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Abstract: Rolling element bearing is a vital component in rotating machinery, such as a wind turbine
(WT) system. By accurately monitoring its health condition, the faults can be detected at an early stage,
providing sufficient lead time to perform maintenance and hence reducing accidents and economic
losses. Bearing usually suffers from various wears and tears, which result in a gradual increase in
clearance through its lifetime. Insufficient understanding of vibration characteristics under different
clearances brings difficulties for bearing condition monitoring. Thus, this paper presents a nonlinear
bearing vibration model with six degrees of freedom (DOF) to investigate the vibration characteristics
under different radial clearances and load conditions. Then, a dedicated bearing test is established
to verify the reasonability and effectiveness of the vibration model. Furthermore, a comprehensive
simulation analysis is conducted to study the vibration characteristics over an extended range of the
internal radial clearance and external load. Results show that the dynamic force on each ball presents
an impulse whose magnitudes increases whereas the pulse width reduces with clearance increases.
Ball pass frequency of outer race (BPFO) is the dominant modulation component and the frequency is
in accordance with the number of dynamic force impulses. Two indicators, i.e., root mean square
(RMS) value and spectral centroid, are proposed to indicate clearance changes. In general, they show
an uptrend with the increase in clearance, which is in line with the dynamic force increasing with
clearance, especially the spectral centroid of the low frequency band. However, it should be noted
that the RMS value and spectral centroid exhibit a fluctuating behavior due to nonlinear vibration
responses. For the first time, this study shows the details of vibration characteristics with clearance
variations and provides a foundation for monitoring the bearing conditions before any obvious local
defects on raceways.

Keywords: rolling element bearing; radial clearance; nonlinear dynamic model; Hertz contact theory;
condition monitoring

1. Introduction

Wind energy, as a kind of renewable and clean energy resource, has become the fastest-growing
energy source [1]. Wind farms capture the wind flow through wind turbines (WT), which can
convert the wind energy into electricity by rotating blades around a rotor. In the WT systems,
regardless of on the main shaft or in the gearbox or the generator, rolling element bearings are critical
mechanical components to support the shaft or the rotor [2]. Complex working conditions, such as
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time-varying rotating speed, nonstable load and harsh environments, challenge the reliability of WT
units. This could easily lead to wear and tear on bearings, resulting in faults or even fatal breakdowns,
causing catastrophic accident and economic losses [3,4]. Investigation has shown that more than
50% of faults on gearboxes were caused by bearings [5]. Together with the various types and certain
amounts, bearing faults bring difficulties to the maintenance of WT units. With the wide installation of
wind turbines worldwide, the accurate condition monitoring of rolling element bearing has attracted
considerable attention in recent years.

Once a local bearing defect appears, it induces an impulse excitation to the system, which will
excite resonant frequencies of the bearing and its adjacent components [6]. Thus, vibration signal is
widely used in bearing fault diagnosis. A large volume of works has purely relied on the vibrational
signals for fault detection and classification without consideration of the failure mechanisms lying
behind. These methods are usually categorized as data-driven methods and many such methods have
been developed [7–9]. However, these data-driven methods require a good knowledge of mechanical
structure and vibration mechanism. On the other hand, it is the foundation of mechanical fault
diagnosis to find out the mechanism and representation form of the fault [10,11]. Through model-based
analysis, dynamic characteristics of the system could be obtained. McFadden [12] developed a model
to describe the vibrations produced in a rolling element bearing under constant radial loads with a
single point defect on the inner race. Liu et al. [13] proposed a new model taking time-varying contact
stiffness into consideration, to reveal the relationship between vibration characteristics and defect sizes.

Comparatively, few scholars have focused on the vibration characteristics and health monitoring
of bearings before obvious local defects appearing on raceways. In a WT system, unsteady wind and
gusts will lead to high contact stresses on rolling elements and bearing skidding. Wear is the main
cause of bearing failures [14]. Especially, abrasive wear seems to be the most common wear type
observed in bearings in the industry [15]. Investigation has shown that wear and tear can shorten
bearing life by about 30% [16]. However, during the lifetime of bearings, the wear process is different
from surface roughness, and it is difficult to measure wear loss, which needs special equipment and
methods [17]. Meanwhile, investigations show that wear and tear during the bearing operating process
give rise to clearance [18]. In addition, the internal radial clearance affects the load distribution,
and consequently influences the fatigue life of rolling bearings [19,20]. In view of structural vibrations
also highly influencing the propagation of wear [15], significant efforts need to be dedicated to study
the vibration characteristics under different bearing clearances before obvious local defects appearing,
which could provide more guidance for bearing condition monitoring.

Tribology-focused techniques provide meaningful exploration for bearing fault diagnosis and
condition monitoring. Halme and Andersson [18] expounded the connections between bearing
diagnosis and tribology mechanisms, pointing out that rolling contact wear and fatigue during rolling
bearing operations can be diagnosed by combining measured and interpreted condition monitoring
data. Ocak et al. [21] proposed a method for bearing prognostics with wavelet packet decomposition
and probabilistic modelling to realize the online tracking of bearing wear. Rehab et al. [22] investigated
the impact of wear induced clearances on diagnostic characteristics, which confirmed the general
understanding of increased amplitudes with clearance for the inner and outer race defects. Note that
these efforts still focus on improving the performance of diagnosing local defects and few studies have
been found to analyze the continuous changes in bearing clearance without local defects.

To monitor the bearing clearances, Zmarzły [23] assessed the influence of the bearing radial
clearance on vibration level by experiments and pointed out that medium vibration frequency band
(300–1800 Hz) has the biggest impact. Georgiadis et al. [24] utilized spectral kurtosis to predict bearing
clearance changes. Yakout et al. [19] studied the effect of the internal radial clearance on the damping
characteristics and natural modes of vibration through experimental tests. Meier et al. [25] applied three
different methods (kurtosis, recurrences and neural networks) for measuring the bearing clearance
and found a correlation between the bearing clearance, level of bearing vibrations and output signal
structure. Recently, Wang et al. [26] proposed an online bearing clearance monitoring approach based
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on modulation signal bispectrum (MSB) and Gini-index to diagnose the change of bearing clearance
without local defects. Although there are some indicators utilized to monitor the change of bearing
clearance of certain levels through experiments, it should be noted that the mechanism behind bearing
clearance is not revealed and remains ambiguous, whereas it is the basis of accounting for various
vibration phenomena and bearing condition monitoring.

Overall, although a few studies have begun to focus on bearing clearances and paved the
foundations for this study, several problems existed in these studies, such as a lack of mechanism
research, incomplete vibration characteristics and insufficient reasonable monitoring indicators.
These deficiencies bring difficulties to bearing condition monitoring and maintenance of WT systems.
On the other hand, accurate monitoring of the bearing clearance before obvious local defect could
provide sufficient lead time to perform maintenance and hence reduce accidents and economic losses.
Thus, it is a meaningful exploration to study bearing clearances.

In this paper, to bridge the gap, a nonlinear bearing vibration model is proposed to investigate the
vibration characteristics for bearing condition monitoring under different internal clearances, as well
as external loads. Firstly, a six degree of freedom (DOF) bearing dynamic model, which includes
nonlinearity of radial clearance, is established based on structural mechanism analysis and Hertz
contact theory. Then, experimental tests are carried out to verify the rationality of the model based on
the comparison between simulation and test data. Finally, dynamic force, vibration characteristics
and monitoring indicators are expounded at a wider range of radial clearance, load and rotational
speed. The main contribution of this paper lies in the non-linear vibration model and the influence of
continuously changing clearances on dynamic force and vibration characteristics.

2. Numerical Modelling

2.1. Bearing Vibration Model Considering Clearance

To study the dynamic behaviors of bearings, a large number of works have focused on bearing
models for bearing vibration characteristics or diagnostic signatures. Sunnersjo [27] first proposed
a two-DOF mathematical bearing vibrations model based on Hertz contact theory. Arslan et al. [28]
considered the shaft-bearing assembly as a mass-spring system to investigate the nonlinear characteristic
of rolling element vibrations. Sawalhi and Randall [29] studied the influence of pedestal and proposed
a five-DOF bearing-pedestal model to simulate localized bearing faults. Xiao et al. [30] investigated
the vibration transmission characteristics through a dynamic model of the gear-shaft-bearing-housing
system. Liu and Shao [31] took housing and shaft into consideration and proposed a lumped spring
mass model for a ball bearing system to study the localized defect sizes on the vibration characteristics.
Through these literatures, the shaft-bearing-housing model has better performance when describing
bearing vibrations, and it is widely used in bearing studies.

Thus, in this study, a lumped shaft-housing vibration model is developed with six DOF,
which includes two sensors, as shown in Figure 1. In this shaft-housing system, Ms includes
the mass of inner race and shaft and Mh includes the mass of outer race and house, which is a common
configuration of bearing operations. Moreover, it allows the numerical simulations to be evaluated by
corresponding experiments. In this system, Xs, Ys, Xh, Yh, Xr and Yr represent the displacement of the
shaft (s), housing (h) and sensor (r) in the X and Y directions, respectively.

.
X and

..
X denote velocity

and acceleration, respectively.
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Figure 1. Diagram of a bearing vibration system. 

The bearing vibration model is presented in Equations (1)–(6). 

𝑀𝑠𝑋𝑠̈ + ∑ 𝐾[𝛿𝑖]
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3/2𝑁𝑏
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∑Nb
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∑Nb
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..
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.
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K[δi]
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∑Nb

i=1
C[vi]cosφi = 0, (3)
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..

Yh + Ch
.

Yh + KhYh −
∑Nb

i=1
K[δi]

3/2sinφi −
∑Nb

i=1
C[vi]sinφi = 0, (4)

Mr
..

Xr + Cr
( .
Xr −

.
Xh

)
+ Kr(Xr −Xh) = 0, (5)

Mr
..

Yr + Cr
( .
Yr −

.
Yh

)
+ Kr(Yr −Yh) = 0, (6)

where Ms, Mh and Mr denote the mass of shaft, housing and sensor, respectively. In addition, Kh, and
Kr represent the stiffness of housing and sensor; Ch and Cr are the damping of housing and sensor;
K and C, respectively, represent the stiffness and damping between raceways and balls; δi and vi
represent the nonlinear deformation and nonlinear velocity of the ith ball, respectively; φi denotes the
angle position of the ith ball; and Nb denotes the number of rolling elements. The deformation δi and
velocity vi for each element could be calculated by Equations (7) and (8)

δi =

{
(Xs −Xh)cosφi + (Ys −Yh)sinφi − c/2× (1− cosφi) δi > 0,

0 δi ≤ 0,
(7)

vi =


( .
Xs −

.
Xh

)
cosφi +

( .
Xs −

.
Xh

)
sinφi δi > 0,

0 δi ≤ 0.
(8)

where c denotes radial clearance.
According to Hertz contact theory [19,22], the total stiffness between two raceways can be

expressed as the sum of the corresponding stiffness between the rolling elements and each raceway,
given as

K =

 1

(1/Ki)
1/(3/2) + (1/Ko)

1/(3/2)

3/2

(9)
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where Ki,o is the Hertz contact stiffness between the outer and inner raceways with the ball, respectively.

Ki,o =
2
√

2
(

E
1−ν2

)
3(

∑
ρ)1/2

( 1
δ∗

)3/2
(10)

where E is Young’s modulus, ν is Poisson’s ratio,
∑
ρ is the curvature sum and δ∗ is the dimensionless

contact deflection.
The equivalent viscus damping coefficient between two raceways can be calculated according to

Equation (11) at a given damping ratio.

C = 2ς
√

mb ×K (11)

where ς is the damping ratio, mb is the mass of each ball.

2.2. Dynamic Force Model

Based on the fact that there is a direct relationship between force and vibration, dynamic forces
are extracted from the numerical simulation. It can be seen in the bearing vibration model that the
nonlinear dynamic forces are

Fsix = K[δi]
3/2cosφi; Fsiy = K[δi]

3/2sinφi; (12)

Fdix = C[vi]cosφi; Fdiy = C[vi]sinφi; (13)

where Fsix and Fsiy represent the spring force in the X direction and Y direction of the ith ball, respectively;
Fdix and Fdiy denote the damping force in the X direction and Y direction of the ith ball, respectively.

The schematic diagram of the dynamic force is shown in Figure 2. The resultant forces can be
calculated according to Equations (14) and (15).

Frix = Fsix + Fdix; Friy = Fsiy + Fdiy; (14)

Frx =
∑Nb

i=1
Frix; Fry =

∑Nb

i=1
Friy; Fr =

√
(Frx)

2 +
(
Fry

)2
(15)

where Frix and Friy represent the resultant force of the ith ball in the X direction and Y direction of
the ith ball; Frx and Fry denote the resultant force in the X direction and Y direction of all the balls,
respectively; Fr denotes the sum of forces on all balls. It is noted that the X and Y directions represent
direction with and without external load, respectively, named load and non-load direction in the
following text of this study.
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2.3. Numerical Simulation Implementation and Analysis

To concentrate the study on the influences of bearing clearance on vibration responses, the model
was based on the following assumptions and considerations.

(1) The vibration model is developed for an ideal bearing under perfect operating conditions,
i.e., geometric errors and assembly errors are ignored;

(2) The bearing operates under isothermal conditions, i.e., the influence of temperature is
not considered;

(3) The lubrication is sufficient and appropriate during the operation at a constant speed, i.e., abnormal
lubrication and raceway roughness and waviness are not taken into account;

(4) The motion between raceways and balls is regarded as pure rolling without any sliding and
skidding between bearing components;

(5) The sensor is considered as a mass-damping system.

Taking 6206 deep groove ball bearing as an example, the main geometry parameters of the adopted
6206 deep groove ball bearing are listed in Table 1. The model parameters for simulation are listed in
Table 2. It was noted that the increase in clearances was realized through the variation of raceway
diameter. In addition, the rotational speed of the shaft was 1500 rpm and the vibration model was
iteratively solved in MATLAB 2018a with the sub-function of ode15 s.

Table 1. Main geometry parameters of deep groove ball bearing 6206.

Notation Description Value

d Nominal bore diameter (mm) 30
D Nominal outside diameter (mm) 62
di Inner race diameter (mm) 37.48
do Outer race diameter (mm) 56.45
dm Pitch diameter (mm) 46.96
db Ball diameter (mm) 9.485
db Original radial clearance (µm) 0
Nb Number of rollers 9
α Contact angle (◦) 0

Table 2. Physical properties for simulation study.

Notation Description Value

ms Mass of shaft (kg) 1.32
mh Mass of house (kg) 0.46
mr Mass of sensor (kg) 0.02
mb Mass of each ball (kg) 2.95× 10−3

Kh Stiffness of house (N/m) 1.2× 109

Kr Stiffness of sensor (N/m) 4× 107

Ch Damping of house 939.62
Cr Damping of sensor 17.89

Taking the load of 1600 N and the clearance of 10 µm as an example, the vibration acceleration,
spectrum and envelope spectrum of the sensor in load and non-load direction are shown in Figure 3.
As can be seen, the waveform displayed periodic impulses and two peaked regions could be clearly
distinguished from the spectrum in both directions. Through envelope analysis, it was found that
the ball pass frequency of outer race (BPFO) and its harmonics dominated the entire spectrum.
Coincidentally, the amplitude of the non-load direction was higher than the load direction. The higher
vibration level in the non-load direction could be attributed to the more complicated motion of the
bearing system and the influence of dynamic force.
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Without loss of generality, dynamic force of the first ball was calculated according to Equation (15).
Figure 4a,b depict the spring and damping force, respectively. In Figure 4, Fs1x and Fs1y represent the
spring force in the load direction and non-load direction of the first ball, respectively; Fd1x and Fd1y
denote the damping force in the load direction and non-load direction of the first ball, respectively; Fs1,
Fd1 and Fr1 denote the damping force, damping force and resultant force of the first ball, respectively;
Fr represents the resultant force of all balls.

As can be seen, although there was no external load in the non-load direction, due to the difference
in the contact angle of each element, the force in the non-load direction fluctuated as well. The resultant
dynamic force of each ball displayed a periodic impulse, as shown in Figure 4c. When sum all Frix and
Friy, the resultant force of all balls was equal to the external load of 1600 N, with little fluctuations,
as shown in Figure 4d, which also provided evidence for the accuracy of the dynamic force analysis
and the model.
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In addition, from Figure 4c, when the shaft rotated a full turn, there were 9 impulses, which was
equal to the number of rolling elements. According to the simulation, the time of shaft rotating one cycle
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was 0.1002 s. Thus, in 1 s, there were about 89.8 balls passing the same point on the outer race. This is in
accordance with the theoretical value of the ball pass frequency of the outer race (BPFO, 89.8 Hz).

3. Model Verification on a Bearing Test Rig

3.1. Bearing Test Rig Setup

To validate the accuracy of the dynamic model, a vibration test was carried out on a bearing test
rig, which had two deep groove ball bearings to support the shaft. The type of tested bearing was
6206 ZZ, which was placed at the drive end of the shaft, as shown in Figure 5. The measurement
system, such as sensors, data acquisition device, load device, motor and control unit can be found in
Figure 5a. In addition, the sampling frequency was set at 96 kHz and each frame of signal was recorded
for 20 s, which allowed sufficient precision to be achieved in waveform and in the spectrum analysis.

To study the influence of clearance on vibration characteristics, two groups of bearings with different
clearances, named CN and C4, were tested, representing ”normal” clearance and ”large” clearance,
respectively. The clearances for these two types of bearings are listed in Table 3. During the experiment,
the rig ran at a shaft speed of 1500 rpm and different radial loads, namely, 0, 10, 20 and 30 bar, were
applied with hydraulic equipment. With the diameter of the piston as 45 mm, the above loads, i.e., 10, 20
and 30 bar, applied on the testing bearing could be calculated as 800, 1600 and 2400 N, respectively.
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Table 3. Experiment test bearing clearance values.

Bearing Type Bearing Class Clearance (µm)

6206 ZZ
CN 8.33
C4 40.86

3.2. Model Verfication with Vibration Data

A comparison was made between the test and simulation in the time domain and frequency
domain. According to the test, the vibration waveforms in the time domain are shown in Figure 6.
As can be observed, the amplitudes of vibration signals from C4 bearing were larger than those from
CN bearing. To show their differences more clearly, the root mean square (RMS) of the vibration
signals was calculated and presented in Figure 7b. As expected, the RMS value of C4 was larger than
that of CN. Furthermore, when under larger clearances C4, the RMS value showed an uptrend with
the increase in load, which is in line with the numerical simulation in Figure 7a. However, under
smaller clearance CN, the RMS value showed different trends in both the simulation and test signals.
The RMS value of the simulation data showed a downtrend with loads, while that of the test data
was nearly similar among different loads. The downtrend of the simulation data may be due to the
influence of resonance caused by load. When under the same clearances, the bearing load distribution
varied with the external load on it. When load was relatively small, there were less balls in the contact
region, which may result in larger vibrations. The trend of actual measurements may be influenced by
background noise or other joint components.
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Except for the time domain analysis, the frequency spectra of the simulation signal and test signal
were calculated and compared in Figure 8. Note that “800-10” in Figure 8a means that the load was
800 N and the clearance was 10 µm. Such expression was adopted in the following text. From the
frequency spectrum of the simulation signal, it is easy to distinguish the low frequency band and the
high resonant frequency band. However, the spectrum of the test signal is quite complicated with
multiple unknown resonant frequencies, which may be generated by other components in the test rig.
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Nevertheless, with the increase in clearance, an uptrend could be clearly observed from the spectrum
of both the simulation and test signals.
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It is well known that the vibration signal from a bearing with local defects shows significant
modulation effects. As show in a late study, the local dynamic load can induce the modulation effect in
the resonances. An envelope spectrum was thus also utilized to reveal the demodulation phenomenon.
Figures 9 and 10 depict the envelope spectrum of the simulation signal and test signal under different
clearances and loads.
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Figure 10. Envelope spectrum of CN and C4 bearings under (a) 0 N, (b) 800 N, (c) 1600 N, (d) 2400 N.

As can be seen from the envelope spectrum in Figure 9, BPFO and its harmonics dominated the
entire spectrum for different clearances and load conditions. In Figure 10, the harmonics of the rotating
frequency fs and BPFO can be clearly observed together, though there are a number of unresolved
frequency components due to the dynamic effects of motor and coupling. Note that the amplitude
of BPFO and its harmonics were much higher than other frequency components. This means that
BPFO plays an important role in the modulation process for bearing with clearances. In addition,
the amplitude of BPFO from bearing with a larger clearance (red solid line) was much higher than
that from bearing with smaller clearances (blue dotted line). All these findings are consistent with the
simulation study.

Based on these findings, it is reasonable to conclude that the proposed dynamic model is competent
to describe the bearing vibration under different clearances.

4. Vibration Characteristics for Bearing Clearance Monitoring

According to the International Organization for Standardization (ISO), the clearance of deep groove
ball bearing is divided into five classes, namely C2, CN (Normal), C3, C4 and C5 [19]. Table 4 depicts the
maximum and minimum of these five classes of clearance under different nominal bore diameters. Note
that these clearances merely showed the rated clearance of bearings after manufacturing. With bearings
being put into operation, they suffer from various levels of wear and tear, which will lead to the
increase in the clearance. Investigations have shown that the clearance has a vital effect on bearing
useful life, and the increase in clearance will shorten the bearing service life by approximately 30% [16].

To gain a comprehensive understanding of the vibration characteristics caused by bearing
clearance and load conditions, a group of simulation studies were carried out. In the simulation study,
the clearances ranged from 0 to 100 µm with the interval as 10 µm, while the load ranged from 800 to
4800 N with the interval as 800 N. Note that the load was set according to the bearing rotating life L10h.
When the basic rated dynamic load was 20.3 kN (bearing 6206), the rotating life under each load was
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about 181,541, 22,693, 6724, 2837, 1452 and 840 h, respectively. Thus, these loads could be divided into
light load (800 N, 1600 N), medium load (2400 N, 3200 N) and heavy load (4000 N, 4800 N).

Table 4. Clearance values of deep groove ball bearings.

Bore Diameter
d (mm)

over Include

C2
(µm)

Min Max

CN
(µm)

Min Max

C3
(µm)

Min Max

C4
(µm)

Min Max

C5
(µm)

Min Max

— 2.5 0 6 4 11 10 20 — — — —
2.5 6 0 7 2 13 8 23 — — — —
6 10 0 7 2 13 8 23 14 29 20 37
10 18 0 9 3 18 11 25 18 33 25 45
18 24 0 10 5 20 13 28 20 36 28 48
24 30 1 11 5 20 13 28 23 41 30 53

4.1. Dynamic Force Analysis

Considering that the dynamic force exhibited an impulse wave with a certain width in a contact
cycle, without loss of generality, maximum force of the first ball was extracted under different clearance
and load conditions. Figure 11a,b depict the dynamic forces under the load of 1600 N and the clearance
of 10 µm, respectively. Under the same load, the width of the dynamic force decreased with the
clearances, while the magnitude increased with the clearances. Separately, under the same clearance,
only the magnitude increased with the loads, while the width remained unchanged.
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force significantly influence the bearing fatigue life [16,32]. In this way, it could provide sufficient 

lead time for WT maintenance [33]. 
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Figure 11. Dynamic force impulse (a) under different clearances (load is 1600 N) and (b) under differnet
load (clearances is 10 µm).

To explore the influence of dynamic force on bearing life, the maximum of the dynamic force under
all conditions is shown in Figure 12a. The results showed an uptrend in both directions. Compared
with 0 µm under each load, the increased proportion of the magnitude also showed an uptrend with
the increase in clearances, as shown in Figure 12b. However, the proportion displayed an opposite
trend with the increase in loads. This means that under relatively light load, the influence of clearances
on dynamic force is more significant. Taking the load of 1600 N as an example, when clearances ranged
from 0 to 100 µm, the maximum dynamic force increased by about 30%. Such an increase can cause a
reduction in life factor by about 30% [16], as the amplitude and profile of dynamic force significantly
influence the bearing fatigue life [16,32]. In this way, it could provide sufficient lead time for WT
maintenance [33].



Appl. Sci. 2020, 10, 4731 13 of 19

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 19 

6    10 0    7 2    13 8     23 14    29 20    37 

10    18 0    9 3    18 11    25 18    33 25    45 

18    24 0   10 5    20 13    28 20    36 28    48 

24    30 1   11 5    20 13    28 23    41 30    53 

4.1. Dynamic Force Analysis 

Considering that the dynamic force exhibited an impulse wave with a certain width in a contact 

cycle, without loss of generality, maximum force of the first ball was extracted under different 

clearance and load conditions. Figures 11a, b depict the dynamic forces under the load of 1600 N and 

the clearance of 10 μm, respectively. Under the same load, the width of the dynamic force decreased 

with the clearances, while the magnitude increased with the clearances. Separately, under the same 

clearance, only the magnitude increased with the loads, while the width remained unchanged. 

  

(a) (b) 

Figure 11. Dynamic force impulse (a) under different clearances (load is 1600 N) and (b) under 

differnet load (clearances is 10 μm). 

To explore the influence of dynamic force on bearing life, the maximum of the dynamic force 

under all conditions is shown in Figure 12a. The results showed an uptrend in both directions. 

Compared with 0 μm under each load, the increased proportion of the magnitude also showed an 

uptrend with the increase in clearances, as shown in Figure 12b. However, the proportion displayed 

an opposite trend with the increase in loads. This means that under relatively light load, the influence 

of clearances on dynamic force is more significant. Taking the load of 1600 N as an example, when 

clearances ranged from 0 to 100 μm, the maximum dynamic force increased by about 30%. Such an 

increase can cause a reduction in life factor by about 30% [16], as the amplitude and profile of dynamic 

force significantly influence the bearing fatigue life [16,32]. In this way, it could provide sufficient 

lead time for WT maintenance [33]. 

  

(a) (b) 

Figure 12. Maximum of the dynamic force Fr1 (a) under different clearances and loads and (b) increased
proportion compared with 0 µm.

4.2. Bearing Clearance Monitoring

In condition monitoring practice, vibration responses in the time domain are often evaluated
based on RMS value in many systems [34]. Study has shown that RMS value could serve as a leading
indicator for early detection of faults in WT, giving WT owners time to schedule operations and
maintenance [35]. RMS values of signals in the load and non-load directions under different clearance
and load conditions are shown in Figure 13.

In general, excepting the resonance peak in the low-loaded conditions, the RMS value showed
an uptrend with the increase in clearance, which was more obvious in the load direction. However,
it should be noted that the RMS value was not increasing monotonically with the increment of
clearances and loads. In Figure 13a, there is a resonance peak in low-loaded conditions, i.e., 800 and
1600 N. This may have been caused by the differences of the load distribution under different clearance
and load conditions. Due to fluctuations of the RMS values, it is not accurate enough to be used as
an indicator to reflect the bearing clearance, especially when the load is relatively light. Thus, it is
necessary to seek other indicators to monitor the variations of clearances.
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The spectrum exhibits the amplitude distribution and energy distribution of each frequency
component. Envelope spectrum is an effective tool to reveal the amplitude modulation frequency
components [36], which is a widely used method to diagnose bearing faults for mechanical machines.
Through the envelope spectrum, as shown in Figure 14, BPFO and its harmonics were the primary
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modulation source in the bearing vibration signals. Note that ‘’800-0” in Figure 14 means the load is
800 N and the clearance is 0µm. Such expression is adopted in the following figures.
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Figure 14. Envelope spectrum in (a) load and (b) non-load direction.

Figure 15 depicts the spectrum of signal in the load and non-load directions, respectively. As can
be seen, two peaked regions can be clearly distinguished from the spectrum in both directions, with one
in the low frequency band from 500 to 1500 Hz and one in the high frequency band from 6000 to
9000 Hz. In addition, it can be observed that the low frequency band shifted right slightly with the
increase in loads.
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Due to the difference between the low and high frequency band, spectral centroid [37] based on
FFT spectrum was calculated according to Equation (16), as shown in Figure 16.

Centroid =

∑N−1
n=0 f (n)x(n)∑N−1

n=0 x(n)
(16)

From the spectral centroid, signals of the low frequency band and the high frequency band in
the load direction showed a relatively obvious uptrend with the increase in clearance. However,
when under a relatively light load, especially 800 and 1600 N, the centroid line displayed large
fluctuations under large clearances. In addition, in either the load direction or non-load direction,
these lines showed much crossing, which still brought difficulty for monitoring bearing clearance.
Fortunately, when under a widely used clearance range, from 0 to 60 µm, these lines showed better
separability, which showed a better performance over the RMS value.
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In order to verify the effect of the spectral centroid in a real measured signal, the vibration signals
of Section 3 were used to calculate the index values. In addition, RMS values of the low frequency
band were calculated as a comparison to the spectral centroid, as shown in Figure 17. It was found that
the spectral centroid showed a better performance in clearance monitoring.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 19 

  

(c) (d) 

Figure 16. Spectral centroid: (a) low and (b) high frequency band in the load direction, (c) low and (d) 

high frequency band in non-load direction. 

From the spectral centroid, signals of the low frequency band and the high frequency band in 

the load direction showed a relatively obvious uptrend with the increase in clearance. However, 

when under a relatively light load, especially 800 and 1600 N, the centroid line displayed large 

fluctuations under large clearances. In addition, in either the load direction or non-load direction, 

these lines showed much crossing, which still brought difficulty for monitoring bearing clearance. 

Fortunately, when under a widely used clearance range, from 0 to 60 μm, these lines showed better 

separability, which showed a better performance over the RMS value. 

In order to verify the effect of the spectral centroid in a real measured signal, the vibration signals 

of Section 3 were used to calculate the index values. In addition, RMS values of the low frequency 

band were calculated as a comparison to the spectral centroid, as shown in Figure 17. It was found 

that the spectral centroid showed a better performance in clearance monitoring. 

  

(a) (b) 

Figure 17. (a) RMS and (b) spectral centroid values of bearing test rig data. 

4.3 Influence of Rotational Speed 

To study the influence of rotational speed, simulations under 500 and 1000 rpm were carried out 

to make a comparison with 1500 rpm based on the spectral centroid values of the low and high 

frequency bands in the load direction, as shown in Figure 18. 

Figure 17. (a) RMS and (b) spectral centroid values of bearing test rig data.

4.3. Influence of Rotational Speed

To study the influence of rotational speed, simulations under 500 and 1000 rpm were carried
out to make a comparison with 1500 rpm based on the spectral centroid values of the low and high
frequency bands in the load direction, as shown in Figure 18.
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As can be seen, under different rotational speeds, apart from fluctuations under a relatively light
load, the spectral centroid showed an uptrend with the increase in clearance in general. In addition,
the spectral centroid of the low frequency band in the load direction had a better performance in
describing the clearance variations. However, it should be noted that, the rotational speed had an
influence on the location of the resonance peak. Taking a load of 800 N as an example, the resonance
peak shifted with the increase in rotational speed.

4.4. Discussion

In a WT system, unsteady wind and gusts will lead to high contact stresses on rolling elements
and bearing skidding. Investigations show that wear is the main cause of bearing failures. Wear and
tear on bearings could result in faults or even fatal breakdowns, causing catastrophic accidents and
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economic losses. Thus, this study, focusing on the bearing clearances caused by wear, provides a vital
reference to accurately monitor the health condition of bearing. In practical application, for a WT
real-time online monitoring system dynamic model, the investigated vibration characteristics and
indicators can be utilized to show the present and predict the future state and will be updated or
adjusted through the test data. Thus, the faults can be detected at an early stage, providing sufficient
lead time to perform maintenance on WTs and hence reducing accidents and economic losses.

From all the above analysis, although the dynamic force on each rolling element shows a linear
increase with the increase in the clearance and load, it is very difficult to obtain a linear vibration
indicator related to bearing clearance. This may be due to the nonlinear effect between the contact
force and vibrations. In addition, because the model is established based on ideal assumptions, which
inevitably ignored some factors, such as bearing errors and interferences, the responses under different
clearance and load conditions will become even more complicated once these factors are taken into
consideration. Thus, diagnostic methods and some more advanced approaches are required for
nonlinear feature extraction, such as correlation analysis [38], principal component analysis (PCA) [39],
time-frequency manifold learning [40,41] and so on.

In future research, on the one hand, the authors will take more factors, such as friction, skidding
and lubrication, into consideration, making the simulation closer to the real operating state of bearings.
On the other hand, nonlinear feature extraction methods will be applied to the existing data to realize
online bearing clearance monitoring.

5. Conclusions

To monitor the bearing health condition at early stages for taking timely maintenance actions,
this study has investigated the vibration characteristics of deep groove ball bearings with consecutive
increases in clearances and loads. A dynamic model is introduced to gain the vibration responses of a
bearing before local defects appearing on raceways. The proposed model is verified based on the good
consistency between the numerical simulation and the bearing test rig data.

The dynamic force exhibits as a repetitive impulse train in accordance with the frequency of BPFO.
The maximum magnitude shows a significant monotonic increase with clearances, which will lead to a
substantial decrease, about 30%, in bearing life time.

Moreover, vibration responses can be used to indicate the changes of clearances. Particularly,
BPFO is the dominant modulation component from the envelope spectrum in both the load and
non-load directions. RMS and spectral centroid values show an uptrend with the increase in clearances
under different operating conditions, especially the spectral centroid of the low frequency band in
the load direction, allowing the change in clearances to be monitored with good accuracy. However,
the RMS value and spectral centroid show certain fluctuations with increasing bearing clearances,
due to the resonance magnification in low-load conditions, which must take special care in predicting
changes in clearances. Nevertheless, reducing the resonance effect and finding optimal indicators will
be the future study in this subject.
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