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Abstract: Mobile edge computing (MEC) within 5G networks brings the power of cloud computing,
storage, and analysis closer to the end user. The increased speeds and reduced delay enable novel
applications such as connected vehicles, large-scale IoT, video streaming, and industry robotics.
Machine Learning (ML) is leveraged within mobile edge computing to predict changes in demand
based on cultural events, natural disasters, or daily commute patterns, and it prepares the network
by automatically scaling up network resources as needed. Together, mobile edge computing and
ML enable seamless automation of network management to reduce operational costs and enhance
user experience. In this paper, we discuss the state of the art for ML within mobile edge computing
and the advances needed in automating adaptive resource allocation, mobility modeling, security,
and energy efficiency for 5G networks.

Keywords: 5G; edge network; deep learning; reinforcement learning; caching; task offloading;
mobile computing; edge computing; mobile edge computing; cloud computing; network function
virtualization; slicing; 5G network standardization

1. Introduction

By 2024, 5G mobile edge computing (MEC) is expected to be a multi-million-dollar industry
with enterprise deployments reaching $73M [1]. Each year, the complexity of data continues to grow.
The rise of network complexity systems stems from the increase of on-demand and customizable
services. Internet service providers must accommodate traffic for web browsing, connected vehicles,
video streaming, online gaming, voice over IP and always-on Internet of Things (IoT) device
transmissions. New constraints introduced by on-demand services as listed above require a radical
transformation of fixed and mobile access networks.

Fifth-generation (5G) mobile networks are being developed to serve the increasing levels of traffic
demand and diversity. To cope with the complex traffic demanded by modern users, network operators
are adopting cloud-computing techniques. 5G networks will use software-defined networks (SDN)
and network function virtualization (NFV) to reduce the operational cost of growing mobile networks
to provide on-demand services. Long-term, end users can expect performance enhancements because
5G is optimized to provide low-latency, high-availability, and high-bandwidth communication for
multiple use cases, including delay-sensitive applications, such as autonomous vehicles and automated
Industry 4.0 robotics.

The stringent functional requirements for 5G networks have forced designers to rethink the
backbone and access network architectures to better support core functions and dynamic network
services. The introduction of mobile edge computing disrupts the traditional separation between the
access network (secure and reliable transport between end users) and the core network (information
computing and storage). The combination of mobile edge computing and cloud computing blends
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the control and management planes to enable an extension of virtualized network resources and
the creation of end-to-end services based on SDN, NFV, and slicing techniques in 5G. mobile edge
computing can then complement the goals of the access network to solve existing challenges including
quality of service/experience, security, and power consumption as part of the necessary network
transformation.

Alongside NFV and SDN, mobile edge computing was recognized by the European 5GPPP (Public
Private Partnership) as a key enabling technology that will help satisfy the demanding requirements for
throughput, latency, scalability and automation in 5G [2]. Mobile edge computing places computational
processing power closer to the end user. This proximity alleviates the amount of traffic delivered
across the core network to large data centers, improves response speed with latencies below ten
milliseconds [3], and coordinates with data centers to offload some computational tasks, such as
online inference from the main cloud. Mobile edge computing can enable real-time analysis through
cloud-computing capabilities in a secure and context-aware manner with collaboration between
network operators and application providers [2].

Managing thousands of heterogeneous connections under strict response constraints for
applications, service creation, and network administration presents a complex challenge to 5G networks
using mobile edge computing. To realize the benefits of mobile edge computing, there is a need to
develop automated procedures to provide, orchestrate, and manage network services and applications
under conditions that change over time and across locality. A promising solution is introducing
machine learning (ML) to network operations to meet this new set of demands that are beyond the
limitations of traditional optimization techniques.

The development of 5G core network and mobile edge computing division of labor depends
on automated network management that is powered by efficient machine learning (ML) techniques.
Traditional optimization techniques are not adaptable enough to handle the complex, real-time analysis
required in 5G networks. In the past 20 years, machine learning has become widely known for pattern
recognition.

A subset of ML, deep learning (DL), has been extensively researched and applied within the
fields of computer vision [4] and natural language processing [5]. 5G networks can be enhanced to
automatically configure, optimize, secure, and recover using the cognitive power of DL, even though
this technique also introduces open issues in real-time response, energy consumption and optimization
of OPEX and CAPEX. Together, cloud-based technologies and automation with DL in mobile edge
computing will increase resource use and efficiency, increase resiliency, optimize power consumption,
increase revenues and provide ease of operation for service providers.

Previous surveys have focused on categorizing and evaluating various aspects of edge computing
machine learning algorithms applied to the edge of the network [6], on creating a taxonomy and
description of challenges in distributed network computing [7], and the integration of mobile edge
computing in 5G [8]. The authors in [6] present an in-depth theoretical study on the impact that
the communications network has on ML algorithms and vice versa, while analyzing technical case
studies. A survey of the integration of the mobile edge computing with 5G, focused on the various
access mechanisms and technologies is presented in [8], with particular attention paid to aspects
such as network densification, energy harvesting, or ML and its application to various verticals.
The application of network defense through anomaly detection and attacks using deep learning is
discussed in [9], and [10] focuses on creating intelligent and secure vehicular networks in a similarly
narrow manner. The authors in [11] focus on deep reinforcement learning to create intelligent elastic
optical network architectures. Finally, the incorporation of MAC protocols for heterogeneous wireless
networks using deep learning is investigated in [12].

However, the previous work lacks the unique perspective provided in this paper in which we
explain the novel applications for ML-deep learning models in mobile edge computing and the
challenges the industry must overcome to ensure the success of new service automation in edge
computing. We recognize the promise of using deep learning algorithms, though they do not resolve
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all obstacles towards the full automation of mobile edge computing. We were motivated to carry out
this survey to investigate the potential and challenges introduced by deploying deep learning at scale
at the mobile edge.

Contributions

The contribution of this document is three-fold: 1) Create a taxonomy of distributed computing
and storage resources that involve connected the edge of the network with end users and devices,
2) discuss the application of deep learning to edge computing to meet the functional requirements of
5G networks, and 3) provide an overview of new applications, standardization efforts, and challenges
that have arisen from introducing deep learning into mobile edge computing in 5G networks.

In this paper, we explain the work undertaken and the challenges in applying the power of
deep learning in 5G mobile edge computing to serve low-latency, real-time applications by providing
adaptive, application-specific resource allocation, and security, and accommodating high user mobility.
With DL, mobile edge computing can drive 5G networks to meet the stringent requirements imposed
by a wide range of applications, such as real time, security and energy efficiency in the industry
environment.

The rest of the paper is organized as follows: Section 2, presents an overview of 5G and mobile
edge computing enabling technologies. Section 3 offers a background to deep learning (DL) techniques
commonly used in network management. Section 4 discusses the current work and addresses open
issues in mobile edge computing that could be solved by further interdisciplinary ML work. Section 5
also provides an overview of protocols and architectures recently designed to automate network
management with ML. Section 6 discusses state-of-the-art applications and use cases that mobile
edge computing hopes to enable, including autonomous vehicles, industrial robotics, and massive IoT
scale-up. The paper concludes in Section 7.

2. Mobile Edge Computing

This section is divided into two parts. In the first part, the three main functional requirements
of the 5G network are introduced to show that its full deployment requires computing, storage,
and network infrastructure close to the user and the infrastructure, whether fixed or mobile, of the end
user. The second part introduces a mobile edge computing taxonomy, clarifying the functionalities
and the geographic areas that edge computing covers to demonstrate the essentiality of mobile edge
computing in 5G deployments.

At the same time, EC is shown to be a cornerstone of 5G deployment. Addressing the
rapidly changing Internet demand requires rethinking network and information delivery designs.
A combination of newly developed 5G networks and mobile edge computing (MEC) will enable
Internet service providers (ISPs) to meet consumer demands.

2.1. 5G Network Purpose and Design

Each generation of mobile network standards has been designed in response to the changing use
of mobile communications. 4G and LTE networks enhanced capabilities beyond 3G support for simple
mobile browsing and messaging systems. Similarly, 5G networks have been designed with three main
goals to improve network performance for the next decade (see Figure 1):

1. Enhanced mobile broadband (eMBB) will support general consumers applications, such as video
streaming, browsing, and cloud-based gaming.

2. Ultra-reliable low-latency communications (URLLC) will support latency-sensitive applications,
such as AR/VR, autonomous vehicles and drones, smart city infrastructure, Industry 4.0,
and tele-robotics.

3. Massive machine-type communications (mMTC) will support scalable peer-to-peer networks for
IoT applications without high bandwidth.
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5G networks accomplish the high bandwidth, high availability, and low-latency requirements of
new Internet services and applications through the adoption of cloud-computing infrastructure. Cloud
providers use software-defined networks (SDN) and network function virtualization (NFV) to boost
the creation of services to facilitate multi-tenant and multi-service infrastructure.

Figure 1. Enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC),
and massive machine-type communications (mMTC) compose the network enhancements in 5G.

The move to SDN infrastructure enables the replacement of proprietary hardware and software
for network functions like routers or firewalls with cheaper, standardized, and re-programmable
virtual customer premises equipment (vCPE). NFVs are centrally controlled within the cloud. Virtual
network functions (VNFs), as one of the key functionalities of NFV, such as load balancers, can run on
any generic server to allow the network to scale up resources on demand and be migrated between
different parts of the network. However, data processing in large remote cloud data centers based
on SDN/NFV functionalities cannot meet the low latency required for real-time data analytics in
autonomous vehicles or locally based augmented/virtual reality (AR/VR).

The increased communication taking place on smartphones, tablets, wearables, and IoT devices
can congest the core network communicating the centralized cloud servers. Duplicate requests for
popular videos during peak streaming times can overwhelm core networks and lead to a low quality
of experience (QoE) for users and costly inefficiencies in network resource usage [2]. Mobile edge
computing can help solve these challenges in 5G by creating a decentralized cloud at the network edge.

2.2. Mobile Edge Computing for 5G

Various models of computing operate in the network environment, including mobile computing,
cloud computing, fog computing, and edge computing. A taxonomy of the network computing
paradigm is detailed in [7].

Mobile computing (MC) creates an isolated, non-centralized, network-edge, or off-network
environment made up of elements (mobile devices, IoT devices, etc.) that share network, computing,
and storage resources. However, cloud computing offers on-demand ubiquitous computing resources.
These computing services can be public, private, or hybrid, and they use various payment-for-use
mechanisms.

Edge computing (EC) is a system that offers networking, computing and storage services near
the end devices, and they are generally located at the edge of the network. This system, which takes
the shape of a mini data center, has high availability and can offer low-latency services, but it has
computing and storage resources with lower features than cloud computing.

Mobile edge computing (MEC) combines the functions of mobile computing with edge computing.
The edge computing infrastructure is complemented by the resources of mobile or IoT devices
with low-consumption computing and storage hardware, and non-permanent or low-reliability
communications. The mobile edge computing system has been extended and standardized by the
European Telecommunication Standards Institute (ETSI), which coined the term multi-access mobile
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computing (whose acronym is also MEC) [13]. ETSI proposes a platform that creates a multi-access
edge system, which uses several heterogeneous access technologies, such as those proposed by 3GPP,
and local or external networks, among others.

Mobile edge computing enables the implementation of new service categories such as
consumer-oriented services (gaming and augmented reality), operator and third-party services
(computing and storage services and V2V), and network performance and QoE improvements to
enhance performance use.

Mobile edge computing creates a virtualized infrastructure that is deployed at the edge of the
network and its vicinity. This architecture is closely related to NFV. Mobile edge computing can be
associated with a network function virtualization (NFV), which allows applications to run efficiently
and seamlessly on a multi-access network.

Mobile Edge Computing (MEC) combines Internet communication infrastructure with the cloud.
Mobile edge computing brings cloud-based storage, computation, measurement, and management
closer to the end user by empowering the edge network to ensure QoE, optimize resource use,
and generate revenue for network operators [2]. Mobile edge computing technology has passed the
proof-of-concept stage and is being deployed in networks to enable real-time applications. Instead of
receiving all files from large, regional data centers, end users can receive data from local base stations to
reduce latency and traffic in the backbone network. Since the first real-world deployment in 2013 [14],
mobile edge computing has garnered attention as a feasible option to enable computation networks
close to users by expanding the cloud-computing (CC) capabilities into a decentralized cloud using
the same SDN and NFV concepts as the larger 5G. The combination of mobile edge computing and
NFV allows applications to operate efficiently and seamless on a multi-access network. The mobile
edge computing enabled distributed cloud will be built by deploying Network Functions in a diverse
set of edge devices including LTE base stations, 5G radio network controllers (RNC), multi-Radio
Access Technology (RAT) cell aggregation sites, and at aggregation points at the edge of the core
network [2,15], as shown in Figure 2. A reference architecture for mobile edge computing has been
proposed by the European Telecommunications Standards Institute (ETSI) [16].

Figure 2. Illustration of the application area of the main network computing models focused on
the edge. Mobile Edge Computing (MEC) enables cloud-based data for real-time applications and
ultra-reliable services that need to be stored closer to end users with edge nodes and base stations.
Mobile edge computing empowers AI-based services like navigation and connected vehicles that
require large amounts of locally relevant data computation, management and data analysis.

The choice of edge device depends on the application of mobile edge computing. For example,
5G base stations can be used to assist vehicle-to-vehicle communication for autonomous driving or
RAT aggregation sites can be used for delivering locally relevant, fast services to dense public locations,
such as stadiums or shopping malls. Several industry cloud providers have already developed software
and hardware solutions to enable mobile edge computing in edge devices (Microsoft Azure’s IoT
Edge [17], Google’s Edge TPU [18], or Amazon’s IoT Greengrass [19]), thereby establishing mobile edge
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computing as a relevant technology for next-generation networks and content delivery. Layering ML
on top of mobile edge computing infrastructure enables automation of efficiency-enhancing network
functions at the edge. Together, ML and mobile edge computing can enable real-time applications with
low-latency cloud computation.

3. Deep Learning Techniques

Machine learning systems use algorithms that improve their output based on experience. In the
future, machine learning will replace traditional optimization methods in many fields because ML
models can expand to include new restrictions and inputs without starting from scratch and they can
solve mathematically complex equations. ML models are readily adapted to new situations, as we are
currently witnessing with computer systems.

In the last decade, a subset of machine learning called deep learning (DL) has garnered much
attention in computer vision [20,21] and has discovered new optimal strategies for games [22,23]
without the costly hand-crafted feature engineering previously required. Deep learning uses neural
networks to perform automated feature extraction from large data sets and then use these features in
later steps to classify input, make decisions, or generate new information [24].

Research on deep learning for computer vision exploded after the release of ImageNet, a curated
database of over 10 million images across 10,000 categories, which helped train ML image classification
models [25]. Because 5G implementations are new and deployed in select regions, there are few
representative data sets for 5G network traffic and many authors rely on simulations. 5G and slice-based
networking may change the models of service demand. However, few authors have representative
and detailed data from telecommunication companies [26,27] because of the risk of leaking proprietary
or customer information.

Combined with the adaptation of SDN/NFV techniques within 5G networks, deep learning
presents an opportunity for accurate identification and classification of mobile applications and
automates the creation of adaptive network slicing [28], among other possibilities. Figure 3 shows
examples of four common deep learning models, which are explained in the following subsections.

Figure 3. Examples of four common deep learning models.
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3.1. Deep Neural Networks

Deep neural networks (DNNs) were developed to parametrically approximate functions that map a
vector of input data to an output vector (e.g., an image to the percentage probability that it is in each of
five classes labels) [24,29]. Expanded from original simple perceptron systems, deep neural networks
are feed-forward systems that use many hidden layers and internal functions to approximate non-linear
relationships between input and output. Each DNN model uses gradient descent to minimize a cost
function (mean square error, maximum likelihood) in an optimization and training process called
“back-propagation”. Cost functions for 5G networks could also include minimizing operating costs,
latency, or downtime. Within 5G networks, deep learning has already been applied to themes such as
traffic classification, routing decisions, and network security [30].

Convolutional neural networks (CNNs) are specialized DNN models to appropriately handle large,
high-resolution images as inputs [24,31]. CNNs exploit the relationship in nearby data (such as pixels in
an image or location-based measurements). CNNs use mathematical “convolutions”, linear operations
that compute a weighted average of nearby samples, and “pooling” to summarize the data in a region
typically with max-pooling or a similar operation depending on the aim [24]. CNNs have been used
in 5G networks to predict mobility based on traffic flows between base stations [32] and for object
classification applicable also to 5G-enabled industry robotics [33].

Recurrent neural networks (RNNs) scale the DNN models for function approximation to handle
temporal sequences, where the output from a previous time step influences the decision the network
makes for the next step [24]. RNNs require the use of a “memory” to recall information learned
in previous time steps in addition to the current input to the model. Performing the gradient
descent-based training on RNNs caused issues with “exploding gradients”, which was corrected
by new ML models called long-short term memory (LSTM) models with additional information
flow structures called “gates”. LSTM models have proven useful and accurate in solving traffic
prediction [34] and mobility [35] problems within communication networks.

3.2. Reinforcement Learning

Reinforcement Learning (RL) has been lauded in the last decade for training ML systems to
outperform humans, culminating in DeepMind’s development of a winning machine even in the
complex and large game space of Go [22,36]. RL is incredibly powerful because these training steps
for the model do not require any prior knowledge of the rules of the games played, but rather, they
optimize the model for future rewards using an “agent” who makes observations about its environment
(pixels, game state, sensor inputs, etc.) and the rewards (points, coins, closeness to end goal) received in
response to the actions (turning, moving, shooting, etc.) it makes. The agent determines which action
to perform based on a “policy”, the output of a neural network trained based on “policy gradients”.
In RL, discount rates can be applied to increase or decrease the importance of immediate versus
projected long-term rewards when determining the optimal next action.

Q-learning is a subset of RL where models are built on Markov Decision Processes, stochastic
processes where the next state is independent of previous state changes [37]. Q-values estimate the
optimal state-action pairs and selects the action with the maximum reward value [36]. Q-learning is
promising because even with imperfect or no information on the underlying Markov Decision Process,
the transition-probabilities, the agent explores the states, rewards, and possible action pairs through
greedy exploration policies that favor exploring unknown and high-reward regions. The optimal
decision policy for actions to take can then be obtained with very little prior information. The agent then
takes the action with the maximum Q-value calculated by the policy. Deep Q-learning networks can
be used to model situations with large state spaces (e.g., Go) using DNN to avoid feature engineering
to train the policy and a set of replay memories to continue using information learned in previous
steps [36].

Deep Q-learning networks (DQN) are especially adaptable to open issues within the 5G sphere.
Mobile networks are increasingly dynamic where the number of apps, users, and topology of the
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network have become increasingly ad-hoc. The ML systems used to approximate solutions for these
networks must be equally flexible. DQNs could be applied here because they discover new optimal
policies after observing additional situations without requiring the model to be completely retrained.
Several teams have already used deep Q-learning to address ad-hoc mobile edge computing vehicular
networks for 5G [30].

3.3. Enabling ML in the Mobile Edge

Performing ML within edge devices can take advantage of contextual data available such as
cell load, user location, connection metadata, application types, local traffic patterns, and allocated
bandwidth. Latency for responses from traditional cloud-computing centers over the wide-area
network hinders network and services key performance indicators (KPI). In addition, performing ML
tasks at the edge can reduce the load on the core network. To take full advantage of the mobile edge
computing and ML collaboration benefits, ML models must be designed to use minimal resources and
still obtain useful and accurate results as they are applied to scale across expansive communication
networks.

Currently, ML training and inference tasks within mobile edge computing are partially inhibited
by comparatively smaller storage capabilities and limited power supplies in edge devices than those
found in industrial cloud data centers. In response, ML within the mobile edge computing has been
enabled by two main enhancements:

1. Efficient ML models specialized to require less energy, memory, or time to train, and
2. Distributed ML models that distribute the training and inference tasks between large data centers

and smaller edge devices for parallel processing and efficiency.

3.3.1. Efficient ML Models

Currently, ML models require abundant memory to store training data and computational power
to train the large models. Novel ML models have been designed to operate efficiently on edge devices
by employing shallow models that require low enough processing power that they can be used on
IoT devices [38]. Alternatively, reducing the size of the model’s inputs for classification applications
can increase the speed of learning and convolutions on edge devices when less granular decisions are
required [39]. The computational requirements for ML model training can be further reduced by early
exiting in models designed with multiple exit points for achieved learning results [40,41] or designed
in human-machine collaboration using CNNs based on existing designs by experts to explore and
design new efficient ML architectures [42]. However, model redesign is only the first step to achieving
efficient ML in mobile edge computing.

3.3.2. Distributed ML Models

DNN is a widely adopted ML technique, but the full burden of training a DNN model is too
intensive for a single resource-constrained device at the mobile edge. Distributed ML models are
well-adapted to mobile edge computing because the work is distributed across many computing
centers in the network (cloud, base stations, edge nodes, end devices) [43] to collectively train
the DL model by giving them each a small portion of the work to perform and then combining
the results [44,45]. Sub-tasks for the training can be allocated based on the edge device’s resource
constraints and distributed work stealing models that prioritize load balancing in inference tasks [46].

Within mobile edge computing, distributed learning aims to use multiple smaller edge devices
rather than one large data center. Distributed DNNs are composed of both local and global parameter
adjustments during the learning processes combined with global aggregation steps in the cloud to
achieve a single well-trained model [43,47]. Optimization of the aggregation step can include methods,
such as federated drop out, prioritized local updates, fast convergence, and compression [43,44]
while local learning can be optimized using efficient ML models as described in the previous section.
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However, distributed learning can introduce new challenges. In [48], the authors found that the latency
and cost of sharing the learned gradients between devices constituted a bottleneck during the training
processes. To overcome the communication bottleneck, gradients used during the back-propagation
process of model training were compressed to reduce bandwidth requirements and redundancy.
Additional efforts to selectively share only the important gradients in the training process have
reduced communication costs with minimal impact on accuracy [49] and help reduce core network
traffic and memory footprint on resource-constrained devices.

4. Challenges of DL for 5G Operations at the Mobile Edge

This section introduces a challenges taxonomy of applying DL at the Edge in 5G networks, which
is the basis of this survey. Figure 4 shows this taxonomy, which categorizes the research articles that
focus primarily on applications of deep learning techniques used in network operations discussed in
this paper.

In this section, we describe how deep learning has been applied to solve operational issues at
the mobile edge. Mobile edge computing (MEC) has the advantage of proximity to users, which can
meet the low latency (URLLC), high bandwidth (eMBB), and high availability (mMTC) goals of 5G
networks by leveraging the breakthroughs discussed in the previous section.

5G networks present interesting challenges best addressed at the mobile edge to reduce latency
and incorporate locally significant information. Mobile edge computing can leverage proximity to
user to address a variety of challenges in 5G networking in particular which often require automated
management using DL for increasingly complex series of tasks.

Solutions combining DL for 5G promise better efficiency when conducted near the end user in
mobile edge computing rather than in the core network. For instance, mixing mobile edge computing
with 5G networks seamlessly connects existing cloud computing with edge computing to enable novel
applications

Deep Learning
at 5G Edge
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Netw.
Slicing

Resour.
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Content
Caching

Task
Offload.

URLLC
eMBB

Energy
Cons.

Security
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Auto-
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Standar-
ization

Challenges

Figure 4. Taxonomy of challenges of deep learning used in network operations at the edge of
5G networks [26,27,32,50–105].

The potential applications of DL within the networking domain are many, but this paper
focuses on a few key areas: 5G slicing using traffic prediction within the mobile edge computing,
adaptive resource allocation to meet user demand in real time, predictive caching to reduce latency,
task offloading from nearby end devices, meeting service quality guarantees, efficient energy usage,
data security and privacy, network architectures, standards, and automation. Though these may
appear to be separate tasks, they are intricately connected.

Several challenges remain before DL will be fully applicable in the 5G mobile edge, many of
which are relevant in machine learning systems at large.

Table 1 provides an overview of the research discussed in this paper. Readers can view an
accessible summary of the methods and key outcomes of past research.
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Table 1. Some relevant applications of deep learning techniques used in network operations discussed
in this paper. Some papers could belong in multiple categories because the themes in automated
network management overlap, but for simplicity are only listed once.

Topic Paper DL Model Purpose/Methods

[27] DNN Uses spatio-temporal relationships between stations to predict future traffic demand patterns
[50] RNN Predicts base station pairing for highly mobile users to prepare for future demand
[35] RNN Minimizes signaling overhead, latency, call dropping, and radio resource wastage using predictive handover
[26] RNN Predicts traffic demand by exploiting space and time patterns between base stations
[28] DNN Identifies real-time traffic and assigns to relevant network slice
[54] RL Offers slicing strategy based on predictions for traffic and resource requirements
[56] RL Maximizes network provider’s revenue through automated admission and allocation for slices
[57] RL Provides automated priority-based radio resource slicing and allocation
[53] RL Constructs network services on demand based on resource use to lower costs

Slicing

[103] DNN Selects slice for resilient and efficient balancing of network load

[32] DNN Forecasts resource capacity and demands per slice using network probes
[58] DNN Predicts traffic demand and distributes radio resources between slices
[60] RL Minimizes cost of delay and energy consumption for multi-user wireless system

Resource
Allocation

[61] RL Minimizes end-to-end delay for caching, offloading, and radio resources for IoT

[62] DNN Reduces computational time and energy consumption for cache policy at edge
[63] RL Jointly optimizes caching and computation for vehicular networks
[64] RNN Forecasts user movement and service type to cache and offload tasks in advance
[65] RL Predicts optimal cache state for radio networks
[66] RL Optimizes cost for caching, computation, and offloading using vehicle mobility and service deadlines restraints
[67] DNN Updates cache placement dynamically based on station and content popularity

Caching

[68] DNN Identifies communities of mobile users and predictive device-to-device caching

[70] RL Optimizes scheduling of offloaded tasks for vehicular networksOffloading [71] RL Minimizes energy, computation, and delay cost for multiple task offloading

[59] RL Dynamically meets QoS requirements for users while maximizing profitsQoS [73] DNN Automates management of network resources for video streaming within QoS range

[82] DNN Uses an NLP model to demonstrate DL energy requirements
[83] DNN Creates energy model to compare consumption of cloud architecturesEnergy
[84] RL Minimizes energy usage for task offloading from mobile devices

[86] RL Optimizes MEC security policies to protect against unknown attacks
[87] DNN Protects against various types of denial-of-service attacksSecurity
[88] DNN Develops a federated learning system with differential privacy guarantees

4.1. Mobility Modeling

User mobility prediction is necessary to achieve accurate traffic prediction. With the rise of mobile
phone usage and connected vehicles, predicting mobility becomes an important step in understanding
mobile network demands. Mobility models can be developed by considering different environments,
such as urban [27] or highway patterns to predict the next station a user will likely connect to [50]
in order to reduce costs for operational tasks such as handover [35]. Once the mobility patterns of
users in a network are understood, then DL can also be used to predict traffic patterns and create more
cost-efficient network operation schemes. For example, the expected demand for a base station can be
predicted according to the spatial and temporal relationship it has to nearby stations [26]. Other studies
apply LTSM to predict the position of the UE along time [51].

4.2. Slicing

Slicing is the method by which network providers can create multiple, independent virtual
networks over shared physical infrastructure for 5G networks. While traditional mobile networks
treat all incoming traffic similarly, 5G network slices can provide customized network services and
scale up or down as the demand for that slice changes. Slicing is made possible by SDN and NFV;
the separated control plane is composed of ready-for-change software that facilitates adaptive and
intelligent network management. 5G networks providers will create customized slices based on use
cases (video, IoT, Industry robotics, etc.) created to meet the unique service-level agreements (SLA) [52]
(see Figure 5).

5G networks can pair DL and data collected with mobile edge computing to automatically manage
slice creation. Automatically spinning up resources for network slices first requires predictions of
network demand and user location to assign resources correctly at edge nodes. To achieve useful traffic
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prediction, it is necessary to predict user mobility and, the demand for network resources, as well as
be able to classify traffic origin in real time to assign to the correct slice.

Figure 5. Physical infrastructure and virtual resources (network, computation, storage) in service
chaining for 5G slices. Each slice has a specific purpose and type of end device, but several slices may
use the same types of virtual network functions (VNFs) to deliver services to their users. The VNFs for
each slice are separated for privacy and security.

The research conducted in [26] set the groundwork for this field by using the LSTM model and
RNN to analyze real-world cellular data from China to understand the relationship between traffic
at separate cell towers. The technique was improved by using social media and other data sources
to analyze the effect of key events in a city, such as sporting games, and how this affects the network
demand [27]. From here, DL can be used to classify traffic without privacy-invading techniques,
such as packet inspection or strict classification based on ports or packet signatures [28]. Once the
traffic type is understood, network operators can take advantage of network virtualization to create
E2E slices per application and dynamically meet each SLA independently [54], while still achieving
optimal resource usage.

Complete network slicing requires allocating virtual resources to a subset of traffic and isolating
these resources from the rest of the network. Predicted demand influences which and how many
resources are allocated per slice [55] and determines whether new users are permitted to join the
network at the given station. These decisions are based on forecasts for available resources within the
slice [56] in a process built on “admission control”, which aims to increase revenue through efficient
resource usage. DL can give some slices priority over others [57] and adapt the slicing decisions in
anticipation of dynamic service demands to maximize resource use [53]. This task is complicated
as unknown devices continue to join the network, but with the aid of deep learning, even these can
be automatically assigned to slices to balance the network load and improve slice efficiency [103].
Maintaining efficient resource usage requires ongoing resource allocation between and within slices as
discussed in the next section.

4.3. Resource Allocation

Resource allocation in mobile edge computing is the task of efficiently allocating available radio
and computational resources to different slices based on their requirements and priority. Historically,
resource allocation was a reactive step aimed at self-healing and fault tolerance. Proactive resource
allocation with DL can reduce the effects of costly mistakes for under-provisioning slices that causes
SLA violations, poor user experience, and customer churn. To reduce operational costs, deep learning
techniques, borrowed from image processing, are used to anticipate network capacity based on metrics
gathered in the mobile edge computing, such as signal quality, occupied resource blocks, and local
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computation loads [32]. Inter-slice resource allocation can be achieved by jointly optimizing according
to slice priority (a slice providing remote healthcare could have priority over one for video streaming),
under-stocking, fairness concerns [58], and QoE per slice [59].

Resource allocation using DL is especially useful for predicting resources needed for tasks
offloaded to the mobile edge network from smaller devices [60] and proactively assigning some
of the limited available resources. Because mobile edge computing can exploit local views of wireless
signal and service request patterns, resource allocation models operating with this information can be
used to further minimize delays [61] and respond in real time to observed changes. DL models can
also be applied beyond resource optimization for a single edge node by including both spatial and
temporal connections among data dependencies between traffic nearby edge nodes to predict how
these dependencies and dynamic regional traffic patterns will affect resource demands [26,27].

4.4. Caching

Mobile edge computing can exploit proximity to the user to cache locally relevant data nearby
to reduce latency and adapt to surges in popularity for certain content in a region. Employing
DL to develop a proactive caching strategy has been shown to improve network efficiency and
alleviate demand for radio resources by storing popular content closer to the user than regional
datacenters [62,63]. Effective caching consists of two fundamental steps: predicting content requests
using popularity estimates and allocating content among edge nodes.

The popularity of content influences how often and in which regions of the network users will
request the content from the cache. More common content should be cached to avoid delayed retrieval
from regional data centers and reduce traffic on the core network. Some studies have used user
mobility and behavioral patterns to predict application choices and develop DL caching strategies to
anticipate their desired content [64]. Which contents are placed in mobile edge computing caches can
be optimized using DL to increase cache hit rate and decrease delays experienced by users. By using
popularity models in conjunction with observed requests, an optimal cache placement strategy can be
developed using DL technique such as Q-learning [65,66]; even as users move around, their desired
content is more likely to be in a nearby cache.

Content popularity is necessarily dynamic (based on time of day, cultural events, or trending
content) and cache content must be updated with frequency. Partial cache refreshes based on DNN
provide online responses to changing popularity [67], and the content of groups of edge nodes within
close proximity can be updated through joint optimization to reduce cache redundancy [68].

In [69], the authors propose an effective approach for collecting globally available resource
information through a mobile network architecture based on the SDN. To minimize network latency,
they designed an optimal caching strategy that consists of a small-cell cloud and a macro-cell cloud,
reducing considerably the latency compared to conventional caching strategies.

Figure 6 shows the main steps for the predictive caching using ML in mobile edge computing
compared with the traditional procedure.

4.5. Task Offloading

Due to proximity to the users and the potentially high number of stations for 5G networks,
these small cell stations can be used to offload tasks that are too computationally intensive or
battery-consuming for most users’ mobile devices. DL systems can be trained in mobile edge
computing systems to minimize the cost of offloading tasks in vehicular networks [70] and small
wireless devices [60] by using both immediate and long-term rewards during the training stage.
These ask offloading systems respond to changes in real-time demand for computation and supporting
resources at the mobile edge computing nodes. As the scale of task offloading initiatives increases
until each edge node is simultaneously receiving and running computational requests, the scheduling
objective becomes almost intractable without machine learning techniques. Additional intelligent
systems have been designed to simultaneously minimize costs of energy, computation, and delay by
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Figure 6. These two images show the difference between traditional caching and predictive caching
using machine learning in mobile edge computing. In step 1 of predictive caching, the most popular
contents that match user’s predicted preferences according to their profile are downloaded from the
cloud to the edge node. In the second step, when the user requests a specific content, there is a
higher probability that the desired content has already been downloaded to the edge node previously,
increasing QoE.

exploiting DQNs to schedule AR/VR offloading tasks [71] and then rely on additional DL techniques
to reallocate resources at the mobile edge in real time. Beyond cost minimization, task offloading
schemes can also be trained to minimize delay or maximize users’ quality of experience /service
(QoE/QoS) [70].

4.6. URLLC and eMBB through Quality of Service Constraints

Quality of Service (QoS) measures the performance experienced by the end users of the network.
Common QoS metrics include bandwidth, latency, and error rate, among other parameters, changes
that can severely alter the network’s ability to provide critical services. Every user connects to
the network with a set of QoS requirements, which may be more stringent for latency-sensitive
applications, such as on-demand video streaming, and voice over IP (VoIP). Meeting QoS and SLA
agreements can be integrated as a goal in the DL systems for automated resource allocation in 5G
mobile edge computing [59] by requiring chosen allocation schemes to maintain network operations
within QoS ranges [73]. For mobile edge computing applications, such as robotic systems, resource
allocation systems based on DL and QoS metrics must capture the ultra-low-latency requirements for
feedback signals between end devices [74]. This ensures both safety and Quality of Experience (QoE).
Furthermore, QoE, as it relates to QoS, can be optimized based on user similarity within groups or
geographical regions to dynamically allocate resources according to group needs [75].

Achieving ultra-reliable and low-latency communication (URLLC) is one of the major challenges
in 5G networks. This type of service offers a wide variety of challenges, such as QoS requirements [77],
strict handovers for uninterrupted service [78,79], power consumption in UEs battery [80], etc. In addition,
the coexistence of eMBB and URLLC with different service requirements is also a challenge [76].

The article [69] suggests a novel network architecture using a resource cognitive engine and data
engine to address the problem of achieving ultra-low end-to-end delay for the ever-growing number
of cognitive applications. The resource cognitive intelligence, based on network context learning, aims
to attain a global view of the network’s computing, caching, and communication resources.

It is quite a challenge for 5G networks to meet URLLC specifications and this will entail
major changes to the system architecture of the existing telecom infrastructure. While current user
requirements are initially based on high bandwidth, it is also expected that latency and reliability will
play a vital role in real-time applications and mission-critical networks [81].
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4.7. Energy Consumption

First, training DL models requires high-energy consumption. Even as training speeds have
improved, the level of energy consumption for DL models remains high [82]. While some studies have
attempted to estimate energy costs [83] and develop algorithms that increase the energy efficiency
of the systems they manage [84,85], few efforts have combined these two critical topics. There are
still many open questions about the deployability of large-scale DL models with resource-constrained
mobile edge computing systems.

4.8. Security and Privacy

Two main concerns that have deterred the deployment of large-scale DL systems at the mobile
edge computing are the rightful concerns regarding data security and privacy with collected data.
Security must be guaranteed when working in 5G mobile edge computing because of the necessary
sharing of physical infrastructure between slices and the potential for information leaks about data
or usage patterns. As NFV is deployed, isolation between virtual machines and slices must also be
guaranteed to promote privacy and reduce performance interference [89]. 5G mobile edge computing
networks must also protect themselves from malicious actors, and can use DL to detect and protect
against attacks [86,87], though new slicing infrastructure and virtualized networks may require
deviation from industry-standard security techniques. Efforts to enhance DL performance should also
be built with privacy in mind [88]. Network providers must investigate for any privacy violations in
the collection or use of user data before large-scale ML systems are deployed, especially in the case of
smart cities or personal electronics, such as connected cars and IoT, which can reveal intimate details
about the public as a whole.

5. Standards towards 5G Automation

Developing end-to-end automated management of 5G architecture and services and the
integration of the mobile edge computing into 5G introduce new requirements. The set of multi-access
applications and services at the edge designed to meet these requirements is greatly increasing the
complexity of managing the networked system.

This complexity manifests itself in different aspects of the network and services, such as
the provision and operation of services, predictive analysis, real-time monitoring, analytics,
or maintenance of thousands of entities, among others, and inexorably forces an end-to-end network
and services automation. The application of ML in mobile edge computing and 5G, which will allow
self-configuration, self-optimization and self-healing, will also require component standardization.

Several organizations, including the 3GPP, ETSI or ITU, have created working groups to address
this problem of standardization and complexity, generating the first architectural standards and models
for 5G.

ETSI Industry Specification Groups (ISGs), ENI (Experiential Networked Intelligence), and SAI
(Security AI) are working in parallel with ITU-T’s Q20/13 and FG ML5G (Focus Group on Machine
Learning for Future Networks including 5G), and 3GPP TR 23.791 to incorporate ML in 5G and future
networks, from the edge to the core network.

In this section, we discuss the most relevant standards, network and services architectures
developed by the main standardization organizations and open forums, which enable the application
of ML in mobile edge computing within the framework of 5G.

5.1. ETSI

ETSI is a European Standards Organization (ESO) that deals with electronic communications
networks and services. It is a partner in the international Third Generation Partnership Project (3GPP)
and developed thousands of standards for mobile and Internet technology since 3G networks. With
3GPPP and the guidance of specialists in ISGs for NFV, mobile edge computing, and ENI, ETSI



Appl. Sci. 2020, 10, 4735 15 of 27

has created standards to develop automated and cognitive services based on real-time user needs,
local environmental conditions, and business goals [92,93].

As researchers and technologists work to automate networks through DL, they must bear in mind
the growing body of standards that will guide best practices for security, efficiency, and consumer
experience in future networks. The main 5G management standard is ETSI’s MANO (management
and orchestration) architecture for NFV to simplify the roll-out of network services and reduce both
deployment and operational costs. The three core functional blocks of MANO are:

1. NFV Orchestrator that controls network services onboarding, lifecycle management, resource
management including capacity planning, migration and fault management,

2. VNF Manager configures and coordinates of VNF instances, and
3. Virtualized Infrastructure Manager (VIM) that controls and manages the physical and virtual

infrastructure, i.e., computing, storage, and network resources.

Each functional block for MANO presents opportunities for meaningful DL implementations in
highly virtualized 5G networks.

The mobile edge computing and NFV architectures proposed by ETSI are complementary. Mobile
edge computing and VNF applications can be instantiated on the same virtual infrastructure, in fact
NFV sees the mobile edge computing as a VNF. The mobile edge computing consists of various entities
that can be grouped into the mobile edge computing system level, the mobile edge computing host
level, and networks. The mobile edge computing supports different network infrastructures including
those proposed by 3GPP for 5G in particular. Mobile edge computing can be one of the cornerstones
of 5G at the edge. The 5G system designed by 3GPP makes it easier to deploy user plane functions
on the edge of 5G network. The Network Exposure Function (NEF) in the Control Plane shows the
capabilities of network functions to external entities.

One of the features supported by the mobile edge computing is 5GcoreConnect, which
interchanges notifications between the 5G Network Exposure Function in the control plane or other 5G
core network function. This feature allows the mobile edge computing to receive or send traffic, change
the routing policy, or perform policy control. Mobile edge computing can use the shared information
for application instantiation to manage the selected mobile edge computing host, select the mobile
edge computing host, or perform various functionalities between both systems.

ETSI ISG mobile edge computing is focused on the management domain, some of its use cases
being cognitive assistance, optimization of QoE and resource use or smart reallocation of instances,
among others. The strict features of these use cases make a standardization framework essential for
the application of ML in domain management.

To continue progress in connecting mobile edge computing and DL implementations for
5G, ETSI’s ENI has developed models in which machine learning techniques can replace manual
orchestration or traditional static policies in MANO architecture [94]. Use cases identified by ENI
align with the goals in 5G research currently, and if properly realized, can even address some
open issues discussed in Section 4, such as security and energy usage. ENI functional blocks
include knowledge representation and management, context-aware management, situational-aware
management, policy-based management, and cognition management. Using these functional blocks,
5G networks can apply the fundamentals of zero-touch network and service management (ZSM) to
become self-configuring, self-optimizing, and self-healing. Future mobile edge computing architectures
will take advantage of the information supplied by self-organizing networks (SONs) proposed in
the 3GPP SA5 working group and the 3GPP technical report about “Study of Enablers for Network
Automation for 5G (Release 16)”, to study and specify how to collect data and how to feedback data
analytics to the network functions [95,104].

An ETSI ISG produced a report for the organizations developing ZSM [96]. The report summarizes
the main activities and architectures developed by standardization bodies, open-source organizations,
and industry associations around ZSM.
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Figure 7 shows the ETSI MANO framework with potential data sources and solution points for
DL enhancements following ENI guidelines for automated management.

Figure 7. The NFV ETSI model extended with ENI ML functional blocks to automate the network
operation and management [96].

5.2. ITU

The ITU-T Focus Group on Machine Learning for Future Networks including 5G (FG-ML5G) was
established in 2017. This group drafts technical reports and specifications for ML applied to 5G and
future networks, including standardization of interfaces, network architectures, protocols, algorithms
and data formats [97].

The output of the FG-ML5G group includes ITU-T Y-series recommendations that provide an
architectural framework for ML in future networks and use cases [98–101].

5.3. IETF

IETF produces open technical documentation to improve the design, use, and management of the
Internet. In collaboration with the larger network engineering community, IETF produced an Internet
draft to specify how ML could be introduced to distributed system pipelines with Network Telemetry
and Analytics (NTA) and Network Artificial Intelligence (NAI). NTA uses telemetry and historical
data to perform ML-based analytics for detection, prescription, and prediction in networks through
closed loop control via SDN [102].

NTA and NAI are part of the larger effort to add intelligent management to Internet systems.
Both architectures are designed to perform real-time analytics for traffic engineering and monitoring
alongside existing protocols, such as BGP. Key performance indicators, such as CPU performance,
memory usage, and interface bandwidth, can be used to diagnose network health even in multi-layer
and virtualized environments.

IETF’s Internet draft also describes intelligent service function chaining (SFC), a key task in 5G
networks that allows network services to be automatically composed of several more basic network
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functions. Together with application analytics and intelligent SFC, network operators could experience
enhanced performance and control across locale and connection points.

5.4. Automation

In 5G, machine learning has been considered a useful tool to automate the network operation and
management, including control and management of network slicing, service creation and orchestration,
security, mobility management, etc. In [90], the authors discuss the applicability of ML to enable the
5G slicing functions to be executed autonomously. A framework is presented in [91] for the operation
and control of network slices by continuously monitoring the performance, workload, and resource
use, and dynamically adjusting the resources allocated to the slices.

In [105], the authors present a system of orchestration and control of E2E network slices based on
service and resource modeling software that allows for custom business design and software design.
They assert that applying ML in large-scale systems will yield advantages, such as better efficiency
and faster integration in network management automation.

6. Implementations and Use Cases

This overview of the challenges and opportunities in intelligent mobile edge computing for
5G networks is timely because of the recent implementations of 5G networks in multiple countries
supported by international telecommunication companies. 5G promises faster connection experiences
and enhanced security through eMBB, URLLC, mMTC and design decisions for resource sharing such
as network slicing and prioritized traffic. Several key world powers are competing for technology
dominance in the space that will define the future of communication with new hardware, software,
and data processing paradigms.

6.1. 5G Implementations

Following advances by the United States, Europe, and South Korea, China pledged to roll out
130,000 new 5G base stations and relay stations by the end of 2019, spread over 50 major cities [106].
These new base stations can support massive data collection to benefit network science and efficient
management to provide cost-effective and efficient systems for a growing number of users. China’s
efforts to become a leading center for 5G were enabled by the collaboration between the country’s
three largest telecommunication companies (China Mobile, China Unicom, and China Telecom).
Some benefits of increasing 5G small-cell base station availability are improving overall network
spectral efficiency [107] and real-time insights into network capacity and performance for increasingly
automated and centralized network management. However, how these new local stations and potential
data processing centers will be incorporated into the 5G mobile edge computing system has not
been determined. Without a doubt, ML will allow the utility of these stations and their supporting
technologies to scale and empower new industries and verticals for 5G.

In 2019, Dell Technologies and the telecom Orange began working together “to jointly explore
developing key technology areas for distributed cloud architectures to deliver the real-time edge
use cases and new services opportunities 5G will create” [108]. Within months, Microsoft and
NVIDIA announced a collaboration to advance mobile edge computing AI computing capabilities
for enterprises [109] and MobiledgeX and World Wide Technology became partners to accelerate the
commercialization of scalable mobile edge computing deployments [110]. Many telecommunication
companies are teaming up with leaders in ML and AI to focus on intelligent mobile edge computing
because of the many new applications that will benefit.

6.2. New Mobile Edge Applications

Corporate investment in 5G has risen rapidly because the new use cases (and revenue streams)
opened by the next-generation technology will reduce expenditures and maintain flat rates for
users. In their report naming mobile edge computing a key enabling technology for 5G networks,
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the European 5GPPP identified multiple verticals that would be empowered by mobile edge
computing: Internet of Things (IoT), caching, video streaming, augmented reality, healthcare,
and connected vehicles. With the building of large-scale 5G networks, researchers are focusing
on the myriad application spaces that could benefit from the low latency, proximity, high bandwidth,
location-awareness, and real-time insight provided by mobile edge computing [2]. The growth of
mobile edge computing will interrupt the current cloud-computing paradigm in preference to localized
computing near the user.

Below we discuss a few of the new application spaces for emerging ML-enabled mobile edge
computing systems.

6.2.1. Internet-of-(Every)Thing

By 2022, the number of IoT devices is expected to increase to 18 billion [111], each requiring
network connectivity. Mobile edge computing can benefit small-scale personal IoT devices to
large-scale design situations, such as smart cities and new industrial applications. Small devices
such as in-home IoT tools (Amazon Alexa, Nest Cam, Google Home), can use mobile edge computing
to offload computational tasks that are too complex for their small memory capacity [112,113]. Users
streaming videos from their mobile devices can enjoy cached versions of their desired content from
mobile edge computing base stations [114], or videos automatically delivered in a quality/bandwidth
supportable by their network based on local network conditions [115]. The growing augmented reality
systems, such as Pokémon Go can store locally relevant information to overlay the user’s environment
in local mobile edge computing base stations such users experience reduced latency in comparison to
information retrieval from regional cloud data centers [116].

6.2.2. Connected Vehicles

5G mobile edge computing can enable new applications on a larger scale. Consider the
coordination of increasingly ad-hoc networks from unmanned aerial vehicles (UAVs) and connected
cars that must navigate new surroundings [117], offload computational tasks and download new
information with the assistance of mobile edge computing stations nearby [118], all with low latency as
vehicles move throughout their region. UAVs have strict memory and power-consumption restraints
under which ML decision tasks must function, and, therefore, could benefit from distributed learning
methods and computational offloading.

6.2.3. Smart Cities

In urban settings, 5G mobile edge computing can be used to enhance smart city initiatives
globally by providing points for computation and data storage relevant to local events and populations.
By harnessing the power of cloud computing and Internet connectivity for large-scale IoT in cities,
smart cities can provide urban services, such as electricity grids, transportation systems, and emergency
response through deep learning in mobile edge computing. Cities can use mobile edge computing to
manage energy consumption in growing urban areas, based on energy profiles for common activities
and real-time demand [119]. In addition, placing DL at the mobile edge can also promote public safety
and policing efforts in large urban areas through light-weight computer vision systems [120,121].

6.2.4. Robotics and Industry

5G can be used to automate the work conducted in factories using robotic devices and real-time
big data analysis at the mobile edge within the factory. Robust 5G networks provide technology
advancements critical to factory automation such as high availability, low-latency, and resilience
against attacks as provided by a dedicated slice of the network [122]. 5G and mobile edge computing
enable the automation of critical applications, such as quality inspection of products [123]. Automated
factory systems can then leverage DL to manage the offloading of computational tasks to the local
edge network in energy- and resource- efficient ways [122,124]. In the medical sphere, 5G paired with
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robotics can enable remote medical examination or surgeries with ultra-low-latency remote control
with tactile feedback to remote surgeons.

7. Conclusions

Mobile edge computing plays a crucial role in helping 5G networks achieve the goals for eMBB,
URRLC, mMTC as demand for network resources steadily increases with the rise of IoT and video
streaming devices. Deep learning, a powerful subset of machine learning, can be adapted for use in
5G network operations to predict user behavior and automate the management of dynamic network
resources. Using deep learning can both improve user experience and lower operational costs for
telecommunication companies in the future.

This document provides insight into four main ideas in ML for 5G mobile edge computing. First,
in Section 2, we show that the mobile edge computing is a prime candidate to implement the new
verticals, features, and service categories required to deploy 5G. Second, we provide an overview of
the key deep learning concepts and how they can be adapted to work best in mobile edge computing
environments with computing and memory limitations. Section 3 explores the suitable deep learning
techniques to automate operations required to manage services and applications over the increasingly
complex 5G networks. Third, Section 5 develops a taxonomy of the challenges and trade-offs posed by
the introduction of a subset of deep learning techniques in the mobile edge computing. 5G networks
enable a diverse set of new applications and on-demand services with strict requirements, which
substantially increase complexity for which deep learning methods are uniquely suited. Finally,
Section 6 presents proofs of concept and the most relevant developments that combine the mobile
edge computing with ML in the 5G environment. We also discuss mobile edge computing applications
and how newly designed implementation standards for deep learning in 5G networks can enhance
various verticals for 5G, including IoT, AR/VR, vehicle networks, and smart cities.

In conclusion, we hope that this survey will provide information on the use and adaptation of
deep learning to improve mobile edge computing. These techniques may stimulate further research
and deployment of scenarios that allow for increased automation of the network and services in
the future.
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Abbreviations

The following abbreviations are used in this manuscript:

5G “Fifth-Generation” Mobile Networks
MEC Mobile Edge Computing / Multi-Access Edge Computing
SDN Software-Defined Networks
NFV Network Function Virtualization
European 5GPPP European 5G Public Private Partnership
ML Machine Learning
DL Deep Learning
OPEX Operating Expenditures
CAPEX Capital Expenditures
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ISP Internet Service Providers
eMBB Enhanced Mobile Broadband
URRLC Ultra-reliable Low-latency Communications
mMTC Massive Machine-type Communications
vCPE Virtual Customer Premise Equipment
VNF Virtualized Network Function
AR/VR Augmented Reality/Virtual Reality
QoE Quality of Experience
MC Mobile Computing
CC Cloud Computing
EC Edge Computing
LTE Long-Term Evolution
RNC Radio Network Controllers
RAT Radio Access Technology
DNN Deep Neural Network
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long-short Term Memory model
RL Reinforcement Learning
DQN Deep Q-learning Network
KPI Key Performance Indicators
ETSI European Telecommunications Standards Institute
ESO European Standards Organization
3GPP Third Generation Partnership Project
ITU International Telecommunication Union
IETF Internet Engineering Task Force
ISG Industry Specific Groups
ENI Experimental Network Intelligence
MANO Management And Orchestration
VIM Virtualized Infrastructure Manager
ZSM Zero-touch Service Management
SON Self-Organizing Network
NTA Network Telemetry and Analytics
NAI Network Artificial Intelligence
SFC Service Function Chaining
AI Artificial Intelligence
IoT Internet of Things
UAV Unmanned Aerial Vehicle
SLA Service-Level Agreement
E2E End-to-end
QoS Quality of Service
VoIP Voice over IP
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