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Abstract: In this paper, the formation tracking problem for heterogeneous multi-agent systems
with loss of multiple communication packets is considered using the iterative learning control (ILC)
method. A dropout compensation ILC method is presented to construct effective distributed iterative
learning protocols. The convergence conditions are given based on the frequency-domain analysis by
using the general Nyquist stability criterion and Greshgorin’s disk theorem. The results show that the
multi-agent system with different packet loss rate can achieve formation tracking without reducing
the convergence speed. Numerical simulation results show the effectiveness of the proposed dropout
compensation ILC method.

Keywords: iterative learning control; multi-agent systems; formation tracking; packet loss; general
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1. Introduction

In recent years, with the rapid development of communication and computing technology,
people pay more and more attention to the control of multi-agent systems [1–3]. “Agent” can be
broadly defined as a computing entity that is adaptive, autonomous, and has a certain life cycle in a
particular environment. Drones, driverless cars, robots, etc., can all be called “Agent”. Apart from
these, single-agent has played an important role in aerospace, military, and real life. Furthermore,
the development of intelligent control, modern communication technologies, artificial intelligence
concepts, etc., as well as people inspired by the phenomenon of animal cluster activity in nature, have
pushed agent control research into a new stage of development.

By working together, multi-agent can accomplish some parallel, complex tasks, more efficiently
than single-agent. For instance, multiple satellites orbiting the Earth to complete designated tasks and
multiple drones can work together to transport goods in disaster relief.

In recent years, many researchers have considered applying iterative learning control (ILC) to
multi-agent systems with repetitive work. ILC is a tracking control method for systems that require
high precision and repeat the same actions. In a study by Ahn and Chen [4], ILC was applied to the
formation control of a multi-agent system for the first time. Since then, more and more researchers have
applied ILC to the practical application of multi-agent system. Ahn, Moore, and Chen [5] proposed an
ILC law to maintain the flight path of satellite formation. Since the satellite rotates the earth periodically,
the position related interference can be considered as the time periodic interference. According to Chen
and Jia [6], multiple robots can guarantee formation using iterative learning. Furthermore, in order to
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ensure the safe running interval of trains, Sun, Hou, and Li [7] studied the corresponding ILC scheme
of multi train cooperation. In studies by Hock and Schoellig [8] and Schoellig and colleagues [9],
a group of four rotor aircrafts kept a given formation and accurately tracked the desired trajectory
with ILC.

However, considering the limited capacity of the communication channel, the actual control design
based on wireless communication is difficult. In addition, various industrial production processes
and equipment are very complex. For these reasons, communication delay, packet loss, quantization
and so on will cause the ILC of multi-agent to not converge [10,11]. There are specific researches
(see [12–17]) on communication delay and quantization, but few on communication packet loss. Zhang
and Li [18] designed an asynchronous event triggering protocol to solve the consistency problem of
multi-agent system in the case of external interference, parameter uncertainty, time-delay, and packet
loss by Σ∆ quantizer. By using the extended Lyapunov–Krasovskii functional, a consistency criterion
in the form of matrix inequality was derived to ensure the consistency of multi-agent system with delay
and packet loss under H1 controller. Firstly, Zhang and Li [19] considered the packet loss problem
in the quantitative ILC of a multi-agent system. Considering the nonlinearity of quantization and
the randomness of packet loss, a method of reducing learning gain to obtain accurate tracking was
proposed. However, the results showed that the convergence rate slows down with the increase of
the packet loss rate. All the results from their study [19] are for homogeneous multi-agent systems
and assume that multiple agents have the same packet loss rate. The packet loss compensation for
heterogeneous multi-agent systems with different packet loss rates is a more challenging problem.

This paper explores the ILC method with packet loss compensation for a heterogeneous multi-agent
system. The question of under what conditions, with the increase of packet loss rate, the convergence
speed of iterative learning algorithm will not slow down is solved. Firstly, the ILC model of a
heterogeneous multi-agent system is established, and then the frequency domain model is obtained
from the time domain model. When different communication packets are lost between agents, the
previous iterative data is used to form the current iterative data. ILC in frequency domain is a
two-dimensional system in which information propagates on two independent axes: frequency axis
and iterative axis. The convergence of ILC is reduced to the convergence of any frequency in the
iterative dimension, which is realized by the transformation of frequency and parameter iteration.
After the exchange of variables and parameters, Z-transform is performed in the iterative domain.
The convergence of the system error is analyzed by using the eigenvalue of the characteristic equation.
Since the characteristic equation is in matrix form, it is difficult to get the eigenvalue of the characteristic
equation. We use the generalized Nyquist criterion and Gershgorin’s disk theorem to analyze the
eigenvalue range of the system and obtain the condition of the system convergence. The simulation
results show that the compensation method proposed in this paper can make the system error
convergence, and the convergence speed will not slow down.

This paper consists of the following parts. In Section 2, an ILC model in frequency domain is
established for heterogeneous multi-agent systems and the control objective for formation tracking
of a multi-agent system is given. A dropout compensation ILC method is proposed in Section 3.
In Section 4, the convergence conditions are analyzed. The results are verified by numerical simulation
in Section 5.

2. Problem Formulation and Preliminaries

2.1. Preliminaries

The interaction topologies in a multi-agent system are modeled by an undirected graph G =

(V,E,A), where V = {v1, . . . , vn} is the set of vertices, E ⊆ V ×V is the set of the edge, and
A = [ai j], ai j ≥ 0 is the weighted adjacency matrix of the graph G. If (vi, v j) ∈ E, ai j = a ji > 0,
otherwise, ai j = a ji = 0. Each edge (vi, v j) represents information that can be transmitted between the
ith agent and the jth agent. In addition, we assume that aii = 0. The neighboring set of agent, vi, is



Appl. Sci. 2020, 10, 4752 3 of 15

Ni =
{
j : (vi, v j) ∈ E

}
. The Laplacian matrix L = [li j] ∈ Rn×n of graph G is denoted as L = D−A,

whereD , diag{d1, · · · , dn}with di =
∑n

j=1 ai j. A path in the undirected graph G is denoted as a finite

sequence
{
vi1 , vi2 , · · · , vi j

}
and (vil , vil+1) ∈ E, l = 1, 2, · · · , j− 1.

2.2. Problem Formulation

2.2.1. Control Objective

Consider the heterogeneous linear SISO (Single Input and Single Output) discrete-time multi-agent
system of n agents with topology graph G. The dynamic of the ith agent is modeled by the following
dynamic system. {

xi,k(t + 1) = Aixi,k(t) + Biui,k(t)
yi,k(t) = Cixi,k(t)

(1)

where i = 1, 2, · · · , n is the index of the ith agent, t = 0, 1, 2, · · · , T is the discrete-time index, and
k = 1, 2, · · · is the index of iteration. xi,k(t) ∈ R is the state of the ith agent in time t and kth iteration.
Similarly, ui,k(t) ∈ R is the control input signal and yi,k(t) ∈ R is the output signal. Multiple agents have
different dynamics which are denoted as Ai, Bi, and Ci. Taking the Z-transformation of Equation (1),
we get

Yi,k(z) =
Ci[BiUi,k(z) + xi,k(0)]

z−Ai
(2)

where z = e jω, ω ∈ [−π,π) with j =
√
−1 and ω is frequency, and xi,k(0) is the initial state of ith agent

in the kth iteration; let Gi(z) =
CiBi
z−Ai

, γi,k(z) =
Ci

z−Ai
xi,k(0), then (2) can be rewritten as

Yi,k(z) = Gi(z)Ui,k(z) + γi,k(z) (3)

The desired formation is defined as the relative state values between agents. The relative state
values could be position, velocity, and so on. The control objective for the multi-agent systems in this
paper is to find an appropriate control input sequence ui,k(t), i = 1, 2, · · · , n, t = 0, 1, 2, · · · , T
such that every agent can move in the desired formation tracking trajectory accurately in the sense of
expectation as the iterative number k tends to infinity. That is, lim

k→∞
yi,k(t) = yd

i (t). yd
i (t) is the desired

output of the ith agent and denoted as

yd
i (t) = r(t) + di(t) (4)

where r(t), t = 0, 1, 2, · · · , T is the desired reference trajectory of multi-agent systems. r(t) can also be
called the desired trajectory of a virtual leader. In practice, not all agents can obtain r(t), only some
of them can. Let Φ = diag

{
ϕ1, ϕ2, · · · ,ϕn

}
denote the reference-accessibility matrix, which is a

diagonal, non-negative, real matrix. If the ith agent can obtain direct information about the r(t),
then ϕi > 0, i = 1, 2, · · · , n; otherwise, ϕi = 0, i = 1, 2, · · · , n. In (4), di(t) is the desired output
deviation from desired reference trajectory of the ith agent. di j(t) = di(t) − d j(t) represents the desired
relative formation between the ith agent and the jth agent. The formation tracking error δi,k(t) is
denoted as δi,k(t) = di(t)− yi,k(t) and the output error of the ith agent in kth iteration can be denoted as

ei,k(t) = r(t) + δi,k(t) (5)

By applying the Z-transform to Equation (5), we get

Ei,k(z) = R(z) + ∆i,k(z) (6)
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If the following condition (7) is met

lim
k→∞

Ei,k(z) = 0 (7)

that is, lim
k→∞

Yi,k(z) = Yd
i (z), the multi-agent systems realize formation tracking control.

2.2.2. Structure of ILC for Networked Multi-Agent Systems

The following ILC law is used to achieve control objectives (7)

ui,k+1(t) = ui,k(t) + Γi


∑
jεNi

ai, j[δi,k(t + 1) − δ j,k(t + 1)] + ϕiei,k(t + 1)

 (8)

where Γi ∈ R is the learning gain for ith agent. The formulation of control input of the ith agent
requires the control input of the last iteration, error, and information of adjacent agents. Due to
the limited bandwidth of communication channel, noise interference, and signal fading, when a
multi-agent transmits information through the wireless network, random packet loss is introduced
into the multi-agent. For the communication graph of multi-agent systems shown in Figure 1, a block
diagram of ILC for multi-agent systems with loss of multiple communication packets is illustrated
in Figure 2. When the ith agent and the jth agent exchange information with each other through the
wireless network, the ith agent receives a signal from the jth agent, which is denoted as

.
δ

i
j,k(t) = ξk,i jδ j,k(t) (9)

where ξk,i j obeys Bernoulli distribution and δ j,k(t) is the formation tracking error of the ith agent.
When the jth agent sends a signal to the ith agent and there is no packet loss in the kth iteration,
let ξk,i j = 1. Otherwise, ξk,i j = 0. Since the ith agent can obtain its own output yi,k(t) and the desired
output deviation di(t) without transmission network, there is no packet loss for the ith agent itself.
That is, δi,k(t + 1) does not have packet loss for the ith agent. It is worth noting that, unlike a previous
study [18], the scenario discussed in this paper is closer to the engineering practice, assuming that the
packet loss rates of communication between agents are different.
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3. Dropout Compensation ILC Method for Multi-Agent Systems with Loss of Multiple
Communication Packets

In this section, firstly, because the iterative data are changing in the iterative domain, the previous
iterative data are used to compensate for the missing data in the iterative process. Secondly, considering
that ILC is a two-dimensional system, the convergence of any frequency in the iterative dimension is
analyzed by variable iteration and parameter iteration. We make the following assumptions:

Assumption 1. The dynamics Gi for each agent is stable, that is, |Ai| < 1, i = 1, 2, · · · , n. Without loss of
generality, the system relative degree is one, that is, Gi , 0.

Remark 1. If an agent’s dynamics Gi is not stable, we can use the local feedback of its output yi to make it stable.

Assumption 2. The initial reset condition satisfies all agents and the desired input for each iteration, that is,
xi,k(0) can be abbreviated to xi(0) and Cixi,k(0) = yd

i (0), k ∈ 1, 2, 3 · · · , i = 1, 2, · · · , n.

Remark 2. Assumption 2 is common in ILC of multi-agent systems (see [13,16,19]). If the initial reset condition
is not met, we can regard it as the problem of robustness to the initial shifts. In our future work, the ILC with
initial-state learning for formation tracking control of multi-agent systems will be explored.

Assumption 3. The graph G of multi-agent system (1) is an undirected graph. In addition, its graph is
connected, that is, there is a path between any two agents so that they can exchange information.

Lemma 1. [20]: If an irreducible matrix M = (ai, j) ∈ Cn×n, n ≥ 1 is weakly generalized diagonally dominant
and at least one of the rows is strictly diagonally dominant, M is nonsingular.

Remark 3. Assumption 3 implies that the (L+ Φ) ∈ Cn×n. In L+ Φ, the magnitude of the diagonal entry is
ϕi +

∑
jεNi

ai, j, i = 1, 2, · · · , n and the sum of the magnitudes of all non-diagonal entries is
∑

jεNi

ai, j, i = 1, 2, · · · , n.

Since ϕi +
∑

jεNi

ai, j ≥
∑

jεNi

ai, j, i = 1, 2, · · · , n and at least one of the rows is satisfied ϕi +
∑

jεNi

ai, j >
∑

jεNi

ai, j,

matrix L+ Φ is nonsingular by Lemma.
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3.1. Dropout Compensate ILC Method

To achieve the control objective (7), we propose the ILC law to compensate the loss of packets.

ui,k+1(t) = ui,k(t) + Γi


∑
jεNi

ai, j[δi,k(t + 1) − δ̃i
j,k(t + 1)] + ϕiei,k(t + 1)

 (10)

When there are packet losses during multiple agents’ communication, we utilize the previous
iterative data to compensate this iterative data. In (10), δ̃ j,k(t + 1) is data which the ith agent received
from the jth agent

δ̃i
j,k(t + 1) = ξk,i jδ j,k(t + 1) + [1− ξk,i j]δ j,k−1(t + 1) (11)

where ξk,i j is mentioned above. In practice, we can utilize a register to store each iterative data. If there
is no packet loss, the next iterative data replace the old data. Otherwise, the old data are retained.

Remark 4. In order to make the multi-agent system closer to the practical engineering applications, ξk,i j could
be different for different agents. That means the multi-agent system is heterogeneous in this paper.

Since ∆i,k(z) = Di(z) −Yi,k(z), (6) can be rewritten as

Ei,k(z) = R(z) + ∆i,k(z) (12)

By combining the Z-transform of (10) with (12), we get

Ui,k+1(z) = Ui,k(z) + zΓi


∑
jεNi

ai, j[Ei,k(z) − Ẽ j,k(z)] + ϕiEi,k(z)

 (13)

where Ẽ j,k(z) = ξk,i jE j,k(z)− (1− ξk,i j)E j,k−1(z). According to Equations (3), (11)–(13) and Assumption 2,
we have

Ei,k+1(z) − Ei,k(z)
= −Yi,k+1(z) + Yi,k(z)

= Gi(z)[Ui,k(z) −Ui,k+1(z)]

= −zGi(z)Γi

 ∑
jεNi

ai, j[Ei,k(z) − Ẽ j,k(z)] + ϕiEi,k(z)


= −zGi(z)Γi

 ∑
jεNi

ai, j[Ei,k(z) − ξk,i jE j,k(z) − (1− ξk,i j)E j,k−1(z)] + ϕiEi,k(z)


(14)

Let Hi(z) = Gi(z)Γi, H(z) = diag
{
H1(z), H2(z) · · ·Hn(z)

}
, Hi(z) ∈ C, H(z) ∈ Cn×n. Let Ek(z) =

[E1,k(z), E2,k(z), · · · , En,k(z)]
T, Ek(z) ∈ Cn×1, then (14) can be rewritten as

Ek+1(z) − Ek(z) = −zH(z)[(Lξ + Φ)Ek(z) −AξEk−1(z)] (15)

where Lξ = [li j,ξ] ∈ Rn×n andAξ = [ai j,ξ] ∈ Rn×n,

li j,ξ =


−ai, jξk,i j, jεNi∑
jεNi

ai, j, i = j

0, others

,

ai j,ξ =

{
ai, j[1− ξk,i j], jεNi

0, others
.

(16)
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The relationship among the (k − 1)th, the kth, and the (k + 1)th system error is shown in (15).
Our goal is to converge the system error when the number of iterations tends to infinity. Thus, (15) will
be further analyzed in the iterative domain.

3.2. Analysis in Iterative Domain

ILC is a method to control systems operating in a repetitive mode over a finite interval with the
requirement that the system accurately follows the desired output trajectory. The same actions are
executed again and again. By using the previously executed information, the tracking accuracy is
improved from repetition to repetition. It has long been recognized that ILC is a two-dimensional (2D)
system in which information travels on two independent axes: the time axis and the iteration axis.
Chow and Fang [21,22] proposed ILC 2D analysis methods for discrete-time and continue-time systems.
After Z-transformation of system dynamics, ILC is considered as a 2D system in frequency domain and
iteration domain in this paper. The following analysis is based on the decomposition of 2D dynamics
into two separate 1D problems. Ek(z) is considered as a 2D function E(k, z). Exchanging variable
frequency and parameter iteration, the convergence of the system is considered as a 1D problem in the
iteration domain. Thus, we exchange variable z and parameter k. Ek(z) can be rewritten as Ez(k), that
is, Ez(k) = [E1,z(k), E2,z(k), · · · , En,z(k)]

T, ξk,i j can be rewritten as ξi j(k). Then, (15) can be rewritten as

Ez(k + 1) − Ez(k) = −zH(z)[(L(k) + Φ)Ez(k) −A(k)Ez(k− 1)] (17)

where L(k) = [li j(k)] ∈ Rn×n andA(k) = [ai j(k)] ∈ Rn×n,

li j(k) =


−ai, jξi j(k), jεNi∑

jεNi

ai, j, i = j

0, others

,

ai j(k) =
{

ai, j[1− ξi j(k)], jεNi
0, others

.

(18)

Take Z-transformation for (17)
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where 𝑃 , = 2 − 𝑄 ,𝑃 , = −16(1 − 𝐴 ) + 4(1 − 𝐴 )(3 − 𝐴 )𝑄 + (𝐴 − 2)𝑄 ,𝑃 , = 2(1 − 𝐴 ) − (1 − 𝐴 )𝑄 ,𝑃 , = −4(1 − 𝐴 ) + 2(1 − 𝐴 )(3 − 𝐴 )𝑄 + (𝐴 − 2)𝑄 ,𝑃 , = 4(1 − 𝐴 ) − 4(1 − 𝐴 )𝑄 + 𝑆 ,𝑄 = 𝛤 𝐵 𝐶 (𝐾 + 𝜑 ),𝑆 = (𝛤𝐵 𝐶 ) (2𝐾 𝜑 + 𝜑 ),𝐾 = 𝑎 ,∈ .
 (24) 

then the formation tracking objective (7) is achieved. 

)] ∈ Rn×n,
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Take Z-transformation for (17) 𝕫𝔼 (𝕫) − 𝔼 (𝕫) = −𝑧𝐻(𝑧)[(ℒ(𝕫) + Φ)𝔼 (𝕫) − 𝕫 𝒜(𝕫)𝔼 (𝕫)  (19) 
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𝑙 (𝕫) = ⎩⎪⎨
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From Equation (21), we can obtain characteristic equation of the system in iterative domain. In 
the next section, the convergence of the learning system is discussed based on the characteristic 
equation. 

4. Convergence Analysis 

As we know, when we say that an iterative learning algorithm converges, it means that the 
system error trends to zero as the number of iterations approaches infinity. For the proposed dropout 
compensation ILC method, we will analyze the convergence of formation tracking for the multi-agent 
systems in this section. 
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applied. Given that any one of the following conditions is satisfied for all 𝑖 = 1,2, ⋯ , 𝑛, 1. (1 > 𝐴 > 0) ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ,2. (−1 < 𝐴 < 0) ∧ 𝑃 , > 0 ∧ 𝑃 , < 0 ∧ 𝑃 , > 0 ∧ 𝑃 , < 0 ∧ 𝑃 , > 0 ,  (23) 

where 𝑃 , = 2 − 𝑄 ,𝑃 , = −16(1 − 𝐴 ) + 4(1 − 𝐴 )(3 − 𝐴 )𝑄 + (𝐴 − 2)𝑄 ,𝑃 , = 2(1 − 𝐴 ) − (1 − 𝐴 )𝑄 ,𝑃 , = −4(1 − 𝐴 ) + 2(1 − 𝐴 )(3 − 𝐴 )𝑄 + (𝐴 − 2)𝑄 ,𝑃 , = 4(1 − 𝐴 ) − 4(1 − 𝐴 )𝑄 + 𝑆 ,𝑄 = 𝛤 𝐵 𝐶 (𝐾 + 𝜑 ),𝑆 = (𝛤𝐵 𝐶 ) (2𝐾 𝜑 + 𝜑 ),𝐾 = 𝑎 ,∈ .
 (24) 

then the formation tracking objective (7) is achieved. 
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⎪⎧−𝑎 , 𝕫 𝕫ξ (𝕫) + 1 − ξ (𝕫) , 𝑗𝜖𝑁𝑎 , , 𝑖 = 𝑗0, 𝑜𝑡ℎ𝑒𝑟𝑠 (22) 

From Equation (21), we can obtain characteristic equation of the system in iterative domain. In 
the next section, the convergence of the learning system is discussed based on the characteristic 
equation. 

4. Convergence Analysis 

As we know, when we say that an iterative learning algorithm converges, it means that the 
system error trends to zero as the number of iterations approaches infinity. For the proposed dropout 
compensation ILC method, we will analyze the convergence of formation tracking for the multi-agent 
systems in this section. 

Theorem 1. Consider the multi-agent system (1), let Assumptions 1–3 hold and the learning law (10) be 
applied. Given that any one of the following conditions is satisfied for all 𝑖 = 1,2, ⋯ , 𝑛, 1. (1 > 𝐴 > 0) ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ,2. (−1 < 𝐴 < 0) ∧ 𝑃 , > 0 ∧ 𝑃 , < 0 ∧ 𝑃 , > 0 ∧ 𝑃 , < 0 ∧ 𝑃 , > 0 ,  (23) 

where 𝑃 , = 2 − 𝑄 ,𝑃 , = −16(1 − 𝐴 ) + 4(1 − 𝐴 )(3 − 𝐴 )𝑄 + (𝐴 − 2)𝑄 ,𝑃 , = 2(1 − 𝐴 ) − (1 − 𝐴 )𝑄 ,𝑃 , = −4(1 − 𝐴 ) + 2(1 − 𝐴 )(3 − 𝐴 )𝑄 + (𝐴 − 2)𝑄 ,𝑃 , = 4(1 − 𝐴 ) − 4(1 − 𝐴 )𝑄 + 𝑆 ,𝑄 = 𝛤 𝐵 𝐶 (𝐾 + 𝜑 ),𝑆 = (𝛤𝐵 𝐶 ) (2𝐾 𝜑 + 𝜑 ),𝐾 = 𝑎 ,∈ .
 (24) 

then the formation tracking objective (7) is achieved. 

), jεNi∑
jεNi

ai, j, i = j

0, others

,

ai j(
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⎪⎧−𝑎 , 𝕫 𝕫ξ (𝕫) + 1 − ξ (𝕫) , 𝑗𝜖𝑁𝑎 , , 𝑖 = 𝑗0, 𝑜𝑡ℎ𝑒𝑟𝑠 (22) 

From Equation (21), we can obtain characteristic equation of the system in iterative domain. In 
the next section, the convergence of the learning system is discussed based on the characteristic 
equation. 

4. Convergence Analysis 

As we know, when we say that an iterative learning algorithm converges, it means that the 
system error trends to zero as the number of iterations approaches infinity. For the proposed dropout 
compensation ILC method, we will analyze the convergence of formation tracking for the multi-agent 
systems in this section. 

Theorem 1. Consider the multi-agent system (1), let Assumptions 1–3 hold and the learning law (10) be 
applied. Given that any one of the following conditions is satisfied for all 𝑖 = 1,2, ⋯ , 𝑛, 1. (1 > 𝐴 > 0) ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ,2. (−1 < 𝐴 < 0) ∧ 𝑃 , > 0 ∧ 𝑃 , < 0 ∧ 𝑃 , > 0 ∧ 𝑃 , < 0 ∧ 𝑃 , > 0 ,  (23) 
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 (24) 

then the formation tracking objective (7) is achieved. 

) =

{
ai, j[1− ξi j(
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Take Z-transformation for (17) 𝕫𝔼 (𝕫) − 𝔼 (𝕫) = −𝑧𝐻(𝑧)[(ℒ(𝕫) + Φ)𝔼 (𝕫) − 𝕫 𝒜(𝕫)𝔼 (𝕫)  (19) 

where ℒ(𝕫) = 𝑙 (𝕫) ∈ ℝ ×  and 𝒜(𝕫) = 𝑎 (𝕫) ∈ ℝ × , 

𝑙 (𝕫) = ⎩⎪⎨
⎪⎧−𝑎 , ξ (𝕫), 𝑗𝜖𝑁𝑎 , , 𝑖 = 𝑗0, 𝑜𝑡ℎ𝑒𝑟𝑠 ,

𝑎 (𝕫) = 𝑎 , 1 − ξ (𝕫) , 𝑗𝜖𝑁0, 𝑜𝑡ℎ𝑒𝑟𝑠 .  (20) 

(19) leads to {(𝕫 − 1)𝐼 + 𝑧𝐻(𝑧)[ℒ (𝕫) + Φ }𝔼 (𝕫) = 0 (21) 

where ℒ (𝕫) = 𝑙 (𝕫) ∈ ℝ × , 

𝑙 (𝕫) = ⎩⎪⎨
⎪⎧−𝑎 , 𝕫 𝕫ξ (𝕫) + 1 − ξ (𝕫) , 𝑗𝜖𝑁𝑎 , , 𝑖 = 𝑗0, 𝑜𝑡ℎ𝑒𝑟𝑠 (22) 

From Equation (21), we can obtain characteristic equation of the system in iterative domain. In 
the next section, the convergence of the learning system is discussed based on the characteristic 
equation. 

4. Convergence Analysis 

As we know, when we say that an iterative learning algorithm converges, it means that the 
system error trends to zero as the number of iterations approaches infinity. For the proposed dropout 
compensation ILC method, we will analyze the convergence of formation tracking for the multi-agent 
systems in this section. 

Theorem 1. Consider the multi-agent system (1), let Assumptions 1–3 hold and the learning law (10) be 
applied. Given that any one of the following conditions is satisfied for all 𝑖 = 1,2, ⋯ , 𝑛, 1. (1 > 𝐴 > 0) ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ,2. (−1 < 𝐴 < 0) ∧ 𝑃 , > 0 ∧ 𝑃 , < 0 ∧ 𝑃 , > 0 ∧ 𝑃 , < 0 ∧ 𝑃 , > 0 ,  (23) 

where 𝑃 , = 2 − 𝑄 ,𝑃 , = −16(1 − 𝐴 ) + 4(1 − 𝐴 )(3 − 𝐴 )𝑄 + (𝐴 − 2)𝑄 ,𝑃 , = 2(1 − 𝐴 ) − (1 − 𝐴 )𝑄 ,𝑃 , = −4(1 − 𝐴 ) + 2(1 − 𝐴 )(3 − 𝐴 )𝑄 + (𝐴 − 2)𝑄 ,𝑃 , = 4(1 − 𝐴 ) − 4(1 − 𝐴 )𝑄 + 𝑆 ,𝑄 = 𝛤 𝐵 𝐶 (𝐾 + 𝜑 ),𝑆 = (𝛤𝐵 𝐶 ) (2𝐾 𝜑 + 𝜑 ),𝐾 = 𝑎 ,∈ .
 (24) 

then the formation tracking objective (7) is achieved. 

)], jεNi
0, others

.

(20)

(19) leads to {
(
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⎪⎧−𝑎 , 𝕫 𝕫ξ (𝕫) + 1 − ξ (𝕫) , 𝑗𝜖𝑁𝑎 , , 𝑖 = 𝑗0, 𝑜𝑡ℎ𝑒𝑟𝑠 (22) 

From Equation (21), we can obtain characteristic equation of the system in iterative domain. In 
the next section, the convergence of the learning system is discussed based on the characteristic 
equation. 

4. Convergence Analysis 

As we know, when we say that an iterative learning algorithm converges, it means that the 
system error trends to zero as the number of iterations approaches infinity. For the proposed dropout 
compensation ILC method, we will analyze the convergence of formation tracking for the multi-agent 
systems in this section. 

Theorem 1. Consider the multi-agent system (1), let Assumptions 1–3 hold and the learning law (10) be 
applied. Given that any one of the following conditions is satisfied for all 𝑖 = 1,2, ⋯ , 𝑛, 1. (1 > 𝐴 > 0) ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ,2. (−1 < 𝐴 < 0) ∧ 𝑃 , > 0 ∧ 𝑃 , < 0 ∧ 𝑃 , > 0 ∧ 𝑃 , < 0 ∧ 𝑃 , > 0 ,  (23) 
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 (24) 

then the formation tracking objective (7) is achieved. 

− 1)I + zH(z)[L′(

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 15 

𝑙 (𝑘) = ⎩⎪⎨
⎪⎧−𝑎 , ξ (𝑘), 𝑗𝜖𝑁𝑎 , , 𝑖 = 𝑗0, 𝑜𝑡ℎ𝑒𝑟𝑠 ,

𝑎 (𝑘) = 𝑎 , 1 − ξ (𝑘) , 𝑗𝜖𝑁0, 𝑜𝑡ℎ𝑒𝑟𝑠 .  (18) 

Take Z-transformation for (17) 𝕫𝔼 (𝕫) − 𝔼 (𝕫) = −𝑧𝐻(𝑧)[(ℒ(𝕫) + Φ)𝔼 (𝕫) − 𝕫 𝒜(𝕫)𝔼 (𝕫)  (19) 

where ℒ(𝕫) = 𝑙 (𝕫) ∈ ℝ ×  and 𝒜(𝕫) = 𝑎 (𝕫) ∈ ℝ × , 
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(19) leads to {(𝕫 − 1)𝐼 + 𝑧𝐻(𝑧)[ℒ (𝕫) + Φ }𝔼 (𝕫) = 0 (21) 

where ℒ (𝕫) = 𝑙 (𝕫) ∈ ℝ × , 

𝑙 (𝕫) = ⎩⎪⎨
⎪⎧−𝑎 , 𝕫 𝕫ξ (𝕫) + 1 − ξ (𝕫) , 𝑗𝜖𝑁𝑎 , , 𝑖 = 𝑗0, 𝑜𝑡ℎ𝑒𝑟𝑠 (22) 

From Equation (21), we can obtain characteristic equation of the system in iterative domain. In 
the next section, the convergence of the learning system is discussed based on the characteristic 
equation. 

4. Convergence Analysis 

As we know, when we say that an iterative learning algorithm converges, it means that the 
system error trends to zero as the number of iterations approaches infinity. For the proposed dropout 
compensation ILC method, we will analyze the convergence of formation tracking for the multi-agent 
systems in this section. 

Theorem 1. Consider the multi-agent system (1), let Assumptions 1–3 hold and the learning law (10) be 
applied. Given that any one of the following conditions is satisfied for all 𝑖 = 1,2, ⋯ , 𝑛, 1. (1 > 𝐴 > 0) ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ,2. (−1 < 𝐴 < 0) ∧ 𝑃 , > 0 ∧ 𝑃 , < 0 ∧ 𝑃 , > 0 ∧ 𝑃 , < 0 ∧ 𝑃 , > 0 ,  (23) 

where 𝑃 , = 2 − 𝑄 ,𝑃 , = −16(1 − 𝐴 ) + 4(1 − 𝐴 )(3 − 𝐴 )𝑄 + (𝐴 − 2)𝑄 ,𝑃 , = 2(1 − 𝐴 ) − (1 − 𝐴 )𝑄 ,𝑃 , = −4(1 − 𝐴 ) + 2(1 − 𝐴 )(3 − 𝐴 )𝑄 + (𝐴 − 2)𝑄 ,𝑃 , = 4(1 − 𝐴 ) − 4(1 − 𝐴 )𝑄 + 𝑆 ,𝑄 = 𝛤 𝐵 𝐶 (𝐾 + 𝜑 ),𝑆 = (𝛤𝐵 𝐶 ) (2𝐾 𝜑 + 𝜑 ),𝐾 = 𝑎 ,∈ .
 (24) 

then the formation tracking objective (7) is achieved. 

) + Φ]
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ai, j, i = j

0, others

(22)
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From Equation (21), we can obtain characteristic equation of the system in iterative domain. In the
next section, the convergence of the learning system is discussed based on the characteristic equation.

4. Convergence Analysis

As we know, when we say that an iterative learning algorithm converges, it means that the
system error trends to zero as the number of iterations approaches infinity. For the proposed dropout
compensation ILC method, we will analyze the convergence of formation tracking for the multi-agent
systems in this section.

Theorem 1. Consider the multi-agent system (1), let Assumptions 1–3 hold and the learning law (10) be applied.
Given that any one of the following conditions is satisfied for all i = 1, 2, · · · , n,

1. (1 > Ai > 0)∧ (Pi,1 > 0)∧ (Pi,2 > 0)∧ (Pi,3 > 0)∧ (Pi,4 > 0)∧ (Pi,5 > 0),
2. (−1 < Ai < 0)∧ (Pi,1 > 0)∧ (Pi,2 < 0)∧ (Pi,3 > 0)∧ (Pi,4 < 0)∧ (Pi,5 > 0),

(23)

where
Pi,1 = 2−Qi,

Pi,2 = −16(1−Ai)
2 + 4(1−Ai)(3−Ai)Qi + (Ai − 2)Qi

2,
Pi,3 = 2(1−Ai)

2
− (1−Ai)Qi,

Pi,4 = −4(1−Ai)
2 + 2(1−Ai)(3−Ai)Qi + (Ai − 2)Qi

2,
Pi,5 = 4(1−Ai)

2
− 4(1−Ai)Qi + Si,

Qi = ΓiBiCi(Ki + ϕi),
Si = (ΓiBiCi)

2(2Kiϕi + ϕi
2),

Ki =
∑

j∈Ni

ai, j.

(24)

then the formation tracking objective (7) is achieved.

Proof. Let S(
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−1 , based on the general Nyquist stability criterion [23], the modules of
all roots of (25) are smaller than units, if the eigenloci λ[F(ω, β)] of

F(ω, β) =
e jβH(e jβ)[L(e jω) + Φ]

e jω − 1
(26)

does not enclose the point (−1, j0) for β ∈ [−π,π), ω ∈ [−π,π), and ω , 0. Based on Greshgorin’s disk
theorem, we have λ[F(ω, β)] ∈ Un

i=1Fi for all β ∈ [−π,π), ω ∈ [−π,π), and ω , 0, where

Fi = {ς : ς ∈ C, | ς−
e jβHi(e jβ)(

∑
j∈Ni

ai, j+ϕi)

e jω−1

∣∣∣∣∣
≤

∑
j∈Ni

∣∣∣∣∣ ai, je jβHi(e jβ)[e jωξi j(e jω)+1−ξi j(e jω)]

e jω(e jω−1)

∣∣∣∣∣
 (27)
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Since ξi j(e jω) can only be 0 or 1, e jωξi j(e jω) + 1− ξi j(e jω) is 1 or e jω, respectively. Taking Hi(e jβ) as
ΓiBiCi
(e jβ−Ai)

, we can rewrite (27) as

Fi =

{
ς : ς ∈ C,

∣∣∣∣∣∣ς− e jβΓiBiCi(Ki + ϕi)

(e jω − 1)(e jβ −Ai)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ KiΓiBiCi

(e jω − 1)(e jβ −Ai)

∣∣∣∣∣∣
}

(28)

So the eigenloci λ[F(ω, β)] does not enclose the point (−1, j0) for β ∈ [−π,π), ω ∈ [−π,π), and
ω , 0 when the point (−a, j0)with a ≥ 1 is not in the disc Fi for all i = 1, 2, · · · , n, β ∈ [−π,π),ω ∈ [−π,π),

and ω , 0. That is,
∣∣∣∣a + e jβΓiBiCi(Ki + ϕi)[(e jω

− 1)(e jβ
−Ai)]

−1
∣∣∣∣ > ∣∣∣∣KiΓiBiCi[(e jω

− 1)(e jβ
−Ai)]

−1
∣∣∣∣ for

all i = 1, 2, · · · , n, β ∈ [−π,π), ω ∈ [−π,π), and ω , 0, when a ≥ 1. We denote fi(a) as

fi(a) =
∣∣∣a(e jω

− 1)(e jβ
−Ai) + e jβΓiBiCi(Ki + ϕi)

∣∣∣2 (29)

Note that
∣∣∣∣∣a + e jβΓiBiCi(Ki+ϕi)

(e jω−1)(e jβ−Ai)

∣∣∣∣∣2 − ∣∣∣∣ KiΓiBiCi
(e jω−1)(e jβ−Ai)

∣∣∣∣2 =
∣∣∣∣ 1
(e jω−1)(e jβ−Ai)

∣∣∣∣2 fi(a) for all a ≥ 1, β ∈ [−π,π),

ω ∈ [−π,π), and ω , 0. So,
∣∣∣∣∣a + e jβΓiBiCi(Ki+ϕi)

(e jω−1)(e jβ−Ai)

∣∣∣∣∣2 − ∣∣∣∣ KiΓiBiCi
(e jω−1)(e jβ−Ai)

∣∣∣∣2 > 0 as long as fi(a) > 0 for all a ≥ 1,

β ∈ [−π,π), ω ∈ [−π,π), and ω , 0. Further, we can show that

fi(a) = 2(1− cosω)(1 + A2
i − 2Ai cos β)a2

+2aΓiBiCi(Ki + ϕi)[cosω− 1−Ai cos (ω− β) + Ai cos (β)] + (ΓiBiCi)
2(2Kiϕi + ϕ2

i ).
(30)

Using the conditions of Theorem 1, we can prove fi(a) > 0 for all a ≥ 1, β ∈ [−π,π), ω ∈ [−π,π),
and ω , 0 (see Appendix of [17]). Then the eigenloci of λ[F(ω, β)] for all β ∈ [−π,π), ω ∈ [−π,π), and
ω , 0 does not enclose the point (−1, j0). The modules of all roots of (25) are smaller than units. That is,
the system achieves a consensus asymptotically.

Multiply
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{

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 15 

𝑙 (𝑘) = ⎩⎪⎨
⎪⎧−𝑎 , ξ (𝑘), 𝑗𝜖𝑁𝑎 , , 𝑖 = 𝑗0, 𝑜𝑡ℎ𝑒𝑟𝑠 ,

𝑎 (𝑘) = 𝑎 , 1 − ξ (𝑘) , 𝑗𝜖𝑁0, 𝑜𝑡ℎ𝑒𝑟𝑠 .  (18) 

Take Z-transformation for (17) 𝕫𝔼 (𝕫) − 𝔼 (𝕫) = −𝑧𝐻(𝑧)[(ℒ(𝕫) + Φ)𝔼 (𝕫) − 𝕫 𝒜(𝕫)𝔼 (𝕫)  (19) 

where ℒ(𝕫) = 𝑙 (𝕫) ∈ ℝ ×  and 𝒜(𝕫) = 𝑎 (𝕫) ∈ ℝ × , 

𝑙 (𝕫) = ⎩⎪⎨
⎪⎧−𝑎 , ξ (𝕫), 𝑗𝜖𝑁𝑎 , , 𝑖 = 𝑗0, 𝑜𝑡ℎ𝑒𝑟𝑠 ,

𝑎 (𝕫) = 𝑎 , 1 − ξ (𝕫) , 𝑗𝜖𝑁0, 𝑜𝑡ℎ𝑒𝑟𝑠 .  (20) 

(19) leads to {(𝕫 − 1)𝐼 + 𝑧𝐻(𝑧)[ℒ (𝕫) + Φ }𝔼 (𝕫) = 0 (21) 

where ℒ (𝕫) = 𝑙 (𝕫) ∈ ℝ × , 

𝑙 (𝕫) = ⎩⎪⎨
⎪⎧−𝑎 , 𝕫 𝕫ξ (𝕫) + 1 − ξ (𝕫) , 𝑗𝜖𝑁𝑎 , , 𝑖 = 𝑗0, 𝑜𝑡ℎ𝑒𝑟𝑠 (22) 

From Equation (21), we can obtain characteristic equation of the system in iterative domain. In 
the next section, the convergence of the learning system is discussed based on the characteristic 
equation. 

4. Convergence Analysis 

As we know, when we say that an iterative learning algorithm converges, it means that the 
system error trends to zero as the number of iterations approaches infinity. For the proposed dropout 
compensation ILC method, we will analyze the convergence of formation tracking for the multi-agent 
systems in this section. 

Theorem 1. Consider the multi-agent system (1), let Assumptions 1–3 hold and the learning law (10) be 
applied. Given that any one of the following conditions is satisfied for all 𝑖 = 1,2, ⋯ , 𝑛, 1. (1 > 𝐴 > 0) ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ∧ 𝑃 , > 0 ,2. (−1 < 𝐴 < 0) ∧ 𝑃 , > 0 ∧ 𝑃 , < 0 ∧ 𝑃 , > 0 ∧ 𝑃 , < 0 ∧ 𝑃 , > 0 ,  (23) 

where 𝑃 , = 2 − 𝑄 ,𝑃 , = −16(1 − 𝐴 ) + 4(1 − 𝐴 )(3 − 𝐴 )𝑄 + (𝐴 − 2)𝑄 ,𝑃 , = 2(1 − 𝐴 ) − (1 − 𝐴 )𝑄 ,𝑃 , = −4(1 − 𝐴 ) + 2(1 − 𝐴 )(3 − 𝐴 )𝑄 + (𝐴 − 2)𝑄 ,𝑃 , = 4(1 − 𝐴 ) − 4(1 − 𝐴 )𝑄 + 𝑆 ,𝑄 = 𝛤 𝐵 𝐶 (𝐾 + 𝜑 ),𝑆 = (𝛤𝐵 𝐶 ) (2𝐾 𝜑 + 𝜑 ),𝐾 = 𝑎 ,∈ .
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) = 0 (31)

According to the final value theorem, we get{
zH(z)[L+ Φ]

}
Ez(∞) = 0 (32)

As the previous certificate, det
{
zH(z)[L+ Φ]

}
, 0. Thus, rank

{
zH(z)[L+ Φ]

}
= n. Based on

Sylvester inequality, we get rank
{
zH(z)[L+ Φ]

}
+ rank(Ez(∞)) ≤ n. Thus rank[Ez(∞)] = 0 and the

final value of Ez(k) is 0n. Theorem 1 is thus proved.
When considering random communication packet dropout, the ILC algorithm can converge using

the compensation method we proposed. When considering the random packet loss, the ILC algorithm
can use this proposed compensation method to converge. Theorem 1 gives the convergence condition
of learning gain design and proves that the convergence condition is independent of communication
packet loss. According to the final value theorem, the error of formation tracking converges to zero as
the number of iterations goes to infinity.

5. Simulation

Firstly, consider the multi-agent system in Section 2.2.1. and let Assumptions 1–3 hold. Next,
the learning law (10) is applied and the learning gains satisfy the condition (23). The results of
numerical simulations are discussed in this section.

In order to illustrate the effectiveness of the proposed dropout compensation ILC method, we
considered a heterogeneous multi-agent system consisting of four agents in the undirected graph as
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shown in Figure 3. It can be seen that the graph is a connected graph and satisfies Assumption 3.
Only the second agent and the third agent can obtain the desired reference trajectory.
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The Laplacian matrix L of graph G and the reference-accessibility matrix Φ were

L =


4 −1.7 −2.3 0
−1.7 1.7 0 0
−2.3

0
0
0

3.8
−1.5

−1.5
1.5

,

Φ =


0 0 0 0
0 1 0 0
0
0

0
0

1
0

0
0

.
Then it was obtained that the information interaction weight between agents can be obtained,

as shown in Table 1.

Table 1. Interaction weight of agent.

K1 = 4 K2 = 1.7 K3 = 3.8 K4 = 1.5
ϕ1 = 0 ϕ2 = 1 ϕ3 = 1 ϕ4 = 0

For every agent in Figure 3, the system parameters were defined in Table 2.

Table 2. System parameters.

A1 = −0.16 A2 = −0.18 A3 = −0.12 A4 = −0.32
B1 = 0.416 B2 = −0.15 B3 = 0.6 B4 = 0.05
C1 = −0.38 C2 = −0.7 C3 = 0.53 C4 = 0.59

Let Γ1 = −0.813, Γ2 = 1.31, Γ3 = 0.57, and Γ4 = 0.92. Then, we can obtain the parameters in
Table 3 for Theorem 1.

Table 3. Convergence condition parameter.

Q1 = 0.514 Q2 = 0.371 Q3 = 0.870 Q4 = 0.041
S1 = 0 S2 = 0.083 S3 = 0.283 S4 = 0

P1,1 = 1.486 P2,1 = 1.629 P3,1 = 1.130 P4,1 = 1.959
P1,2 = −14.563 P2,2 = −17.005 P3,2 = −9.514 P4,2 = −27.168

P1,3 = 2.095 P2,3 = 2.347 P3,3 = 1.534 P4,3 = 3.431
P1,4 = −2.184 P2,4 = −3.083 P3,4 = −0.542 P4,4 = −6.617
P1,5 = 2.997 P2,5 = 3.900 P3,5 = 1.402 P4,5 = 6.755

Therefore, the learning gains satisfied the second condition in Theorem 1. To perform our
simulation tests, we considered the desired reference trajectory as



Appl. Sci. 2020, 10, 4752 11 of 15

r(t) = 1.5 + sin
πt
25

(33)

and the desired output deviation of each agent as

d1(t) = 0, d2(t) = −1.5− sin πt
25 ,

d3(t) = 1.5 + sin πt
25 , d4(t) = 0.03t.

(34)

Set the initial state of four agents as: x1(0) = −4.277, x2(0) = 0, x3(0) = 6.1333, and x4(0) = 2.806,
which satisfies Assumption 2. When the iteration step is 500 and t = 1, 2, · · · , 150, the trajectory of the
multi-agent system without packet loss is shown as Figure 4. It can be seen that the desired formation
is well achieved to track the desired reference trajectory by the desired output deviation.
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In order to measure the formation accuracy quantitatively, the disagreement among all agents

on their output errors was defined as: error(k) = 1
nT

n∑
i=1

T∑
t=1

∣∣∣ei,k(t)
∣∣∣. When lim

k→∞
error(k) = 0, multi-agent

system achieved formation tacking. Figure 5 shows that formation performance of the system at the
first 500 iterations. Obviously, when the iteration is around 350 the system error can converge to zero
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It is assumed that there is no compensation when considering communication packet loss, that is

ui,k+1(t) = ui,k(t) + Γi


∑
jεNi

ai, j[δi,k(t + 1) − ξk,i jδ j,k(t + 1)] + ϕiei,k(t + 1)

 (35)

where ξk,i j = 1 when there is no packet loss, otherwise, ξk,i j = 0. In Figure 6, it can be seen that the
system error cannot converge to zero in different packet loss rates as iteration increases. When iteration
is 500 and packet dropout rate is 10%, the trajectory of the multi-agent system without packet loss
compensation is shown as Figure 7.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 15 

 
Figure 5. Convergence of formation tracking errors for multi-agent system. 

It is assumed that there is no compensation when considering communication packet loss, that 
is 𝑢 , (𝑡) = 𝑢 , (𝑡) + 𝛤 𝑎 , 𝛿 , (𝑡 + 1) − ξ , 𝛿 , (𝑡 + 1) + 𝜑 𝑒 , (𝑡 + 1)  (35) 𝑤here ξ , = 1 when there is no packet loss, otherwise, ξ , = 0. In Figure 6, it can be seen that the 
system error cannot converge to zero in different packet loss rates as iteration increases. When 
iteration is 500 and packet dropout rate is 10%, the trajectory of the multi-agent system without packet 
loss compensation is shown as Figure 7. 

 

(a)  

 

(b)  
Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 15 

(c)  (d)  

Figure 6. System error of multi-agent system with different packet loss rates: (a) 1% packet dropout, 
(b) 2% packet dropout, (c) 5% packet dropout, (d) 10% packet dropout. 

Figure 7. Trajectory of the multi-agent system without packet loss compensation at iteration 500. 

When there are different packet loss rates in a multi-agent system (Figure 8), it can be seen that 
system errors can converge to zero using (10) to compensate packet loss. The convergence speed
hardly gets slower as the packet loss rates increase, as shown in Figure 8b. In addition, the multi-
agent system error still can converge to zero around the 350th iteration. When iteration is 350 and
packet loss rate is 10%, the trajectory of the multi-agent system with packet loss compensation is 
shown as in Figure 9. 

St
at

us
 v

al
ue

 o
f a

ge
nt

s

Figure 6. System error of multi-agent system with different packet loss rates: (a) 1% packet dropout,
(b) 2% packet dropout, (c) 5% packet dropout, (d) 10% packet dropout.

When there are different packet loss rates in a multi-agent system (Figure 8), it can be seen that
system errors can converge to zero using (10) to compensate packet loss. The convergence speed hardly
gets slower as the packet loss rates increase, as shown in Figure 8b. In addition, the multi-agent system
error still can converge to zero around the 350th iteration. When iteration is 350 and packet loss rate is
10%, the trajectory of the multi-agent system with packet loss compensation is shown as in Figure 9.
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In order to demonstrate the effectiveness of proposed method, the comparison results with the
method of Zhang and Li [19] are shown in Figure 10. If there is data loss, the information for the
current iteration will be discarded without any compensation. Therefore, although the error curve
can converge to 0, the convergence speed gets slower as the packet loss rate increases [19], while the
convergence speed hardly gets slower, as shown in Figure 8b, by the proposed method.
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6. Conclusions

ILC-based formation tracking for heterogeneous multi-agent systems is a challenging problem
since different communication packets are lost between agents. When packet loss occurs at different
rates, the tracking error of ILC does not converge. This paper explores the ILC method of packet
loss compensation for a heterogeneous multi-agent system. Since the iterative data are constantly
changing in the iterative domain, it is effective to use previous data to compensate for the lost data
in this iterative process. Based on the ILC model for multi-agent systems in frequency domain, the
convergence of the system is considered as a 1D problem in the iterative domain, and the convergence
of the system is analyzed. By using the generalized Nyquist criterion and Gershgorin’s disk theorem,
the eigenvalue range of the system characteristic equation is analyzed, and the convergence condition
of the system error is obtained. The dropout compensation ILC method proposed in this paper can not
only make the error converge to zero with the increase of iteration times, but also the maintain the
convergence speed under the packet loss scenario. The numerical simulation results demonstrate the
effectiveness of the proposed method.
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