. Such a hologram has
been recorded as a Fraunhofer or a (lensless) Fourier hologram. In essence, a Fourier transform is
required for refocusing. This representation is especially advantageous in experimental setup as it
makes optimal use of the space-frequency bandwidth product SPBH and was proposed for use in [32]
under the name “compact space-bandwidth representation”.

Whenever a parallelogram with angles sufficiently different from 90◦ and 0◦ shows, e.g., Figure 9,
the focal plane is at some distance z > 0 or z < 0 depending on the sign of its slope. These holograms
have been recorded as Fresnel holograms in the paraxial limit or in the near field with a small frequency
bandwidth due to a large pixel pitch. Depending on which, at least the Fresnel method or the rigorous
back-propagation need to be used.

Finally, if a sigmoidal shape as in Figure 9f is seen, the focal plane is at some distance z > 0 and the
rigorous method needs to be used for refocusing—usually the angular spectrum method is employed.

For finite propagation distances, i.e., in the latter two cases, z can be estimated from a
parametric fit of the central ridge of the footprint or from the footprint of an isolated, bright scatterer.
Without aberrations a sigmoidal (Equation (4)) or linear curve (Equation (7)) are to be used. We provide
an explicit example in Appendix B. Depth estimation through curve fitting is also the essence of the
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filter matching technique used in online synthetic aperture radar processing or used to estimate the
distances of a scattering target from the radar site in inverse synthetic aperture radar imaging for
motion compensation, see [7] p. 805ff. Instead of curve fitting in phase space, one can also estimate the
optical flow, computed from the STFT, to guide depth estimation as done in [48] or use more elaborate
estimation schemes of the instantaneous frequency dependence of the brightest scene parts through
interleaved confidence intervals and adaptive window sizes as detailed in [42].

5.4. Diagnosis of Distortions of Digital Holograms

In this section, we will demonstrate how visually interpretable PSRs can be used to reliably
determine certain sources of error in a DH that were either introduced during processing or generation.

5.4.1. Quantization Errors

Aside from the aliasing artifacts discussed in Section 5.2, PSRs can also be used to analyze
flaws that occurred upon processing. Probably the most frequent distortion encountered by DH is
quantization. May it be for reasons of limited analog-digital converter precision in the recording sensors,
limited bit-depth in spatial light modulators, or reasons of a limited storage capacity, quantization
is frequently applied. Multiple works have been published on the effects of quantization in DH,
e.g., [49–51], and in general it must be said that the perceptual quality impairment of quantization
depends strongly on the hologram type, its diffraction regime, the pixel pitch, the specific holographic
display setup, and especially the distance of the scene to the hologram plane. Thus for each setup type
and set of hologram parameters a perceptual quality evaluation is currently required.

One independent way to assess the severity of the effects of quantization on the hologram is by
visualizing its phase space footprints as done in Figure 10 for the object of Figure 9 using the half the
dynamic range to enhance contrast. Multiple bit-depths were used with a uniform quantizer applied to
real and imaginary parts independently. Clearly, we can see the increase of quantization noise, which is
typically modeled as white noise per pixel. White noise affects all frequencies and since it is delocalized,
we expect a drastic worsening of the visible signal to noise ratio, such as in Figure 10. At the chosen
contrast almost no artifacts are visible with 5bit per channel. While the analysis of quantization artifacts is
important, PSRs can be used to analyze arbitrarily complicated post-processing chains of DH.
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Figure 10. Top: Phase space visualization of the error introduced in Figure 9c by uniform quantization
with various bit-depths per real/imaginary part. In brackets the signal-to-noise ratios of the quantized
holograms are provided. Bottom: Corresponding back-propagations using the same parameters as in
Figure 9a. The dynamic range was halved to enhance contrast.

5.4.2. Tracing Missing Space-Frequency Information

There might be various reasons, for why specific space-frequency information is missing from a
DH. In Section 5.2, we explained two of the most common reasons. Whenever the phase space footprint
of a signal is clipped along the spatial dimension, the wavefront expanded too far and exceeds the
(virtual) detector. If the footprint is clipped in the frequency dimension the signal is undersampled.
While those cases are easy enough to recognize for holograms presented in their native hologram
plane (where they were recorded/generated initially in), it becomes challenging when one or multiple
post-processing steps are applied. An example is provided in Figure 11a where bandwidth-limitation is
visible on the two chirp bundles belonging to objects in the front after propagation to the scene middle.
Other examples can be a result of motion compensation, see e.g., Figure 12b,e, or other manipulations.

The missing information may impair the lateral scene resolution only slightly, see Equation (17),
and will be thus hard to notice. A glance with a PSR will, however, quickly reveal such flaws and
allow optimization for optimal performance.

Figure 10. Top: Phase space visualization of the error introduced in Figure 9c by uniform quantization
with various bit-depths per real/imaginary part. In brackets the signal-to-noise ratios of the quantized
holograms are provided. Bottom: Corresponding back-propagations using the same parameters as in
Figure 9a. The dynamic range was halved to enhance contrast.
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5.4.2. Tracing Missing Space-Frequency Information

There might be various reasons, for why specific space-frequency information is missing from a
DH. In Section 5.2, we explained two of the most common reasons. Whenever the phase space footprint
of a signal is clipped along the spatial dimension, the wavefront expanded too far and exceeds the
(virtual) detector. If the footprint is clipped in the frequency dimension the signal is undersampled.
While those cases are easy enough to recognize for holograms presented in their native hologram
plane (where they were recorded/generated initially in), it becomes challenging when one or multiple
post-processing steps are applied. An example is provided in Figure 11a where bandwidth-limitation is
visible on the two chirp bundles belonging to objects in the front after propagation to the scene middle.
Other examples can be a result of motion compensation, see e.g., Figure 12b,e, or other manipulations.

The missing information may impair the lateral scene resolution only slightly, see Equation (17),
and will be thus hard to notice. A glance with a PSR will, however, quickly reveal such flaws and
allow optimization for optimal performance.
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Figure 11. (a,b) Phase space footprint of 1D cross-section of un-/compressed (with H.265/High
Efficiency Video Coding (HEVC)) multi-object hologram “DeepChess” from Interfere-IV [46]. (c) Noise
in the optical holographic recording “Squirrel” from Interfere-IV [46] of an object with metallic surface.

5.4.3. Compression of Static Holograms

Another “distortion” one might encounter when working with DHs is lossy compression.
To minimize coding artifacts and maximize compression efficiency the compression scheme needs to
be tailored to the typical phase space footprints of the signals under consideration. In transform-based
coding, typically a best tiling strategy of phase space is determined for a given class of signals and
a suitable frame or basis is selected based on it. PSRs are a vital instrument in this design process
nowadays, and have been in the past. Once such an optimal tiling has been found and a basis
representation has been derived, the latter can subsequently be used to reduce the signals to a few
essential coefficients and subsequently efficiently compress signals. Whilst the initial motivation for
new basis designs does not necessarily have to be sourced in phase space analysis, for some signals,
especially for DH, this approach is highly advisable and in line with advances in mathematics made of
the past few decades such as: STFT, wavelet, or Gabor schemes. An abundance of work followed the
introduction of each of these schemes, with applications to all kinds of one- or two-dimensional signals.
See e.g., [52] or more specific to DH [17,28,53]. In addition to basis design, PSRs can also be used to
simply, localize coding artifacts and identify discarded information for entire coding strategies by
comparison of the PSRs of un-/compressed holograms. See for example Figure 11b, where we present
the ”DeepChess“ hologram from the INTERFERE-IV database [46] compressed with H.265/High
Efficiency Video Coding (HEVC) in intra-mode at a low bitrate of 0.25 bit per complex sample. The
codec was chosen as an example here since it is one of the two anchor codecs proposed for the JPEG
Pleno on holography. The codec is applied after a uniform 8 bit quantization of the entire dynamic



Appl. Sci. 2020, 10, 4766 18 of 27

range of the real and imaginary channels of the hologram. The highlighted differences can be identified
and explained as follows:

1 reduced signal to noise ratio due to the introduction of discontinuities (impulses) through block
based coding, and use of a basis, poorly localized in frequency (discrete cosine transform with
short spatial windows w, cf. Section 3.2).

2+5 added DC term and opposite diffraction orders, due to separate compression of real and
imaginary parts, cf. Section 5.5.5.

3+4 missing information due to the bitrate-distortion optimization being tuned for natural images.
6 clipped signal, due to thresholding during rate-distortion optimization.

Another important characteristic for the compression of especially optically recorded holograms
is the amount of measurement noise. The more noise is contained in the signal, the larger its footprint
in phase space and the more difficult it is to employ any sparsifying transform. An example of noise
visible in phase space is shown on a 100 dB scale in Figure 11c for the optically recorded ”Squirrel“
hologram from INTERFERE-IV [46]. The high amounts of measurement noise in this case are a result
of the metallic surface of the recorded object. Note, optically recorded incoherent measurement noise
is similar to quantizing real and imaginary parts to low bitrates, see Section 5.4.1.
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Figure 12. Phase space visualizations of 1D cross-sections of the hologram displayed in Figure 9 after
undergoing various manipulations discussed in separate sections below. (d) shows the ”Earth8KS“
from INTERFERE-II database [46], which scatters specularly instead of diffuse. (f,g) are transversal
de-/magnifications of the object shown in Figure 9f.

5.5. Some Simple, Global Operations on Digital Holograms

In this section, we show the effects of simple manipulations such as perspective reconstruction,
rotations, or translations of the hologram. All the operations presented within this and the previous
section may be combined to understand more complicated DH processing chains.

5.5.1. Perspective

A perspective back-propagation of an out-of-focus hologram (i.e., a non image-plane hologram)
can be obtained in the near field by using a ”pinhole“ in the form of a sub-hologram sized aperture,
which is applied to the hologram (matrix) H(ηpx, ξ px) ∈ CNη×Nξ in the hologram plane prior to the
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propagation to scene space. For example, a square aperture W of 25% the size of the hologram retaining
the center right is applied to the hologram as

H̃(ηpx, ξ px) = W � H with W(ηpx, ξ px) :=

{
1 , if ηpx ∈ [ 1

4 Nη , 3
4 Nη ], ξ px ∈ [ 3

4 Nξ , Nξ ]

0 otherwise
, (18)

with the Hadamard product �. In an optical setup the aperture can be our eye-pupil or the aperture of
a camera. The observers position relative to the hologram plane is given by the location at which the
aperture is applied to the hologram. If the aperture retains the center right of the hologram as in the
example above, a center right view is reproduced upon back-propagation of the hologram.

PSRs can provide interesting additional insights on the visible contents. Taking for example
the defocused hologram of Figure 9 and retaining the center right via Equation (18), discards any
information outside the aperture as shown in Figure 12a. As we can see all remaining information
will be located near fξ ≈ −1 in this case. That is the visual explanation of the common statement
in DH literature, that large frequencies predominantly contribute to corner/side view (see also the
grating equation Equation (5)) and therefore any distortions of high spatial-frequencies will impact
predominantly those views first. Obviously this statement is not precise, in case of the near uniform
distributions of spatial frequencies of Fourier-, Fraunhofer, and image-plane holograms, cf. Figure 9.

5.5.2. Rotation

Rotations of the scene around the optical axis, z, are directly mapped onto rotations of the
hologram around z. Such rotations are observable in PSRs as changes of the signal envelope only when
the lateral extents of the scene are not isotropic. Small rotations of the scene around the x or y-axis, can
be approximated in the paraxial approximation (sin(α) ≈ α) by small tilts in the illumination, which
in turn correspond to shifts along the frequency axes [54]. That is for the example of a rotation by αx

radians around x

H̃(ηpx, ξ px) ≈ H(ηpx, ξ px)� e
−2πi

λ (pηpxαx) . (19)

This will be directly visible with PSRs that are covariant with frequency, cf. Figure 12e. The exact
modifications due to rotations [29,55] around x and y axes for large angles are more difficult to interpret
in phase space, as they involve resampling in Fourier space.

5.5.3. Translation

Translations along x, y are mapped directly onto translations of the hologram along ξ, η, too.
For example, a translation about δx px and δy px will lead to

H̃(ηpx, ξ px) = H(ηpx + δy, ξ px + δx) . (20)

Sub-pixel translations can be achieved by multiplications with phase kernels in Fourier domain
instead [54]. If the chosen PSR is covariant in space, see Equation (15), the PSR will shift along ξ as the
scene shifts in scene space along x, see Figure 12b. Translations along the optical axis, z, corresponds
to wavefield propagation as covered in earlier sections.

5.5.4. Transition between On- and Off-Axis Holograms

Any on-axis hologram can be converted into an off-axis hologram by a few generic steps:

1. Fourier transform on-axis hologram.
2. Zeropad hologram to twice its length in every dimension.
3. Shift the padded hologram by half its original size in every dimension.
4. Inverse Fourier transform the hologram.
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5. The real part of these manipulations is the off-axis hologram.

Steps 1–4 will produce an off-axis hologram containing only the +1 or −1 diffraction order
depending on the direction of the shift in step 3. The hologram has a frequency range that is entirely
positive or negative. Step 5 then converts the complex-valued hologram into a real-valued off-axis
hologram, containing both of the first diffraction orders as is easily verified by looking at the footprint
in Fourier domain. To reverse the conversion above, step 5 can be neglected, the direction of the shift
in step 3 is reversed, and step 2 changes into a crop to the original size.

The intuition behind the steps is as follows: With steps 1,2,4, the pixel pitch of the hologram is
halved, in case the hologram was band-limited. Steps 1,3,4 describe the interference with a plane wave
angled at ±45◦, see Section 4. Step 5 adds the conjugated order to the hologram, thereby making it
real-valued. This is easily verified by realizing that the reflection in phase space converts for example
up- into down-chirps and vice versa.

In the language of complex analysis, steps 1–4, describe the conversion of an arbitrary uni-modular
complex phase signal (thus analytic signal) into a real-valued phase signal, which is possible for any
bandwidth-limited uni-modular complex valued signal. Step 5 reflects the fact that, the imaginary
part of any 1D analytic signal can be exactly computed from its real part by means of the Hilbert
transform [40], p. 40 et sequentes. Although the Hilbert transform is not unique anymore in higher
dimensions [56], the solution presented above, which is called single-orthant 2D Hilbert transform
and based in the continuous case on much more profound mathematics [57], works sufficiently well in
practice for interferometric imaging methods, e.g., [58].

PSRs help to visualize and interpret the process above and allow us for example to interpret the
source of some artifacts after compressing real/imag parts independently, see Sections 5.4.3 and 5.5.5.

5.5.5. Splitting into Real/Imaginary Parts

One common representation of on-axis DH is the complex-valued matrix form, which is regularly
split into real and imaginary parts for the purpose of, for example, compression [28,59]. As a result
that most PSRs [7] are insensitive to absolute phases, such as the relative phase between real and
imaginary part when evaluated separately, their PSRs will look similar. Compared to the footprints
of the complex valued signal, the PSRs of the real signals will appear to be mirrored with respect to
fξ = 0, fη = 0 as the conjugated signal is added and the Fourier transform of any real-valued signal is
symmetric along the frequency axis. Exemplary, the real part of an on-axis hologram is displayed in
Figure 12c.

The mathematical reasoning alone, provides no intuitive interpretation of the change in shapes
of the phase space footprints. In light of the former subsection, we recognize that decomposing a
complex-valued on-axis hologram into real and imaginary parts means storing it as two off-axis
holograms with a 90◦ phase shift (sin(90◦ + x) = cos(x) and eix = cos(x) + i sin(x)).

In conclusion, this leads to the quite interesting but unfamiliar interpretation of real- and
imaginary parts of an on-axis hologram as a mixture of the ±1 diffraction orders per part, while both
parts are differ in phase. This is similar to a two-plane phase-shifted representation of a hologram [59].

5.5.6. Transversal Magnification

Another elementary operation on holograms of practical relevance is transversal magnification of
holograms, to which there are two approaches. One can either choose to change the pixel pitch from p
to mp with some real number m > 0 or keep the pixel pitch constant and resample the content.

In the paraxial limit, the pixel pitch can be changed by uniform rescaling [60]. The phase
space footprint in a PSR will show unchanged as the maximal sampled frequency 1/(2p) becomes
m/(2pm) = 1/(2p) and thus stays constant when the spatial dimension is denoted in samples. In contrast,
if the pixel pitch in the hologram is kept constant despite de-/magnification of the content, a common
zoom operation in phase space will be facilitated by a resampling of the signal. The hologram of Figure 9f
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was regenerated after de-/magnifying the scene with m = {0.5, 2} in Figure 12g,f. This corresponds to the
second case of resampling with a constant pixel pitch.

5.6. Analysis of Degree of Surface Roughness

PSRs can also be used to categorize recorded objects as specular or diffusive reflecting. While objects
with a high surface roughness and diffusive reflectivity, scatter light in all possible directions and are
thus also clearly visible under large viewing angles, specular objects are not. They are predominantly
observable in the paraxial limit as a result of their smooth phase distributions along their surfaces.
In computer-generated holography, surface roughness on the scale of±λ/2 is modeled through a uniform
random phase offset of all (surface) point-sources in the scene. Adding random phases to, or increasing
the surface roughness of, a specular object can thus be perceived as a transformation of said object into
a diffusive reflecting object upon generation/recording. We demonstrate this with the Earth holograms
taken from the INTERFERE II database [46]. The holograms generated from specular and diffusive
reflecting point-clouds are shown in Figure 12d and Figure 9. Clearly, predominantly low frequencies are
excited by the specular object, which according to the grating equation Equation (5), correspond to small
diffraction angles.

5.7. Multi-Object Hologram Segmentation and Motion Compensation

In the spirit of spatial blind source separation, PSRs can also be used to segment a multi-object
hologram into sub-holograms corresponding to individual objects, thereby segmenting 3D scene space.
Whilst this approach is based on numerically invertible PSRs applied to the full 2D holograms instead
of visually interpretable PSRs applied to 1D cross-sections, it was motivated by a good knowledge
of the phase space footprints of DHs. Hologram segmentation and subsequent multi-object motion
compensation for dynamic holograms with the Gabor PSR, whose individual contributions are well
localized in phase space, was demonstrated in [30]. Herein, we reprint in Figure 13 the phase space
footprint of the individual objects after segmentation of the multi-object hologram used in Figure 8.
The power of such a technique is of course manifold, and to mention only two potential applications
from dynamic DH: one can strive for accelerated computer-generation of holographic videos or for
better holographic video codecs, predicting future from past frames.
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Figure 13. (a,b) show the phase space footprints of the spyhole (Object 1) and the dice (Object 2)
sub-holograms extracted with [30] from Figure 8c. Note, in (b) only the rims of the spyhole occlude the
dice in this part of phase space.

5.8. Quality Assessment of Digital Holograms

A challenging task for DH is the assessment of the subjective quality of macroscopic holograms,
since for example changes in the speckle patterns are barely noticeable with the naked eye but result in
vastly different holograms in terms of common quality measures such as mean-squared error-based
candidates or the structural similarity index measure [61]. Furthermore, those measures tend to be
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very sensitive to the propagation distance of the hologram. As we have seen in Sections 4, 5.3, and 5.4
PSR representations do not fundamentally change under propagation and are very suitable to identify
several types of distortions. If applied to the full 2D holograms they allow comparisons in the full 4D
phase space. This approach may yield in the near future a similarity measure for DH. Research on this
matter is currently ongoing.

5.9. Design and Understanding of Limitations of Digital Holography Setups

By the argument presented in Section 5.2, and very much in the spirit of works in Fourier and
phase space optics [13,14], it becomes possible to optimize DH setups for best bandwidth usage and
therefore best quality. Exemplary stands [47], discussing the capture and display of holograms, as well
as the aliasing-zones, and resolution estimates by using the WV PSR within the limits of a single object
hologram in the paraxial approximation. Especially intuitive is the inclusion of sets of virtual PSFs cast
from the eye(s) onto the hologram plane. Their intersection in phase space with the holographic signal
marks the actually observed content, see Figure 14. Within the paraxial approximation, the “PSF of an
eye” is the collection of linear chirps not unlike, Figure 9, with a slope given by (λzo)−1. zo thereby
signifies the distance from the hologram plane, which is < 0 whenever virtual images are observed, cf.
Figure 2.

A string of consecutive articles deepened the analysis [32,62] and included design of optimized
hologram representations, as well as an analysis of spatial versus angular spatial light modulator
multiplexing for wide view holographic displays under the use of binocular eye PSFs [33,34]. With the help
of the proposed PSRs, this work becomes now visually accessible in any scenario—including non-paraxial
cases—and might be used for a more distinctive analysis of compression artifacts, see Section 5.4.3.
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Figure 14. The concept of binocular vision and eye PSFs in phase space.

6. Conclusions

We provided a motivation of phase space analysis for DH and discussed aspects of it on individual
PSFs. Thereafter, visually interpretable PSRs were discussed where we discouraged the use of the
WV PSR due to the rise of cross-terms and of the spectrogram due to low-resolution for this purpose.
Instead we recommended the S-method. The main part of the paper was subsequently devoted to
discussing various applications of visual phase space analysis by applying the S-method to DH for the
first time. In conclusion of our work, we can state that visually interpretable PSRs allow to: analyze the
composition of complicated scenes without a-priori information; optimize the bandwidth usage of any
DH processing chain, through analysis of the resulting DH; estimate coarsely the depth and position
of objects in scene space; analyze numerical artifacts or the effects of operations such as quantization
or compression; track the most important optical or scene manipulations directly in phase space.
We also briefly outlined how visual understanding gained through PSRs, can be used to segment and
motion compensate multi-object holograms or aid quality assessment of DH. Through the abstraction
that PSRs provide, they have great potential in growing the understanding of specific holograms or
holographic setups.

Author Contributions: Conceptualization, T.B. and T.K.; formal analysis, T.B; methodology, T.B.; software,
T.B.; validation, T.B., T.K., and P.S.; data curation, T.B. and T.K; writing—original draft preparation, T.B.;



Appl. Sci. 2020, 10, 4766 23 of 27

writing—review and editing, T.B., T.K., and P.S.; visualization, T.B.; supervision, T.K.; project administration, P.S.;
funding acquisition, P.S. All authors have read and agreed to the published version of the manuscript.

Funding: The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant Agreement Nr. 617779
(INTERFERE).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DH Digital holography / digital hologram
H.265/HEVC High Efficiency Video Coding (name of a video compression standard)
PSF point-spread function
SBP space-bandwidth product
SLM spatial light modulator
STFT short-term Fourier transform
PSR phase space representation / time-frequency / space-spatial frequency representation
WV Wigner–Ville

Appendix A. Estimating Space-Frequency Bandwidth Utilization

In order to estimate scene complexity with Equation (16), one needs to give a numerical
estimator for SPBH. Two approaches come to mind. First, one can follow the visual approach
and binarize the phase space signal using a small ε > 0, evaluating area larger than the threshold.
This approach is robust in the sense that, the area will vary only by a margin, due to resampling,
for operations such as scene space rotations, translations (provided unitary propagations are used),
superposition/interference, de-/magnification, changes to the surface roughness, and perspective
projection. The downside is, that the approach is sensitive to the dynamic range of H and hence during
comparisons of holograms, their dynamic range needs to be normalized. The method is specific to the
chosen parameters of the PSR, as well as the value of ε. Results are not transferable otherwise.

A second approach foresees the calculation of the Shannon entropy of a spectrogram or the
S-method [63], which remains signal scale invariant as long all PSR parameters are kept fixed. For
some non-stationary signals one might consider also the Rényi entropy paired with any PSR from
Cohen’s class [64]. At least in the case of the WV PSR, the Rényi entropy might not exist for arbitrary
DHs and might remain too sensitive to phase differences of neighboring PSF or resampling artifacts.

Appendix B. Estimating Depth through Linear Curve Fitting—An Explicit Example

We will demonstrate the depth estimation of the scene center on the example of Figure 9c using
1D phase space analysis and linear curve fitting. Since we evaluated the PSR on a horizontal 1D
cross-section of the hologram, we will utilize the ξ, fξ domain for our estimation. For convenience, we
restate all parameters in use. The square hologram of size N = 8192, had a pixel pitch of p = 1 µm,
and was recorded with λ = 532 nm light.

The S-method was evaluated with a spatial Hann window w of length M = 256, of maximal
overlap of 255 px, and a frequency filter window v of length L = 5, which was defined in Fourier
space as a Hann window. The resulting phase space image was of size F× S, thus allowing to resolve
F = 256 distinct frequency and S = 7937 distinct spatial channels. The origin of pixel coordinates
within the PSR image is chosen to be in the top-left corner.

The scene center is defined by the central ridge of the phase space footprint of the signal.
Using standard signal processing we extract two points on the linear fit that central ridge.
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The obtained points have the following interpolated coordinates (ξ
px
1 , f px

ξ,1) = (1 px, 20.30 px) and

(ξ
px
2 , f px

ξ,2) = (7937 px, 243.77 px). These coordinates are converted to ξ in m and fξ in m−1 via

ξ = g(ξ px) := ξ px Np
Sλ
− Np

2λ
and fξ = h( f px

ξ ) :=
f px
ξ −

F
2

pM
. (A1)

Although the Fresnel number of the hologram at the scene center is ∼2232, the Fresnel
approximation is sufficient to estimate depth, as the pixel pitch is sufficiently large as to induce
a strong band-limitation revealing only the approximately linear part around fξ = 0 of the sigmoid of
the spherical PSF, compare with Figure 3c. As z influences only the slope of the linear instantaneous
frequency function we choose the following ansatz:

−1
λz

!
=

fξ,2 − fξ,1

ξ2 − ξ1
, (A2)

where the left-hand side is obtained by differentiation of Equation (7) after ξ. The right hand side is
the slope of the linear fit in phase space. Combining Equations (A1) and (A2) we can estimate z as

z = − ξ2 − ξ1

λ
(

fξ,2 − fξ,1
) ≈ g

(
ξ

px
2 − ξ

px
1

)
λh
(

f px
ξ,2 − f px

ξ,1

) ≈ 1.48 cm . (A3)

The error of the obtained depth can be estimated using the total differential for our estimator of
z and the standard-deviation of the polynomial fit. Accounting for the width of the spatial window
v, we actually obtain z = 1.48± 0.19 cm which is in good agreement with the correct z = 1.41 cm.
For larger resolutions the error decreases fast. For multi-object holograms the ridge estimates get more
complicated, but holographic scene segmentation [30] prior to the analysis can help. On a final note,
also the lateral position along x of the scene center wrt. the optical axis can be determined with higher

precision via Equation (A1), the linear phase space fit for fξ , and the ansatz fξ
!
= 0. If the same is

repeated for a vertical cross-section through the middle of the hologram, an estimate of the full 3D
position of the center of the object can be obtained.
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