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Abstract: Active Learning (AL) for Hyperspectral Image Classification (HSIC) has been extensively
studied. However, the traditional AL methods do not consider randomness among the existing
and new samples. Secondly, very limited AL research has been carried out on joint spectral–spatial
information. Thirdly, a minor but still worth mentioning factor is the stopping criteria. Therefore,
this study caters to all these issues using a spatial prior Fuzziness concept coupled with Multinomial
Logistic Regression via a Splitting and Augmented Lagrangian (MLR-LORSAL) classifier with dual
stopping criteria. This work further compares several sample selection methods with the diverse
nature of classifiers i.e., probabilistic and non-probabilistic. The sample selection methods include
Breaking Ties (BT), Mutual Information (MI) and Modified Breaking Ties (MBT). The comparative
classifiers include Support Vector Machine (SVM), Extreme Learning Machine (ELM), K-Nearest
Neighbour (KNN) and Ensemble Learning (EL). The experimental results on three benchmark
hyperspectral datasets reveal that the proposed pipeline significantly increases the classification
accuracy and generalization performance. To further validate the performance, several statistical
tests are also considered such as Precision, Recall and F1-Score.

Keywords: Hyperspectral Image Classification (HSIC); Active Learning (AL); Query Function;
ELM; KNN; SVM; Multinomial Logistic Regression via Splitting and Augmented Lagrangian
(MLR-LORSAL)

1. Introduction

Hyperspectral imaging (HSI) examines the reflection of light of an object across a wide range
of electromagnetic spectra instead of just associating primary colors to a pixel [1]. Light interacting
with a pixel is divided into several bands in order to render complete information about a target [2].
Therefore, HSI has gained significant importance in many applications including. but not limited to,
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chemical imaging [3], agriculture [4], surveillance [5], remote sensing [6], household materials [7],
and environmental sciences [8]. The main challenge of HSI analysis is its high dimensional
characteristic of data due to a large number of bands with significantly high resolution across the
electromagnetic spectrum. Therefore, the classification of HSI data is a complex and challenging
task [9].

Some widely used supervised classification approaches for HSI analysis are Multinomial
Logistic Regression (MLR) [10], Support Vector Machine (SVM) [11], Maximum Likelihood [10,12],
Ensemble Learning (EL) [13,14], Random Forests (RF) [15,16], Deep Learning (DL) [17–19],
Transfer Learning [20,21], k-Nearest Neighbors (KNN) [22] and Extreme Learning Machine (ELM) [23].
The major limitation of supervised HSI classification is the poor performance due to the Hughes
phenomena [24]. It occurs when the ratio of spectral bands is significantly less as compared to the
labeled training samples available in hyperspectral data [25]. The acquisition of most informative
labeled training examples is often an expensive and time-intensive task as it generally requires human
experts or a ground campaign [26].

Limited availability of reliable labeled training examples brings the idea to utilize semi-supervised
learning [27]. The basic concept of such a learning mechanism is that new training examples can be
obtained from the unlabeled data, without considerable time and cost, by utilizing limited available
labeled examples [28,29]. A few examples of such techniques are kernel techniques [30], such as EL
techniques [31,32], Tri-training [33,34] and Graph-based learning [35]. However, the performance
of these techniques is relatively low when combined with the limited availability of reliable labeled
training examples for high dimensional datasets e.g., hyperspectral datasets.

To cope with the aforesaid issues, one of the commonly used semi-supervised approaches is the
expansion of the initial training set by efficiently utilizing unlabeled data. This method is known as
Active Learning (AL) which significantly improves the performance of classification techniques by
adding new examples in the training set for the next cycle of training, unless a stopping criteria is met,
i.e., required classification accuracy. Depending on the criteria of adding new examples to the training
set, AL techniques can be categorized as stream or pool-based and the selection of new examples is
based on ranking scores that are reckoned from measures like representativeness, uncertainty, variance,
inconsistency and error [6].

For instance, uncertainty measures consider the unlabeled examples more important than those
close to the class boundary of the current classification results. Representativeness selects those
unlabeled examples as more significant, which can represent a new group of examples, i.e., a cluster.
Inconsistency assumes the unlabeled samples more useful and has high predictive divergence among
multiple classifiers [36]. However, all these methods have one major limitation which is randomness
among the samples. The new training samples are always selected with certain criteria without
considering whether the selected samples are similar to the previously selected samples or not which
induces the redundancy among the samples. The other main issue with many AL methods is their
stopping criteria which are most certainly based on the accuracy number.

This paper proposed a multi-class non-randomized AL method based on Multinomial Logistic
Regression (MLR)-LORSAL classifier [31,37] in conjunction with fuzziness [6] as sample selection
method whilst exploiting both spatial and spectral information of hyperspectral data. We further
compared the MLR-LORSAL against various well-known classifiers such as; SVM, ELM, KNN and
EL. Each classifier is further evaluated against three benchmark sample selection methods in addition
to fuzziness. These sample selection methods include Breaking Ties (BT) [38], Mutual Information
(MI) [39] and Modified Breaking Ties (MBT) [39]. The motivation of our current work is to investigate
several state-of-the-art sample selection and classification techniques with predefined dual stopping
criteria and to properly generalize them for remotely sensed hyperspectral datasets.

The paper is structured as follows. Section 2 discuss the pipeline proposed in this work. Section 3
presents the experimental process and performance measurement metrics. Section 4 contains the
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information regarding the experimental results and datasets. Finally Section 5 concludes the paper
with possible future directions.

2. Methodology

This work addressed the issue of a small training set while classifying the high-dimensional
multi-class HSI data by introducing a fuzziness MLR-based classifier which actively selects the data
based on two main aspects: first, is the sample’s fuzziness and second is the non-randomized selection
of samples to avoid redundancy among them. Furthermore, we compared it with four benchmark
AL techniques in association with four different classifiers. We evaluated AL techniques on a pool of
diverse samples in each iteration thus minimizing the redundancy among selected samples.

2.1. Hyperspectral Data Formulation

The symbols used in this work has been illustrated in Table 1. Let us assume a Hyperspectral
dataset can be expressed as X = [x1, x2, x3, ..., xL]

T ∈ RL×(M×N) consisting of M × N samples
associated with C classes per band with total L bands, in which each sample is represented as (xi, yj),
where yj is the class label of xi sample. In a nutshell ith sample belongs to jth class.

Table 1. Explanation of used Symbols.

Symbols Explanations

X Hyperspectral Data Cube, where X = [x1, x2, x3, ..., xL]
T ∈ RL×(M×N)

L Number of Bands in Hyperspectral Image Cube.
M× N Number of Samples in each Band of Hyperspectral cube.

C Total Number of Classes in Hyperspectral Cube.
n Total Number of Initial Training Samples.
m Total Number of Initial Test Samples.
h Total Number of Queried Sample
m̂ Number of Samples Selected in each Iteration where m̂� m also n + m̂� m
X Index of Selected Samples.
xi ith Spectral Sample and i = 1, 2, 3, . . . , n.
yj Class label of ith Spectral Sample, where j = 1, 2, 3, . . . , C
XT Training Set consist of n Samples.
XV Initial Test Set consist of m Samples, where n << m and (XT ∩ XV) = ∅
µ Membership Matrix, i.e., output of classifier

uij Membership of ith sample for jth class
F(µij) Fuzziness computed through uij

αj Selected Reference Training Samples
βij Spectral Angular Distance among the New and Existing Training Samples

OA Overall Accuracy
κ Kappa metric

TP True Positive
FP False Positive
TN True Negative
FN False Negative
MI Mutual Information
BT Breaking Ties

MBT Modified Breaking Ties

Furthermore, suppose that n = 50 number of initial labeled training samples (given equal
representation to each class) are chosen from X to form the training set XT = {(xi, yj)} where i =
1, 2, 3, . . . , n and j = 1, 2, 3, . . . , C. The remaining samples make the validation set XV = {(xi, yi)}m

i=1.
It should be noted that n << m, and (XT ∩ XV) = ∅.
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2.2. Multinomial Logistic Regression via Splitting and Augmented Lagrangian (MLR-LORSAL)

An NP classifier modeled using XT is tested on XV , outputs a matrix µ of m× C dimensions
whose entries correspond to NP outputs (i.e., least-square estimation) of a classifier. Let uij represent
the membership of ith sample for jth class. Various methods are proposed for the transformation of
least square estimation into the posteriori probabilities [36,38]. These methods are expensive in terms
of computations due to two main aspects: first, in order to estimate yi, they need to approximate the
posterior distribution in the case of a Bayesian framework. Secondly, they restrict the training output
between 0 and 1. Such methods compute the approximated posterior probabilities in the form of least
squares regression i.e., f (xi, µj) = p(µj, xi) [40]. An alternate to the least squares approach which
outputs the probabilities in [0− 1] range is MLR which is computed as [40,41]:

p(yi)
k = 1|(xi, w) =

exp(wkh(xi))

∑K
k=1 exp(wkh(xi))

(1)

where h(x) = [h1(x), . . . , hL(x)]T , mostly termed as features, is a vector of L fixed functions of the
input, w = [w1, . . . , wL−1]T . Since the density function represented in Equation (1) is independent of
translations of the regressors wL, we take wL = 0. Therefore, the posteriori probabilities are computed
by using LORSAL algorithm as similar to the work [37]. h(xi) = [1, µ(x,x1)

, . . . , µ(x,xL)
], where µ(xi ,xj)

=

µ(xi, xj) are symmetric kernel functions. RBF has been widely used for HSI classification as it improves
the data separability in the transformed space [41,42].

µ(xi, xj) =
−exp(‖xi − xj‖2)

2σ2 (2)

From RBF output, a membership matrix µij is obtained, which must satisfy the properties [6,25]
∑C

j=1 µij = 1 and 0 < ∑N
i=1 µij < 1 where µij ∈ [0, 1] and µij = µj(xi) represents the membership of

sample i for the jth class [25]. If the approximated posterior probability is close to 1, it represents
the true class, whereas wrong class if the probability is close to 0. AL techniques do not need exact
probabilities, but they require a ranking of approximated probabilities which makes it easier to calculate
the fuzziness [6].

The fuzziness F(µij) from the membership matrix µij can be expressed as in Equation (3) and it
should satisfy the properties defined below [6,43].

F(µij) =
−1

m× C

m

∑
i=1

C

∑
j=1

[µij log µij + (1− µij) log(1− µij))] (3)

1. F(µij) = 0 iff µij is a crisp set.
2. F(µij) is maximum if µi = 0.5.
3. If µij << σij then F(µij) >> F(σij) where µij << σij ⇐⇒ min(0.5, µ(i)) ≥ min(0.5, σ(i)) and

min(0.5, µ(i)) ≤ max(0.5, σ(i))
4. F(µij ∪ σij) + F(µij ∩ σij) = F(µij) + F(σij)

where µij and σij are fuzzy sets. We first associate the F(µ) with actual and predicted class labels
and validation set XV . Then this set is sorted in a descending manner according to the F(µ) values.
After that m̂ number of misclassified samples having higher fuzziness (i.e., F(µ) >> 0.7 and m̂� m)
values are heuristically selected. We randomly select a reference training sample (αj) from each class to
compute the spectral angle using a Spectral Angle Mapper, which takes the cos−1 based dot product
among the test samples to a reference sample as follows:

βij =
C

∑
j=1

m̂

∑
i=1

(
cos−1 αj · xij√

α2
j

√
x2

ij

)
(4)
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X = argmax
i∈m̂|XV

(
d(βij)

)
(5)

where X preserve the information from those samples which have maximum distance among the
same class. X denotes the index of the unlabeled sample that will be included in the pool. Please note
that here we used a soft threshing scheme to balance the number of classes in both training and
selected samples. This process picks the samples in a non-randomized way to avoid redundancy
not only among the pool of new samples but also with the samples that are already added to the
training set. We follow the strategy of keeping the pool of m̂ new samples balanced, which gives
equal representation to all classes via softening the thresholds at run time. The complete pipeline is
presented in Algorithm 1.

Algorithm 1: Pipeline of Proposed Algorithm.
Data: XT , XV Training and Test Set, respectively.

1 Initialization: X ; m̂ = number of samples to select; h;
2 while |XT | ≤ Threshold do
3 µij ← Compute the Membership Matrix;
4 F(µij)← Compute the Fuzziness;
5 XH

V ← Associate the Fuzziness, actual and predicted class and spatial information with XV
and sort in descending order;

6 Select m̂ Misclassified Samples from XH
V ;

7 αj ← Pick the Reference Training Samples ;
8 while |X | ≤ h do
9 βij ← Compute the Spectral Angle between reference spectrum and m̂ selected samples;

10 X ← Pick the index of most Diverse Samples which have higher Euclidean distance
based on the Spatial Information.;

11 Repeat until |X | = h;
12 end
13 Pick X samples from XV , add them to XT , and remove from XV ;
14 Repeat until |XT | > Threshold;
15 end

3. Experimental Process

The performance of our proposed pipeline is validated on 3 benchmark HSI datasets that are
publicly available and acquired by two different sensors, i.e., Reflective Optics System Imaging
Spectrometer (ROSIS) and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. These 3
datasets are Salinas, Indian Pines and Pavia University (PU). More information on these datasets can
be found in [9,44].

Furthermore, we evaluated our proposed pipeline against five diverse classifiers which are
Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Ensemble learning (EL) methods i.e.,
Gradient Boost (GB) & Logistic Boost (LB) and Extreme Learning Machine (ELM) [45]. We choose
these classifiers for comparison purposes because they have been broadly studied for HSI classification.
The performance of our proposed pipeline and the aforementioned classifiers is evaluated using two
benchmark metrics: Overall Accuracy (OA) and kappa (κ) coefficient [25]. Furthermore, to check the
statistical significance of our proposed pipeline, several statistical measures are taken into accounts,
such as Precision, Recall and F1-score. All these metrics are computed as follows:

OA =
1
C

C

∑
i=1

TPi (6)
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Precision =
1
C

C

∑
i=1

TPi
TPi + FPi

(7)

Recall =
1
C

C

∑
i=1

TPi
TPi + FNi

(8)

F1− Score =
2× (Recall × Precision)
(Recall + Precision)

(9)

κ =
Po − Pe

1− Pe
(10)

where

Po =
TP + TN

TP + FN + FP + TN
(11)

Pe = PY + PN (12)

PY =
TP + FN

TP + FN + FP + TN
× TP + FN

TP + FN + FP + TN
(13)

PN =
FP + TN

TP + FN + FP + TN
× FN + TN

TP + FN + FP + TN
(14)

where TP, FP, TN and FN are true positive, false positive, true negative and false negative
computed from the confusion matrix, respectively. Moreover, to show that our proposed pipeline
is commensurable, we evaluated it against four well-known sample selection methods: Mutual
Information (MI), Breaking Ties (BT) and Modified Breaking Ties (MBT).

1. Mutual Information (MI): Selects the samples by maximizing the mutual information between
the classifier and class labels and can obtain samples from the complicated region [39].

2. Breaking Ties (BT): Selects the samples by minimizing the distance of the two classes having the
highest posterior probabilities, and can choose samples from the boundary regions [46]. In the
multiclass scenario, BT can be utilized by finding the difference between the first two most
probable classes.

3. Modified Breaking Ties (MBT): Adds more diverse samples as compared to MI and BT. The MBT
algorithm follows two important steps: first, it selects samples from the unlabeled pool with
the same maximum a posteriori (MAP) estimation; and then choose the samples from the most
complicated region [46].

In all experiments, 50 samples were selected from the whole HSI data for the initial training
dataset and in each iteration of AL process, h = 50 samples are actively added to the training dataset.
The process is repeated until we achieve the desired accuracy of ≥85% for at least one classifier or
training set size reaches up to h = 2500 samples.

SVM is evaluated with polynomial kernel function and in the case of ELM, [1–500] hidden neurons
are selected. Similarly, tree-based methods are used to train the ensemble classifiers from a range of
[1–100] trees and kNN parameter k is set to [2–20]. All the parameters are adjusted carefully while
setting up the experiments. All the experiments are carried out on cluster using MATLAB (2017a) on
Intel Core (TM) i7-7700K CPU 2.40 GHz, 1962 MHz, Ubuntu 16.01.5 LTS, CUDA completion tools,
release 7.5, V7.5.17 with 65 GB RAM.
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4. Experimental Datasets and Results

For the purpose of experimental design, we used five-fold-cross-validation to evaluate the
performance of our proposed pipeline. From the results, one can conclude that our proposed approach
significantly enhances the classification performance with comparatively less computational time.

This section enlists the experimental results obtained by several sample selection methods with
various types of classifiers. These classifiers include Support Vector Machine (SVM), k-Nearest
Neighbours (KNN), Ensemble Learning (EL) and Extreme Learning Machine (ELM). The important
parameters for all the experimental classifiers mentioned above are carefully tuned and to avoid bias,
all the experiments are carried out under the same settings that maximize performance.

KNN classifier is tested with Euclidean distance function K = [2:1:20]. The SVM classifier is tested
with the RBF kernel function. EL i.e., both Logistic (LB) and Gentle boost (GB) is trained using tree
template with 100 trees and leaf size “number of rows in training set/10”. ELM classifier is tuned with
[1:1:500] hidden neurons with a sigmoid as an activation function. Here our main aim is to compare
the performance of different classifiers with MLR-LORSAL.

The experiments described below show the κ evaluation for the above-discussed classifiers with a
different number of training samples in each iteration for several HIS datasets. The number of selected
training samples is set as shown in the following figures i.e., initially, 50 samples are used to train the
model and in each iteration, 100 new non-random samples are selected using the proposed strategy.
Based on the experimental results shown in the following figures, MLR-LORSAL classifier performs
better than other state-of-the-art classifiers. From the following results, one can conclude that with a
different number of training samples, there is a significant improvement in classification accuracy.

4.1. Computational Cost

Here, we first enlist the computational time for an MLR-LORSAL classifier for each Query
Function used in this work. One can observe that the computational time is gradually increasing as
the number of training samples increases as shown in Figure 1, however, the trend is quite different
in accuracy which increases exponentially. Prior to the experiments, we performed the necessary
normalization between [0, 1] and all the experiments were carried out on cluster using MATLAB
(2017a) on Intel Core (TM) i7-7700K CPU 2.40 GHz, 1962 MHz, Ubuntu 16.01.5 LTS, CUDA completion
tools, release 7.5, V7.5.17 with 65 GB RAM.
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Figure 1. Computational Time for MLR-LORSAL Classifier for all Query Functions for three different
datasets.
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Figure 1. Computational Time for MLR-LORSAL Classifier for all Query Functions for three
different datasets.

4.2. Experimental Results on Indian Pines Dataset

Indian Pines dataset was collected over northwestern Indiana’s test site, Indian Pines, by AVIRIS
sensor and comprises of 145× 145 pixels and 224 bands in the wavelength range 0.4–2.5 × 10−6 m.
This dataset consists of two-thirds agriculture area and one-third forest or other naturally evergreen
vegetation. A railway line, two dual-lane highways, low-density building and housing and small
roads are also part of this dataset. Furthermore, some corps in the early stages of their growth is also
present with approximately less than 5% of total coverage. The ground truth is comprised of a total of



Appl. Sci. 2020, 10, 4739 8 of 16

16 classes but they all are not mutually exclusive. The number of spectral bands is reduced to 200 from
224, by removing the water absorption bands.

Further details about Indian Pines dataset can be found at [44]. Table 2 and Figure 2
presents the accuracies for different Classifiers as well as with different sample selection methods.
From comparative results, one can see that fuzziness together with MLR-LORSAL classifier works
better as compared to the other sample selection and classification methods. We also presents the
Indiana Pines predicted geographical maps (classification maps) in Figure 3. These geographical
locations of each predicted class label validate the superiority of our proposed pipeline. Figure 3 shows
the complete performance assessment on experimental results with profound improvement. As shown
in the figure, the classification maps generated by adopting the proposed pipeline are less noisy and
more accurate.
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Table 2. 5-fold cross-validation based statistical and accuracies analysis for MLR-LORSAL Classifier
on 5 number of training samples selected with different Sample Selection Methods.

Metric MI BT MBT Fuzziness
Overall Accuracy 0.80±0.17 0.81±0.17 0.77±0.14 0.81±0.14

κ 0.78±0.19 0.79±0.19 0.74±0.16 0.80±0.16
Recall 0.92±0.01 0.81±0.02 0.69±0.03 0.93±0.02

Precision 0.95±0.01 0.80±0.02 0.63±0.03 0.92±0.02
F1-Score 0.94±0.01 0.79±0.01 0.66±0.03 0.92±0.02
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Pavia University dataset is gathered over Pavia in northern Italy through ROSIS optical sensor231

during a flight campaign. It consists of 610× 610 pixels and 103 spectral bands with a spatial resolution232
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Figure 2. Comparative Results for Several Classifiers with respect to the κ accuracy for different number
of training samples ([50:100:2500]) selected in each iteration.

Table 2. five-fold cross-validation based statistical and accuracies analysis for MLR-LORSAL Classifier
with different Sample Selection methods. The highest values are in bold face.

Metric MI BT MBT Fuzziness

Overall Accuracy 0.80 ± 0.17 0.81 ± 0.17 0.77 ± 0.14 0.81 ± 0.14
κ 0.78 ± 0.19 0.79 ± 0.19 0.74 ± 0.16 0.80 ± 0.16

Recall 0.92 ± 0.01 0.81 ± 0.02 0.69 ± 0.03 0.93 ± 0.02
Precision 0.95 ± 0.01 0.80 ± 0.02 0.63 ± 0.03 0.92 ± 0.02
F1-Score 0.94 ± 0.01 0.79 ± 0.01 0.66 ± 0.03 0.92 ± 0.02
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Figure 3. Geographical Locations for Predicted Test Labels of Indian Pines Dataset with respect to the
number of training samples, ranging from (a) 50 samples to (z) 2500 samples. The total number of
samples in the data are 21, 025.
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4.3. Experimental Results on Salinas

The Salinas full scene was gathered over Salinas Valley California, through AVIRIS sensor.
It comprises 512 × 217 pixels per band and a total of 244 bands with a 3.7 m spatial resolution.
It consists of vineyard fields, vegetables and bare soils and contains sixteen classes. Few water
absorption bands (108–112, 154–167 and 224) are removed from the dataset before analysis. Further
details about the dataset can be found at [44].

Further details about Salinas dataset can be found at [44]. Table 3 and Figure 4 presents the
accuracies for different classifiers as well as with different sample selection methods. From comparative
results, one can see that fuzziness together with MLR-LORSAL classifier works better as compared
to the other sample selection and classification methods. We also presents the Salinas predicted
geographical maps (classification maps) in Figure 5. These geographical locations of each predicted
class label validate the superiority of our proposed pipeline. Figure 5 show the complete
performance assessment on experimental results with profound improvement. As shown in the figure,
the classification maps generated by adopting the proposed pipeline are less noisy and more accurate.

Table 3. five-fold cross-validation based statistical and accuracies analysis for MLR-LORSAL Classifier
with different Sample Selection methods. The highest values are in bold face.

Metric MI BT MBT Fuzziness

Overall Accuracy 0.90 ± 0.06 0.91 ± 0.06 0.88 ± 0.05 0.90 ± 0.05
κ 0.88 ± 0.06 0.90 ± 0.06 0.87 ± 0.05 0.88 ± 0.05

Recall 0.94 ± 0.01 0.95 ± 0.01 0.94 ± 0.01 0.94 ± 0.01
Precision 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.93 ± 0.01
F1-Score 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.93 ± 0.01
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Table 3. 5-fold cross-validation based statistical and accuracies analysis for MLR-LORSAL Classifier
on 5 number of training samples selected with different Sample Selection Methods.

Metric MI BT MBT Fuzziness
Overall Accuracy 0.90±0.06 0.91±0.06 0.88±0.05 0.90±0.05

κ 0.88±0.06 0.90±0.06 0.87±0.05 0.88±0.05
Recall 0.94±0.01 0.95±0.01 0.94±0.01 0.94±0.01

Precision 0.94±0.01 0.94±0.01 0.94±0.01 0.93±0.01
F1-Score 0.94±0.01 0.94±0.01 0.94±0.01 0.93±0.01
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Figure 5. Geographical Locations for Predicted Test Labels of Indian Pines Dataset with respect to the
number of training samples, ranging from (a) 50 samples to (z) 2500 samples. The Total Number of
Samples are 111, 104.
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Figure 5. Geographical Locations for Predicted Test Labels of Indian Pines Dataset with respect to the
number of training samples, ranging from (a) 50 samples to (z) 2500 samples. The Total Number of
Samples are 111,104.

4.4. Experimental Results on Pavia University

Pavia University dataset is gathered over Pavia in northern Italy through ROSIS optical sensor
during a flight campaign. It consists of 610× 610 pixels and 103 spectral bands with a spatial resolution
of 1.3 m. Some samples in this dataset provide no information and are removed before analysis.

Further details about Pavia University dataset can be found at [44]. Table 4 and Figure 6
presents the accuracies for different classifiers as well as with different sample selection methods.
From comparative results, one can see that fuzziness together with MLR-LORSAL classifier works
better as compared to the other sample selection and classification methods. We also presents the
Salinas predicted geographical maps (classification maps) in Figure 7. These geographical locations
of each predicted class label validate the superiority of our proposed pipeline. Figure 7 shows the
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complete performance assessment on experimental results with profound improvement. As shown
in the figure, the classification maps generated by adopting the proposed pipeline are less noisy and
more accurate.
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Table 4. 5-fold cross-validation based statistical and accuracies analysis for MLR-LORSAL Classifier
on 5 number of training samples selected from each class.

Metric MI BT MBT Fuzziness
Overall Accuracy 0.85±0.13 0.88±0.13 0.86±0.12 0.87±0.13

κ 0.81±0.16 0.84±0.16 0.82±0.14 0.84±0.15
Recall 0.86±0.02 0.88±0.02 0.88±0.02 0.87±0.02

Precision 0.85±0.03 0.88±0.02 0.86±0.03 0.87±0.03
F1-Score 0.85±0.02 0.87±0.02 0.86±0.02 0.86±0.02

4.5. Comparison with State-of-the-art Deep Networks242

The proposed pipeline has been compared with several state-of-the-art deep models. These243

models include Spectral–Spatial classification of Hyperspectral Imagery with 3D Convolutional Neural244

Network (3D CNN) [46], Multi-scale 3D Deep Convolutional Neural Network for Hyperspectral Image245

Classification (Multi-scale-3D-CNN) [47], and 3D Deep Learning Approach for Remote Sensing Image246

Classification (3D-CNN) [48]. The said models are deployed according to the settings mentioned in247

[18].248

To make a tradeoff among the deep models used in this study, the important parameters are249

tuned as mentioned. Learning rate is set as 0.001, number of epochs 50, relu activation function for250

all convolutional layers and so f tmax for output layer. To reduce the computational load, 20 most251

informative bands were selected using incremental principle component analysis (iPCA), and patch252

size are set to 11× 11× 20. 10% randomly selected training samples are used to train all these deep253

models and for the evaluation purpose, Kappa, Overall Accuracy, Average Accuracy are computed.254

Overall accuracy was computed using the number of correctly classified examples out of the total test255

samples, whereas, the Average accuracy was computed using the average class wise classification256

performance. The Kappa coefficient is known as a statistical test that considered the mutual information257

regarding a strong agreement among classification and ground-truth maps of that particular HSI. The258

detailed experimental results are shown in Table 5. From these results, one can conclude that the259

Figure 6. Comparative Results for Several Classifiers with respect to the κ accuracy for different number
of training samples ([50:100:2500]) selected in each iteration.
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Figure 7. Geographical Locations for Predicted Test Labels of Indian Pines Dataset with respect to the
number of training samples, ranging from (a) 50 samples to (z) 2500 samples. The Total Number of
Samples are 372, 100.

proposed pipeline significantly improves the performance as compared to the state-of-the-art deep260

models which the same number of training samples [18].261

The comparative methods are implemented on an online platform commonly known as Google262

Colab (GC) [49]. GC requires a decent speed of the internet to execute. GC has coupled with Python263

3 notebook with Graphical Processing Unit having 25 Gigabit of random access memory and 358.27264

Gigabit of cloud storage. The training of above mentioned deep models, the initial training/test265

samples are set as 90% test and 10% training ratio. The training samples are further divided into 70%266

and 30% for training and validation purposes [18].267

Table 5. Comparison between Proposed and State-of-the-art Deep Neural Networks.

Dataset 3D CNN [48] 3D CNN [46] Multi-scale-3D-CNN [47] Proposed
OA AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa

Salinas 96.34 94.36 95.93 85.00 89.63 83.20 94.20 96.66 93.61 98.06 98.80 97.85
Indian Pines 80.27 68.32 75.26 82.62 76.51 79.25 81.39 75.22 81.20 97.85 95.32 98.44
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In all the above-shown experiments, the performance of the proposed pipeline is being evaluated269

using a set of experiments i.e., first, we analyze several sample selection methods for MLR-LORSAL270

classifier. Later this work compared several classifiers for the same sample selection methods. In271

all these experiments, the size of the training set is fixed to the maximum of 50 samples randomly272

selected from all the classes while giving equal representation to each class. In each iteration, 100273

new samples are selected based on sample selection method and their spatial locations i.e., the newly274

selected samples should not be spatially close to the previously selected samples. This phenomenon275

significantly helps to limit the redundancy factor among the training samples.276

The experiments are repeated on more complicated and nested region dataset such as Pavia277

University dataset. The number of training samples selected in each iteration is shown in the above278

Figures. Based on the results, one can conclude that the fuzziness based sample selection method is279
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Table 4. five-fold cross-validation based statistical and accuracies analysis for MLR-LORSAL Classifier
with different Sample Selection methods. The highest values are in bold face.

Metric MI BT MBT Fuzziness

Overall Accuracy 0.85 ± 0.13 0.88 ± 0.13 0.86 ± 0.12 0.87 ± 0.13
κ 0.81 ± 0.16 0.84 ± 0.16 0.82 ± 0.14 0.84 ± 0.15

Recall 0.86 ± 0.02 0.88 ± 0.02 0.88 ± 0.02 0.87 ± 0.02
Precision 0.85 ± 0.03 0.88 ± 0.02 0.86 ± 0.03 0.87 ± 0.03
F1-Score 0.85 ± 0.02 0.87 ± 0.02 0.86 ± 0.02 0.86 ± 0.02

4.5. Results Discussion

In all the above-shown experiments, the performance of the proposed pipeline is being evaluated
using a set of experiments i.e., first, we analyze several sample selection methods for MLR-LORSAL
classifier. Later this work compared several classifiers for the same sample selection methods. In all
these experiments, the size of the training set is fixed to the maximum of 50 samples randomly
selected from all the classes while giving equal representation to each class. In each iteration, 100 new
samples are selected based on sample selection method and their spatial locations i.e., the newly
selected samples should not be spatially close to the previously selected samples. This phenomenon
significantly helps to limit the redundancy factor among the training samples.

The experiments are repeated on more complicated and nested region datasets such as Pavia
University dataset. The number of training samples selected in each iteration is shown in the
above figures. Based on the results, one can conclude that the fuzziness-based sample selection
method is a competitive process that slightly worked better than other well-know sample selection
methods. One can conclude from the results shown in Tables 2–4 and Figures 2–7 that all the sample
selection methods performed well, however, BT and Fuzziness-based samples boost the accuracy for
MLR-LORSAL classifier followed by MI. From several observations with a different number of training
samples, there is a slight improvement in performance using MBT however, fuzziness and BT improve
the generalization in impressive fashion. Fuzziness-based sample selection process works better due
to the fact that these samples are usually close to the classification boundary.

This work started evaluating the hypotheses with a 50 number of randomly selected samples; it is
a well-known fact that the spectral information-based randomly adding samples back to the training set
does not increase the accuracy as desired. Therefore, this work explicitly fuses the spatial information
while considering the new samples for a training set which significantly boosts the accuracy and
generalization performance of a classifier. Furthermore, this work also validates the sufficient number
of samples required to train a classifier; i.e., 500− 1000 samples are more than enough to train a
classifier to produce an acceptable accuracy for HSI classification tasks.

5. Conclusions

A novel AL for HSI datasets has been explored in this study to overcome the limitations
of randomness using spatial–spectral information with predefined dual stopping criteria using a
fuzziness-based MLR-LORSAL classifier. Extensive comparisons with state-of-the-art sample selection
and classification methods have been carried out. Furthermore, several statistical tests were also
considered to validate the claims that the fuzziness-based MLR-LORSAL classifiers outperformed
other state-of-the-art classifiers. In short, this work investigated different sample selection techniques
and classifiers to properly generalize them to the classification of remotely sensed HSIs with multiclass
problems. The experimental results on three benchmark hyperspectral datasets reveal that the proposed
pipeline significantly increases the classification accuracy and generalization performance.
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