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Abstract: Optical Coherence Tomography (OCT) imaging has major advantages in effectively
identifying the presence of various ocular pathologies and detecting a wide range of macular
diseases. OCT examinations can aid in the detection of many retina disorders in early stages that
could not be detected in traditional retina images. In this paper, a new hybrid computer-aided
OCT diagnostic system (HyCAD) is proposed for classification of Diabetic Macular Edema (DME),
Choroidal Neovascularization (CNV) and drusen disorders, while separating them from Normal
OCT images. The proposed HyCAD hybrid learning system integrates the segmentation of Region of
Interest (Rol), based on central serious chorioretinopathy (CSC) in Spectral Domain Optical Coherence
Tomography (SD-OCT) images, with deep learning architectures for effective diagnosis of retinal
disorders. The proposed system assimilates a range of techniques including Rol localization and
feature extraction, followed by classification and diagnosis. An efficient feature fusion phase has been
introduced for combining the OCT image features, extracted by Deep Convolutional Neural Network
(CNN), with the features extracted from the Rol segmentation phase. This fused feature set is used to
predict multiclass OCT retina disorders. The proposed segmentation phase of retinal Rol regions
adds substantial contribution as it draws attention to the most significant areas that are candidate
for diagnosis. A new modified deep learning architecture (Norm-VGG16) is introduced integrating
a kernel regularizer. Norm-VGG16 is trained from scratch on a large benchmark dataset and used
in Rol localization and segmentation. Various experiments have been carried out to illustrate the
performance of the proposed system. Large Dataset of Labeled Optical Coherence Tomography (OCT)
v3 benchmark is used to validate the efficiency of the model compared with others in literature. The
experimental results show that the proposed model achieves relatively high-performance in terms of
accuracy, sensitivity and specificity. An average accuracy, sensitivity and specificity of 98.8%, 99.4%
and 98.2% is achieved, respectively. The remarkable performance achieved reflects that the fusion
phase can effectively improve the identification ratio of the urgent patients’ diagnostic images and
clinical data. In addition, an outstanding performance is achieved compared to others in literature.

Keywords: deep learning; CNN; feature generation; feature fusion; Rol segmentation; OCT;
retina disorders

1. Introduction

Optical Coherence Tomography (OCT) imaging is a type of optical biopsy. It is used to view
and capture small changes in retina. It generates cross sectional 3D images by measuring the echo
time delay or the magnitude of back reflected light [1]. Compared to traditional regular retinal
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fundus examinations, OCT has major advantages in identifying the presence of various ocular
pathologies. A wide range of macular diseases such as Macular Edema, Choroidal Neovascularization,
Macular Hole, Pigment Epithelium Detachment and Central Serous Retinopathy can be detected by
OCT [2]. OCT examinations can aid the detection of the previously mentioned disorders in an early
stage. In OCT, cystic and sub retinal swellings are overt in early stages, while they remain undetectable
in retinal fundus images [2]. In addition, OCT is noninvasive and quantifiable without pupil dilation.
Hence, OCT scanning leads to a breakthrough in the screening, diagnosis and assessment of the
necessity and efficacy of treatment for particular diseases. Nevertheless, a specialist is still required for
the inspection and evaluation of the OCT findings, which creates burden and subsequent bottle necks
in health care provision.

Alternative diagnostic and screening methods are needed to handle the existing bottlenecks. A lot
of automated systems were recently developed to give clinical-decision support for medical imaging
and to speed up the diagnostic process [3]. The incorporation of machine learning (ML) techniques for
screening and diagnosis has a massive prospect in advancing health care provision, through timely and
accurate decision making. Machine learning has made a revolution in developing these automated
systems by implementing robust algorithms and by detecting features that help in classification of
different diseases within a small time and within an acceptable accuracy [4].

In this paper, a computer-aided OCT diagnostic system is proposed for classification of Diabetic
Macular Edema (DME), Choroidal Neovascularization (CNV) and drusen disorders, while separating
them from Normal OCT images. The proposed model HyCAD presents a hybrid learning system,
which integrates deep learning and traditional ML for effective diagnosis of retinal disorders.
The proposed system assimilates a range of techniques including Rol localization, feature extraction
and dimensionality reduction, followed by classification and diagnosis.

The contribution of the paper can be summarized as establishing a robust hybrid machine learning
model for accurately diagnosing different retinal disorders such as CNV, DME and drusen. The model
provides effective Rol localization and hand-crafted features generation. The fusion of automatically
generated deep learning features and human articulated features noticeably improves the performance
of pure deep learning architectures.

The paper is organized as follows: in Section 2, a medical background on retina anatomy in OCT is
introduced. Section 3 gives an overall literature survey on OCT segmentation techniques and literature
background on using machine learning in retinal diseases diagnosis based on OCT. Section 4 presents
the dataset description and the applied data preprocessing. The proposed system architecture and
the implemented models are detailed in Section 5. The results of different experimental scenarios are
shown and discussed in Section 6. Finally, conclusions will be drawn in Section 7.

2. Medical Background: Retina Anatomy in OCT

The retina contains several layers with different thicknesses and intensities. Separating and
determining the thickness of each layer are taken as vital markers in evaluating the health condition of
the retina. The shape and width of the individual layers are considered two of the most important
factors that reveal the current status or progress of a disease [5]. The layers may thicken or thin over
the course of different diseases. Hence, many retinal diseases can be diagnosed through detecting
irregularities in OCT images. Recently, there are many studies, which are conducted to analyze the
OCT retinal images and to classify the healthy from diseased patients.

DME, CNV and drusen diseases are considered in this study. The anatomy of these diseases is
portrayed and contrasted to normal anatomy in Figure 1. A brief description of each of the considered
diseases in this study is given below.
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Figure 1. Illustration of abnormal class vs. normal class (a) CNV vs. NORMAL (b) DME vs. NORMAL
(c) DRUSEN vs. NORMAL.

Macular edema is the swelling of the central part of the retina [6]. It is considered one of the most
common retinal disorders. Increased blood sugar levels, in people with diabetes, can damage the
retinal blood vessels or result in tiny bulges protruding from the vessel walls, leaking or oozing fluid
and blood into the retina. This leads to the serious eye complication called Diabetic Macular Edema
(DME) [7], which may cause vision problems or blindness.

Another type of retinal disorder is Choroidal Neovascularization (CNV), it is the creation of new
blood vessels in the choroid layer of the eye. Neovascular Degenerative maculopathy is commonly
accompanied with extreme myopia, malignant myopic degeneration or age-related developments [8].
CNV is a major cause of visual loss.

Another type of retinal disorder is drusen. It is small yellow deposits of fatty proteins (lipids)
that accumulate under the retina. The retina is a thin layer of tissue that lines the back of the inside of
the eye, near the optic nerve. The retina contains light-sensing cells that are essential for vision [9].
Drusen are like tiny pebbles of debris that build up over time and can result in central vision loss.
Central vision allows us to focus on details straight ahead [9].

The presence of overt changes in retina layers with various diseases in OCT images, encourage
the development of diagnostic systems to differentiate between these diseases automatically.
Computer aided diagnosis can support ophthalmologists with accurate timely decisions, thus leading
to promoting health care provision.

3. Related Work

3.1. Literature Review on Retina Segmentation

In particular, segmentation has received considerable attention recently as it is an important step
in aiding diagnosis since it helps determine the Rol. Ghorbel et al. [10] proposed a method for the
segmentation of eight retinal layers in Heidelberg spectralis SD-OCT images. Global segmentation
algorithms such as active contours and Markov random fields are used. In addition, a Kalman filter was
designed. It is used to model the approximate parallelism between the photoreceptor segments [10].

A comparison between different edge detectors was conducted by Luo et al. [11]. They studied
and compared the performance of canny edge detector [12,13], the two-pass method proposed by
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Bagci et al. [14] and Edgeflow technique [15]. All of these techniques were used with retinal OCT
images to delineate the retinal layer boundaries. From the evaluation of the results, it was shown that
the two-pass method outperforms the Canny detector and the EdgeFlow technique that is used with
OCT images to delineate the retinal layer boundaries. In addition, the mean localization deviation
metrics show that the smallest edge shifting problem is caused by the two-pass method. The study
suggests that the two-pass method is the best one for retinal OCT boundary detectors.

In the work of Salarian et al. [16], a method that uses graph theory and the shortest path algorithm
was presented to detect certain layers. The aim was to choose the Rol that could be used to distinguish
normal cases from abnormal ones. They discovered that using changes in some parts, such as inner
limiting membrane (ILM), retinal nerve fiber layer (RNFL) and retinal pigment epithelium (RPE),
leads to separating these layers easily. The proposed technique was applied to all B-Scan images
of 16 people, including low-quality images and some images with diseased eyes. The results were
accurate according to manual segmentation of an expert.

Others such as Garvin et al. [17] proposed a method to segment five layers (NFL, GCL+IPL,
INL+OPL, IS, OS) in OCT retinal images. The layers were identified using constructed geometric
graph and computed a minimum cost closed set. This graph is constructed from the edge/regional
information and a priori determined surface smoothness and interaction constraints.

3.2. Literature Review on Retina Disorder Classification Using OCT

Although the previous studies present effective segmentation techniques, there is a need to
develop comprehensive diagnostic systems that emphasize Rol and perform disease classification.
Such systems can help alleviate the burden on medical care systems.

Current automated diagnostic systems either use traditional ML techniques of feature extraction,
segmentation and classification or utilize deep learning architectures with unprocessed images.

An example of these automated systems with OCT imaging can be found in the work of
Srinivasan et al. [18]. It described an automated method for detecting retinal diseases using features
extracted by Histogram of Oriented Gradients (HOG) techniques and SVMs to classify three classes
namely DME, dry AMD and Normal. Their method does not rely on the segmentation of inner retinal
layers; however, retinal flattening is performed. The proposed model achieved 100% for both DME
and dry AMD classes and 86.67% for normal class. Another example of traditional approach is that of
Alsaih et al. [19]. They proposed a pipeline model that generated a large set of extracted features using
HOG and Local Binary Pattern (LBP) at four levels of the multiscale Gaussian lowpass image pyramid.
These features were either reduced using Principle Component Analysis (PCA) or directly passed to
SVM classifier, which was used to classify two classes: DME and normal. Their best model achieved
an accuracy of 81%.

Naz et al. [1] addressed the problem of automatic classification of OCT images through SVM
(leave one out) technique after image denoising and extraction of features from thickness profile
and cyst spaces. This technique was based on extracting features from segmenting the retinal layer
(ILM and choroid layer) and from the changes in thickness of these layers. Naz et al. [1] applied that
technique for the identification of patients with DME versus normal subjects. The proposed model
achieved an accuracy of 79.65%.

These traditional approaches [1,18,19], which employed hand-crafted features for the classifiers,
were shown to obtain promising results. However, these approaches shared a common disadvantage,
which is requiring abundant expert knowledge. Medical knowledge was needed to correctly detect
retinal layers and/or changes in layers’ thickness [1] and/or assist in retinal flattening [18,19].
Such dependence on experts” availability gives rise to another concern, which is having poor
generalization to other domains [20]. Despite these limitations, hand-crafted features remain to provide
intuitive information, which enables the needed analysis of the model [21]. Hence, the generation of
hand-crafted features that are not heavily reliant on experts” knowledge would provide the required
balance of providing explanation of the model without being dependent on an expert. This balance
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would help mitigate the pressure on medical systems. In order to overcome these disadvantages, deep
learning techniques were employed to perform embedded feature extraction implicitly. Awais et al. [22]
used a deep learning architecture (VGG16) for extracting features from different layers of the network.
Classifications were made using KNN and Decision Tree based on the extracted features. The model is
used to classify two classes: DME and normal. The best model got an accuracy of 87.5%.

Perdomo et al. [23] proposed a new CNN architecture for OCT classification. The new CNN
consists of two blocks, the first block contains four subblocks with convolutional layers and max
pooling and the last block has two fully connected layers. The new CNN was evaluated with different
learning rates, until it was able to correctly detect DME with a classification accuracy of 93.75% between
two classes: DME and normal at learning rate 0.00001.

Motozawa et al. [24] developed a pipeline model consisting of two CNNs. The first is used to
differentiate AMD class from normal class and the second CNN model is used to divide the AMD class
into those with exudates and without exudates using transfer learning. The first CNN achieved an
accuracy of 99% and the second one achieved an accuracy of 93.9%. Despite that the models attained
high accuracies, the classification was limited to two classes which simplifies the problem. The work of
Kermany et al. [4] established a diagnostic tool based on a deep learning framework for the screening
of patients with common treatable blinding retinal diseases. They applied their approach on an OCT
dataset [25] with four classes which are DME, CNV, DRUSEN, NORMAL. They used transfer learning
inception model which achieved 96.1% average accuracy. Their approach demonstrated performance
comparable to that of human experts in classifying age-related macular degeneration and diabetic
macular edema. Using the same dataset, Li et al. [20] adopted a transfer learning VGG16 network that
achieved an accuracy of 98.6%.

Both studies applied deep learning approaches [4,20] to classify four different classes including
serious diseases (DME, CNV) and achieved promising results. However, the problem for deep learning
models (CNNs) presented in the work of Kermany et al. and Li et al. [4,20] is that its sensitivity
to urgent referrals classes (CNV/DME) is unsatisfactory. This is the main argue point against the
approaches in the work of Kermany et al. and Li et al. [4,20]. Another common concern of deep
learning architectures is the limited interpretability of the constructed models.

The incorporation of hand-crafted features can provide an adequate solution to deep learning
issues. Hand-crafted features can offer complementary information that increase the understandability
of the classification decision [26,27]. In addition, the use of hand-crafted features was shown to
considerably improve the performance of pure deep learning approaches [28]. Recently, similar studies
for image classification and recognition have shown that the integration of deep and traditional learning
yield better performance. Examples of these studies include the work of Zhang et al. [29] for face
recognition and Xie at al. [30] for lung nodule classification. Moreover, deep learning architectures in
return can provide automated localization of the retinal Rol, which overcomes the need for an expert
to aid in the specification of the Rol, required for traditional feature extraction.

In this paper, we propose a hybrid computer aided diagnosis (HyCAD) system based on OCT
images using deep and traditional learning to attain high accuracy classifications and provide relative
insight into the classification decision. In addition, HyCAD provides automated Rol localization which
helps advance the diagnosis process.

4. Dataset Description

4.1. Data Acquisition and Labeling

The current study uses a benchmark dataset which consists of 109,312 retinal OCT images.
The dataset was selected from 207,130 retinal OCT images for 5319 adult patients taken between 2013
and 2017. The 207,130 retinal OCT images were collected from retrospective cohorts from the Shiley Eye
Institute of the University of California San Diego, the California Retinal Research Foundation, Medical
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Center Ophthalmology Associates, the Shanghai First People’s Hospital and the Beijing Tongren Eye
Center [20,25].

Two retinal specialists provided the class labels for the images. Four class labels were available
CNV, DME, DRUSEN, NORMAL) as shown in Figure 2. Furthermore, only 109,312 out of 207,130 images
were clearly distributed between these classes by the agreement of the two retinal specialists and
formed the dataset while the other images contained severe artifacts. The dataset is divided into
108,312 images as training set and 1000 images as testing set, according to Li et al. [20]. The distribution
of the classes within the training set is illustrated in Table 1, where both classes: DME and DRUSEN,
present a small percentage of the training set and can be considered to impose the challenges of
minority classes on our classification problem [4]. The testing set is sampled to be of equal distribution
for all classes as illustrated in Table 2.

CNV
DME
DRUSEN
NORMAL
Figure 2. Dataset classes (CNV, DME, DRUSEN and NORMAL).
Table 1. Training dataset class distribution.
Training Dataset
Urgent Referrals Group Nonurgent Referrals Group Total
CNV DME DRUSEN NORMAL
37,206 11,349 8617 51,140 108312
34.35% 10.48% 7.96% 47.22% 100%
Table 2. Testing dataset class distribution.
Testing Dataset
Urgent Referrals Group Nonurgent Referrals Group Total
CNV DME DRUSEN NORMAL
250 250 250 250 1000
25% 25% 25% 25% 100%

The classes are categorized as Urgent referrals and Nonurgent referrals groups. The CNV and DME
classes represent the Urgent referrals group, where patients need to be transferred to an ophthalmologist
in time for definitive anti-VEGF treatment [4,20]. The referral is urgent in this case because if the
treatment is delayed, it would almost cause irreversible vision impairment and even lead to blindness.
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The Nonurgent referrals group, represented by DRUSEN and NORMAL classes, does not need
immediate Urgent referral from an ophthalmologist [4,20].

4.2. Image Preprocessing

A range of preprocessing steps are applied to the dataset to limit the processing system requirements
and to increase the robustness of the models.

First, individual cross-sectional tomography (B-scans) in the SD-OCT volume are denoised using
the sparsity-based block matching and 3D-filtering (BM3D) denoising method which reduces the
speckle noise. It is the filter from the nonlocal means class that looks for local neighborhoods of similar
shapes and puts them into a 3D matrix [31].

The applied BM3D filter noticeably reduces the speckle noise in images, as can be seen in Figure 3.
Noise reduction helps in achieving good performance metrics.

Noisy Images Denoised Images Noisy Images Denoised Images

Figure 3. Noised vs. Denoised Images (a) CNV class (b) DME class (c) DRUSEN class (d) NORMAL class.

Second, images are streamed in batches to avoid system crash due to RAM overloading, and this
is because of the memory limitations. Memory limitations come from training models using a RAM
size of small bandwidth compared to the large dataset used in training (108,312 images) and the large
size of our deployed CNN architecture. To solve this problem, our data is partitioned into batches of
32 images and the training data was transferred batch by batch from the hard disk to RAM during
training. After the training of each batch ends, it is discarded, and a new batch of images is generated
and stored in RAM. So, each training epoch will have 3385 iterations (equal to number of training
dataset/batch size). This technique allows us to train our large training set without RAM overflowing.

Data Augmentation is applied for each batch. Rotation by range from 0 to 30 degrees, horizontal
flipping and shifting by range between 0 and 30% from left, right, up and down is applied randomly on
each batch of images in each epoch to allow deep learning architectures to train on different orientations
of input image, thus improving the robustness of the system. After that, all the images are resized to
200 x 200 pixels.

Each pixel value is normalized to process all images in the same manner because some images
may have high pixel range that could cause stronger loss and low pixel range that could cause weaker
loss. Additionally, high pixel range will have a large number of votes to determine how to update
weights. So, if the values of intensities are normalized to avoid discrepancy in image processing caused
by different pixel ranges, this could decrease the gap and make a fair competition in votes between
high pixel range and low pixel range.



Appl. Sci. 2020, 10, 4716 8 of 25

5. The Proposed HyCAD System: Hybrid Computer-Aided Diagnosis of Retinopathy Applying
Deep and Traditional Machine Learning on OCT Images

In this section, the proposed model architecture will be introduced, with an illustration of the phases’
description. The proposed model utilizes modified variant of an existing deep learning architecture,
namely VGG16, with OCT images for efficient diagnosis of retina disorders. The proposed deep learning
architecture modifications aim at improving the performance of the standard basic architectures in
terms of attained accuracy and training time requirements. The implemented architectures provide Rol
localization and feature generation. Hand-crafted features are generated from the Rol that is extracted
by the deep learning architecture. Afterwards, both CNN-based features and hand-crafted features are
merged and input to the dense layer. Diagnosis is produced based on the classification output by the
dense layer. The proposed system architecture is shown in Figure 4.

S Spatial
Rolitocallzation H Feature Extraction
CNN Deep Feature Training and
Learning Fusion Classification

CNN
Feature Extraction

Diagnosis

Figure 4. The proposed HyCAD system architecture.

5.1. Norm-VGG16 Deep Learning Architecture

One of the most prominent deep learning architectures is VGGs Network. VGG16 [32] architecture
is utilized for its known superior performance, for example, compared to other models like AlexNet [33].
This may be attributed to its small kernel size (3 X 3) and more trainable parameters, which helps
increase the depth of CNN without the problem of gradient loss in deep CNNs. A set of modifications
to the standard VGG network architecture are proposed to create Norm-VGG16 Network variant
architecture that enhances the performance of the basic architecture.

First, the number of convolution layers is increased from 13 layers in standard VGG to
16 convolution layers. Each of the added layers has a kernel of size 3 x 3 and stride = 1. The pipeline
of the convolution layers starts with first layer of size 200 x 200 and is convolved by 64 (3 x 3) kernels.
The ending layer of the pipelined convolution layers has 512 (3 x 3) kernel with output of size 3 x 3.
Between each group of convolution layers there is a max pooling layer of size (2 X 2) to down sample
the feature tensor to reduce overfitting. The second applied modification is adding a global average
pooling layer followed by a dense layer to reduce the overfitting of CNN. The dense layer has an
output of four neurons representing the four classes of our dataset.

Another enhancement to the standard architecture is adding L2 kernel regularization to limit
overfitting. The added regularization is shown in Figure 5 at the last dense layer. Kernel regularization
was first added in different layers, but the best performance is attained by the variant scenario
implementing L2 kernel regularization at the dense layer (last layer). The value of the hyperparameter
of L2 regularizer, which determines the relative importance of the regularization component compared
to the loss component, is set to 0.01.
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Figure 5. Norm-VGG16: modified VGG16 architecture (in the blocks modification in the VGG16,
a block of 2 convolutional neural networks is highlighted followed by batch normalization with feature
map 256, max pooling layer and dropout layer added after the block of 128 feature map and maxpooling
layer. In addition, At the end of Network a Convolution layer of 512 feature map is added. The dense

layer is modified to have a kernel regularizer).

L2 regularizer puts a constraint on the complexity of a network by giving a small value to its
weights, which makes the distribution of weights regular. This is done by the increasing loss function
of the network, which has large weights [34].

To explain how the regularizer works, a training function §: f(x) should be first defined as
a function that maps an input vector x to output § where 7 is predicted value for actual value y. The loss
between § (f(x)) and y can be defined for one sample x; with corresponding target y;. Loss (L) can
be computed as L((y;), §;) = L (f(x;), y;) [35]. For all input samples x; ... .... x;. The sum of all loss
functions between each input x; and its corresponding output i is minimized as given in Equation (1).

min Y L(f(x),vi) M
i=1

The regularizer (R(f)) is added to the loss equation to increase the training loss to decrease

overfitting as shown in Equation (2).

n

L(f(xi)r ]/i) = Z Llosscomponent (f(xi)/ ]/i) + /\R(f) 2)

i=1

where A is a hyperparameter that determines the relative importance of the regularization component
compared to the loss component [35]. We choose our A = 0.01. From Equation (1) and Equation (2),
minimization after adding the regularization would occur to both the component of loss and the
regularization component. Different values for A are tested in the range between 0 and 1 (0.001, 0.01,
0.02, 0.1, etc.) according to the commonly used values in literature [34,35]. The best results are obtained
at A =0.01.

The L2 regularization is a type of regularization that is proportional to the square of the value of
the weight coefficients (the L2 norm of the weights) [36] as shown in Equation (3).

R =) ()
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By substituting Equation (3) into Equation (2), L2 regularization Equation (4) is generated
n n
L(f(xi)r yi) = Z Llosscomponent (f(xi)r ]/i) + /\Z wlz 4
i=1 i=1

5.2. Rol Localization and Segmentation

The performance of deep learning is noteworthy. Nevertheless, a shortcoming of deep learning
architectures is that they are considered as black boxes which do not provide any insight into the
classification process. Therefore, in this phase the activation maps are generated by Norm-VGG16 for
our classes to visualize and localize the areas used for classification. The activation maps highlight the
focus areas, from which most of the CNN-based features were extracted.

In order to generate discriminative localization map, Gradient-weighted Class Activation Mapping
(Grad-CAM) module [37] is used. The implemented Grad-CAM module structure is shown in Figure 6.
Grad-CAM LGu-cam € R**Y of width 1 and height v for any class c. The gradient of the score of the
class c is computed before the SoftMax layer (y.) with respect to feature maps Ay of a convolutional
layer g - Lhese gradients flowing back are global average pooled to obtain the neuron importance
weights a‘y as shown in Equation (5).

global
average pooling
d
1 ¥
%=zl L JAK ©
! J 1

——

gradiants via
backpropagation

Feature Map
Localization on
input image

Input Image

. — Feature Maps

Fully Connected Layer
Activations
¥ "

Figure 6. Grad-CAM overview.
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This weight a* represents a partial linearization of the deep network downstream from A and
captures the “importance” of feature map k for a target class c. After that a weighted combination of
forward activation maps takes place. RELU is applied on the combination of feature maps. RELU is
used to emphasize the positive influencer pixels whose intensity should be increased in order to
increase y° for a certain class and remove the negative influencer pixels that are likely to belong to
other categories in the image as shown in Equation (6).

(6)

k

LCGmd—CAM = ReLU ( Z OC; A
k

|

linear combination

The RELU helps in highlighting the positive influencer pixels in the localization maps and avoid
highlighting the negative influencer pixels, which achieve better localization [37].

The generated heat maps (activation maps) seem to clearly portray the Rols used in classification,
which can be considered as implicit segmentation. Thus, they provide transparency of the model,
which is required in medical diagnosis. The generated heat maps for all the four classes are shown in
Figure 7, where the activation maps clearly mark the Rol.

CNV

DME

DRUSEN

NORMAL

Figure 7. Examples of heat maps for each class.

The shown samples of the activation maps clearly mark the Rol that can be used in classification
and feature generation. As shown in Figure 8, a binary mask is generated for each image from the Rol
and the corresponding image is segmented using this binary mask.

The binary masks are generated based on the heat maps output by the Norm-VGG16 deep
learning architecture. The heat maps highlight the Rol, which allow the generation of binary masks.
Simple global thresholding [38,39] is used, where a histogram is plotted for each heat map and the
respective threshold value is determined. The threshold value is selected per individual heat map such
that red and yellow areas in the heat map are used to create the mask (emphasizing the localized Rol
region) as shown in Figure 9. The global threshold value is used to generate the binary mask.
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Denoised Image ROl localization Generated mask

Cropped Image
(Grad-CAM)

Figure 8. Pipeline of segmentation. (a) CNV class (b) DME class (¢) DRUSEN class (d) NORMAL class.

ROl localization Generated mask
(Grad-CAM)

Figure 9. Mask Generation from heat map (generated from Norm-VGG16 (kernel regularized)).

5.3. Hand-Crafted Feature Generation

After Rol localization and cropping, a set of spatially articulated features are generated.
Before generation, the cropped part of the image is resized to 64 x 64. Then, HOG and DAISY
feature descriptors were generated.

HOG descriptors are calculated by normalizing colors then dividing the image into blocks and each
block is divided into smaller units called cells. Each cell contains number of pixels (pixel intensities).
First, the gradient magnitude and direction of each cell’s pixel intensities is calculated. If (x, y) is
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assumed as a pixel intensity, then gradient magnitude is calculated from Equation (7) and gradient
angle is calculated using Equation (8) [40,41].

Gx,) = y/(Gelx,9)? + Gy (x,1)?) )
G
O(x,y) = arctan( y(x'y)) 8)
x(xy)

After calculating magnitude and angle, the HOG is calculated for each cell by calculating
the histogram. Q bins for angles are chosen with unsigned orientation angles between 0 and
180. Afterwards, normalization is applied since different images may have different contrasts [40].
The pipeline of HOG can be shown in Figure 10. In our implementation, a [4 X 4] cell size, [2 X 2] cells
per block and 9 orientation histogram bins creating 8100 features were used.

Gradient Cell Histograms HOG descriptors

Normalize i Block
iz Calctflaﬂons T . 2.0
color (Magnitude and of bins) Normalization

Input Image

Angle)

Figure 10. Histogram of Oriented Gradients (HOG) descriptor pipeline.

DAISY feature descriptor is an algorithm that generates low dimensional invariant descriptors that
convert local image regions into low dimensional invariant descriptors, which can be used for matching
and classification. DAISY feature descriptor is faster than GLOH and SIFT feature descriptors [42]. It can
be computed efficiently at every pixel unlike SURF. For DAISY descriptors generation, eight orientation
maps, G, are computed for each image. one for each quantized direction, where G (u, v) equals the
image gradient at location (u, v) [42]. Gaussian kernels of different }, values convolve each orientation
map several times to obtain convolved orientation maps for different sized regions [42]. If hy (u, v) is
the vector made of the values at location (1, v) in the orientation maps after convolution by a Gaussian
kernel of standard deviation X as shown in Equation (9), after that, the If iy (1, v) is normalized

T
hy (u,v) = [G%‘ (u,0), covvnn... , Gg (u,0) ] )
where Glz, GZZ e .ng denote the X-convolved orientation maps. The vector is normalized and

denoted by ﬁz (u, v). To correctly represent the pixels near occlusions, the normalization is performed
in each histogram independently because normalizing the descriptor as a whole would lead to the
same point, which is close to occlusions, appearing different in two images. A complete explanation of
calculating Full DAISY descriptor is given by Tola et al. [42].

5.4. Feature Fusion and Classification

A set of 512 CNN-based features are extracted per image from our Norm-VGG16 network
architecture. The features are extracted from the global average pooling layer. These features are fused
with the 8100-feature array of hand-crafted HOG descriptors and 400-feature array of hand-crafted
DAISY, leading to a concatenated array size of 9012 features. The classification of these feature sets is
done in batches. A Neural Network consisting of three dense layers is used to train these features with
first layer of input size of 9012 inputs and 2048 neurons followed by a hidden layer of 512 neurons and
the final layer contains four neurons with a SoftMax activation to normalize the distribution probability
as shown in Figure 11. The model is trained using Adam optimizer with batch size 32 for 100 epochs.
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Figure 11. Neural Network Architecture.
5.5. Expermental Setup

Models implementation, training and results are done using Python language v3.7.6 (designed
by Guido van Rossum and developed by Python Software Foundation, this version is released
on December 2019) with Numpy v1.18.4 (Travis Oliphant), Tensorflow v2.1.0 (Google Brain team),
Keras v2.3.1 (Frangois Chollet) and OpenCV v4.2.0 (Intel Corporation, Willow Garage, Itseez) packages
Experiments are conducted on Google Colab (free cloud service hosted by Google). Google Colab
consists of 1xNvidia Tesla K80, 12.6 GB RAM and 320 GB Disk space.

All deep learning architectures are trained for 30 epochs from scratch using Adam optimizer with
starting learning rate of 0.001 on the 108,312 training images. Inputs are divided into batches of size 32.
Validation accuracy and cross-entropy loss are monitored for each epoch. In addition, the learning rate
is reduced by factor of 0.2 for each three epochs without improvement in validation loss.

For the deep learning architectures, the best model is defined as having minimum validation
loss, then it is stored and applied on the testing set. The best model Norm-VGG16 took about 12 h to
be trained.

6. Results and Discussion

6.1. Performance Metrics

The following measures are used to evaluate the performance of trained models to decide which
one has advantage over the others.

6.1.1. Confusion Matrix

It is a table that is used to visualize and describe the performance of a classification model on
a testing set of data as shown in Figure 12. It is a summary of prediction results in a classification
problem [43]. In confusion matrix, values of True Positive (TP), True Negative (TN), False Positive (FP)
and False Negative (FN) are represented by assuming C; one of the four classes in our dataset.
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Figure 12. Confusion matrix.

e TP (C;.) = All the instance of C;. that are classified as C;.

e TN (G;.) = All the non-Ci. instances that are not classified as C;.
e FP (C;.) = All the non-Ci. instances that are classified as C;.

e FN (C;.) = All the Ci instances that are not classified as C;.

6.1.2. Accuracy (Acc)

It is measured by dividing the number of correctly labeled images by the total number of test
images [4]. Equation (10) depicts single class accuracy measurements

TruePositive + True Negative
True Positive + True Negative + False Positive + False Negative

Accuracy = (10)

6.1.3. Sensitivity (Recall)

It is determined by dividing the total number of correctly classified Urgent referrals by total
number of actual Urgent referrals [4]. Equation (11) depicts single class sensitivity measurements

True Positive
True Positive + False Negative

Sensitivity = (11)

6.1.4. Specificity (Sp)

It is determined by dividing the total number of correctly classified non-referrals by total number
of actual Nonurgent referrals [4]. Equation (12) depicts single class specificity measurements

True Negative
True Negative + False Positive

Specificity = (12)

6.2. Experimental Results

In this section, the implemented experimental scenarios used for performance comparison and
the corresponding results using the described performance evaluation metrics are described.

6.2.1. Experimental Scenarios

1. HyCAD Architecture

The proposed system architecture presented in Section 5 is applied to the dataset described in
Section 4. Norm-VGG16 integrating kernel regularizer is trained on the dataset from scratch aiming
at higher performance metrics. It is used for Rol generation and feature extraction. A set of 512
features are extracted from the global average pooling layer of the CNN network. The hand-crafted
feature extraction methods, namely HOG and DAISY, when applied on the segmented Rol generated
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8500 features. At the fusion stage of our HyCAD system, all the extracted features are fused and fed
into a three sequential dense layer neural network for a classification decision.

2. Norm-VGG16 (kernel regularized) Deep Learning Architecture

In this scenario, the modified Norm-VGG16 Deep Learning architecture is applied on the OCT
dataset. The performed classification is based solely on the CNN-based features. This scenario is
presented to elucidate the merit of incorporating human articulated features on the performance of
the system.

3. ResNet-50 Net (kernel regularized) Deep Learning Architecture

ResNets [32,44] can be considered one of the most applied deep learning architectures for image
recognition and classification. ResNets include residual blocks which allow deeper network architecture
to avoid information loss during training. In addition, it was shown to achieve lower validation
loss compared to VGG16 on the ImageNet dataset [44]. Therefore, ResNet-50 architecture (shown in
Appendix A) is chosen as one of our experimental scenarios, to compare its performance to the
proposed HyCAD system. The ResNet-50 best model is modified by adding kernel regularization in
the final dense layer.

In addition to these implemented experimental scenarios, the results of HyCAD are compared
with the work of Kermany et al. [4] and Li et al. [20]. These were chosen as their results were reported
on the same dataset using deep learning approaches and attained high results.

6.2.2. Classification Results

Our experimental results are shown in two folds. First, bootstrapping is adopted, and a limited
set of results are reported to show the performance of HyCAD across several testing data partitions
and investigate its stability relative to Norm-VGG16 and RESNET-50 and to clarify the impact of
hand-crafted features’ fusion with deep learning architectures. In the second fold of experiments,
elaborate results are reported on the same training and test percentages used by Kermany et al. [4] and
Li et al. [20]. The results of the best run are displayed to be able to compare to Kermany et al. [4] and
Li et al. [20].

1. Bootstrapping Experiments Fold

Ten bootstrapping experiments are conducted to evaluate the performance of the models at
different boot strapped test partitions. In each experiment, the 109,312 images are shuffled and
a random selection of 108,312 images is used as training dataset and the rest of the 1000 images
are used as testing dataset. Each new partition tested on our implemented architectures (HyCAD,
Norm-VGG16 integrating kernel regularizer and ResNet-50 integrating kernel regularizer) taking into
consideration that the testing dataset is partitioned equally between four classes (CNV, DME, DRUSEN
and NORMAL).

Table 3 presents the mean values and the standard deviation of overall accuracy and urgent
group sensitivity for 10 different bootstrapped partitions. The depicted results reveal the improvement
achieved through integrating the handcrafted features with Norm-VGG16 integrating kernel regularizer.
The proposed HyCAD architecture attains the highest mean accuracy and mean sensitivity for the
critical Urgent referrals compared to Norm-VGG16 integrating kernel regularizer and ResNet-50.
In addition, it attains the lowest standard deviation in comparison to the pure CNN architectures.
Compared to Norm-VGG16 integrating kernel regularizer, HyCAD achieves a substantial increase
of 2.9% and 4.9% in terms of mean accuracy and mean sensitivity of Urgent referrals, respectively.
In addition, the HyCAD model has a lower standard deviation relative to the pure deep learning
architecture Norm-VGG16 integrating kernel regularizer. Such findings emphasize the positive impact
of fusing hand-crafted features with learned features from deep learning architecture.
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Table 3. Results of 10 different experimental runs by random bootstrapping selection of 1000 images
as testing set out of the 109,312 images on Large Dataset of Labeled Optical Coherence Tomography

(OCT) v3 [25].
Mean Accuracy + Std Mean UR Sensitivity + Std
The proposed HyCAD architecture 972+12 98.1+1.1
The proposed Norm-VGG16
(kernel regularized) architecture 943+22 932+46
ResNet-50 (kernel regularized) architecture 96.2 +1.4 971+15

The Training and Validation losses and accuracies for the two deep learning architecture
(Norm-VGG16 kernel regularized and ResNet-50 kernel regularized) for each epoch are shown
in Figure 13. The Norm-VGG16 architecture best model achieves training accuracy of 94.86% and
training loss of 15.75%. In addition, it achieves a testing accuracy of 97.3% and testing loss of 8.34%.
ResNet-50 achieves a training accuracy of 96.95% and a training loss of 9.02%. In addition, it achieves
a testing accuracy of 97% and a testing loss of 8.76%. From the shown learning curves, it is manifest
that the performance stabilizes around the 15th epoch, which can lead to reducing the training
time considerably.
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Figure 13. Training and Testing Curves for Norm-VGG16 (kernel regularized) and ResNet-50 (kernel
regularized) (A) Training accuracy curves (B) Testing accuracy curve (C) Training loss curves (D) Testing
loss curve.

The confusion matrices of the best models of the presented experimental scenarios on the test
set are presented in Figure 14. ResNet-50 (Figure 14C) achieves the lowest testing accuracy of 97%.
The model’s sensitivity for Urgent referral group is 98.6%, while its specificity is 95.4%. The confusion
matrix output by applying the best Norm-VGG16 model on the test set is presented in Figure 14B.
The confusion matrix illustrates that 973 out of 1000 testing images were correctly classified. The model’s
sensitivity for the Urgent referral group is 98%, while its specificity is 96.6%.
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Figure 14. Confusion matrix (A) HyCAD confusion matrix (B) Norm-VGG16 (kernel regularized)
(C) ResNet-50 (kernel regularized).

The performance of the models is summarized and compared in Table 4. From the shown results,
it is determined that the best performing model is HyCAD architecture according to its confusion
matrix presented in Figure 14A, scoring an accuracy of 98.8%. In Urgent referrals group, the HyCAD
architecture only misclassified 3 images out of 500 and achieves a sensitivity of 99.4% as shown
in Table 4. In the Nonurgent referrals group, the same model misclassified only 9 images out of
500 images and achieves 98.2%. It is worth mentioning that the Norm-VGG16 architecture without
Kernel regularization attained a testing accuracy of 96.7% when trained on the dataset from scratch.

Table 4. Comparison between different architectures.

Model Accuracy Sensitivity (UR) (Recall) Specificity (UR)
ResNet-50 (kernel regularized) 97% 98.6% 95.4%
Norm-VGG16 (kernel regularized) 97.3% 98% 96.6%
HyCAD architecture 98.8% 99.4% 98.2%

Highest reported results are bolded for clarification.

2. HyCAD Performance Compared to Pure CNNs Performance and State of the Art

The accuracy per class is calculated and compared with previous models of Kermany et al. [4]
and Li et al. [20] in Table 5. The per class accuracy is given by dividing the truly classified image for
each class by their total number. It is noticeable from the accuracies in Table 5 that the lowest accuracy
scored by HyCAD is of DRUSEN class, which is explainable due to the fact that it has the lowest
percentage in the training set. Nevertheless, HyCAD with the fused hand-crafted features managed to
surpass its CNN counterpart Norm-VGG16 in separating the DRUSEN minority class with a difference
of 3.2%.

Table 5. Accuracy per class comparison between proposed models, Kermany et al. and Li et al. models
on Large Dataset of Labeled Optical Coherence Tomography (OCT) v3 [25].

Accuracy/Class Models Urgent Referrals Group Nonurgent Referrals Group
CNV DME DRUSEN NORMAL
Kermany et al. 2018 [4] 94.8% 96.8% 94.4% 98.4%
Lietal. 2019 [20] 96.4% 99.2% 99.2% 99.6%
HyCAD model 99.6% 99.2% 97.2% 99.2%
Norm-VGG16 (kernel regularized) 96.8% 99.2% 94% 99.2%

ResNet-50(kernel regularized) 99.6% 97.6% 90.8% 100%
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As shown in Table 5, the proposed HyCAD model achieves a significant increase in accuracy of
CNYV, DME, DRUSEN by 4.8%, 2.4%, 2.8%, while it attains similar NORMAL accuracy compared to
Kermany et al. [4]. The proposed HyCAD model achieves an increase in accuracies of CNV class by
3.2% compared to Li et al. [20].

In order to further examine the performance of our best performing model HyCAD architecture
relative to the state of the art, its overall performance is compared to the work of Kermany et al. [4] and
Li et al. [20]. The comparison is depicted in Table 6 and Figure 15. The values for Kermany et al. [4]
and Li et al. [20] are calculated from the best reported confusion matrices as shown in Figure 16.
The HyCAD architecture outperforms the work of Kermany et al. [4] in terms of accuracy, sensitivity
and specificity scoring an increase of 2.5%, 1.6% and 0.8% respectively. In addition, compared
to Li et al. [20], the proposed HyCAD model achieves a noticeable increase in sensitivity by 1.8%,
a comparable specificity and a slight increase in accuracy. HyCAD architecture attains the highest
sensitivity, scoring an increase of 1.6% compared to the best model of the state of art models [4,20] to
reach 99.4% for the Urgent referral group. Such a high sensitivity is required for this group as they
represent the critical group, which needs immediate attention. This improvement is achieved while
maintaining a competitive specificity with the state of the art.

Table 6. Comparison between Kermany et al. [4], Li et al. models [20] and HyCAD architecture
performance metrics on Large Dataset of Labeled Optical Coherence Tomography (OCT) v3 [25].

Model Accuracy Sensitivity (UR) Specificity (UR)
Kermany et al.2018 [4] 96.1% 97.8% 97.4%
Li et al. 2019 [20] 98.6% 97.8% 99.4%
HyCAD architecture (Proposed model) 98.8% 99.4% 98.2%

Highest reported results are bolded for clarification.
M Accuracies M Sensitivity (UR)  m Specificity (UR)
0.99

0.98

0.97

PERFORMANCE METRICS SCALE

0.94
Kermany et al. 2018 Lietal. 2019 HyCAD architecture

(Proposed Model)
MODELS
Figure 15. Comparison between Kermany et al. [4], Li et al. models [20] and HyCAD architecture

performance metrics.
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Figure 16. (A) HyCAD architecture Confusion Matrix (B) Li et al. model [20] Confusion Matrix
(C) Kermany et al. [4] Confusion Matrix.

Another important aspect to study is the performance of our HyCAD architecture using hybrid
integration of Norm-VGG16 CNN features and hand-crafted features in case of binary classifications.
Hence, multiple binary models of CNV vs. NORMAL, DME vs. NORMAL and DRUSEN vs. NORMAL
classes are trained and achieve significant results. The respective confusion matrices are shown in
Figure 17 and the results are compared to Kermany et al. [4] and Li et al. [20] in Table 7. The two binary
models CNV vs. NORMAL vs. DME and NORMAL achieve an accuracy of 100%, sensitivity of 100%
and specificity of 100% without any wrong classification of 500 testing set as can be seen from the
confusion matrix in Figure 17A,B. The binary model between DRUSEN vs. NORMAL achieves an
accuracy of 99.79%, sensitivity of 99.6% and specificity of 100% by classifying only one wrong image as
shown in Figure 17C The CNN features are extracted by training Norm-VGG16 for only 15 epochs
with learning rate starting with 0.001.
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Figure 17. HyCAD architecture binary classifier (A) CNV vs. NORMAL (B) DME vs. NORMAL
(C) DRUSEN vs. NORMAL.

Table 7. Comparison between binary classifiers of HyCAD architecture, Kermany et al. [4] and
Li et al. [20] models.

Models CNV vs. NORMAL DME vs. NORMAL DRUSEN vs. NORMAL
Sn Sp Sn Sp Sn Sp
A eNv) NV A omB  ©OMB 2  (DRUSEN) (DRUSEN)
Kermany et al. 2018 [4] 100%  100%  100% 982%  96.8%  99.6%  99% 98% 99.2%
Li et al. 2019 [20] 100%  100%  100% 98.8%  98.8%  98.8%  992%  98.4% 100%
HyCAD (Proposed Model) ~ 100%  100%  100%  100%  100%  100%  99.79%  99.6% 100%

Highest reported results are bolded for clarification.
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7. Conclusions

In this paper, a novel hybrid computer aided diagnostic system HyCAD-OCT is introduced
that effectively distinguishes a range of retinal diseases from OCT scans. The proposed HyCAD
architecture integrates deep and traditional learning paradigms to present an accurate timely diagnosis.
In addition, HyCAD provides an explainable diagnostic decision through automatic Rol localization
using Norm-VGG16 activation maps and the extraction of human articulated features. The automatic
Rol localization provides a relative advantage compared to traditional segmentation methods as it
does not require expert involvement. Our HyCAD architecture proves the importance of combining
automatic feature extraction and hand-crafted features in achieving higher performance metrics.
Moreover, the hand-crafted features are more interpretable than the learned features by deep learning
architectures models. For the employed deep learning architecture, a set of modifications are applied
on the standard VGG16 architecture creating the Norm-VGG16 integrating kernel regularizer variant.
Our modified Norm-VGG16 achieved better results than ResNet-50 and Kermany et al. models.
HyCAD outperforms the Kermany et al. pure deep learning model in terms of accuracy and Urgent
Referrals sensitivity. Similarly, our HyCAD architecture surpassed the Urgent Referrals sensitivity
of Li et al. In case of binary classifications of retinal diseases vs. normal, HyCAD had a superior
performance compared to both Kermany et al. and Li et al. achieving 100% accuracy, 100% sensitivity
and 100% specificity for CNV and DME. For the bootstrapping experiment, HyCAD showed higher
mean accuracy and Urgent referrals sensitivity when compared to Norm-VGG16 and ResNet-50.
In addition, the results had lower standard deviation. Overall, a new robust diagnostic system is
proposed which offers automatic Rol segmentation that can be used in assisting ophthalmologists in
their decision with a range of retinal disorders. Moreover, HyCAD is a general architecture that can be
trained and applied on similar problems, since no underlying specific assumptions were made that
would hinder its generalization.
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Appendix A ResNet Architecture

ResNet architecture is chosen because they got a deeper network than Standard VGG16 because
of the idea of the residual block which avoids information loss during training [44]. The ResNet-50 has
shortcuts between blocks that helped in increasing the number of layers without information loss along
the data processing flow, which was a very common issue in any sequential deep network. It consists
of 53 convolutional layers. The input starts with an input layer with size 224 x 224 and the output of
the input layer is convolved by 64 (7 X 7) kernel. This is followed by batch normalization layer which
is followed by max pooling layer as shown in Figure A1.

After the first block, there are two types of residual blocks (i.e., bottle neck blocks) that are repeated
in our architecture. The two blocks that were implemented are defined by De Rezende et al. [45] and
can be seen in Figure A2.

The first block shown in Figure A2a is called identity shortcut bottleneck block which is composed
of a sequence of convolution layers of kernel size (1 X 1) and stride = 1 connected to a convolution
layer with kernel (3 x 3) and stride = 1 followed by a convolution layer followed by kernel (1 x 1) and
stride = 2. This block is used when the input and output of feature map are the same.

The other block shown in Figure A2b is called projection shortcut bottleneck block which has
the same sequence of layers with a newly added convolution layer in the projection shortcut which
has a kernel size of (1 X 1) with stride = 2. It is applied when shortcuts go across the feature map of
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two sizes. In the two blocks all the convolution layers are followed by batch normalization and RELU
activation function. The full architecture is shown in Figure A3.

Input

Input Layer (224 x 224)

Conv (7 x 7)

Batch Normalization
RELU

Figure A1l. Starting Block of ResNet.

Input Input

Batch Normalization Batch Normalization
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Figure A2. ResNet blocks (a) Identity Shortcut (b) Projection Shortcut.
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Figure A3. ResNet-50 full architecture (The ResNet Layer has 17 block (Staring block) and a repetition
of identity shortcut residual blocks and projection shortcut residual blocks. The dense layer is modified
to have a kernel regularizer).
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