
applied  
sciences

Article

An Approach to Industrial Automation Based on
Low-Cost Embedded Platforms and Open Software

Luis I. Minchala 1 , Jonnathan Peralta 2, Paul Mata-Quevedo 2,* and Jaime Rojas 2

1 School of Engineering and Sciences, Tecnologico de Monterrey-Guadalajara, Gral. Ramón Corona 2514,
Guadalajara 45138, Mexico; ismael.minchala@tec.mx

2 Department of Electrical Engineering, Universidad Católica de Cuenca, Ave. de las Americas y Humboldt,
Cuenca 010105, Ecuador; jonnathan.peraltas92@ucuenca.edu.ec (J.P.); jerojasc@ucacue.edu.ec (J.R.)

* Correspondence: jpmataq@ucacue.edu.ec

Received: 6 June 2020; Accepted: 30 June 2020; Published: 8 July 2020
����������
�������

Abstract: This paper presents a performance evaluation of the development of the instrumentation,
communications and control systems of a two-tank process by using low-cost hardware and open
source software. The hardware used for automating this process consists of embedded platforms
(Arduino and Raspberry Pi) integrated into programmable logic controllers (PLCs), which are
connected to a supervisory control and data acquisition (SCADA) system implemented with an open
source Industrial Internet of Things (IIoT) platform. The main purpose of the proposed approach
is to evaluate low-cost automation solutions (hardware and software) within the framework of
modern industry requirements in order to determine whether these technologies could be enabling
factors of IIoT. The proposed control strategy for regulating tank levels combines the classic PID
algorithm and the fuzzy gain scheduling PID (FGS-PID) approach. Fault detection capabilities are
also enabled for the system through a fault detection and diagnosis module (FDD) implemented with
an extended Kalman filter (EKF). The distributed controller’s (DC) algorithms are embedded into
the PLC’s processors in order to demonstrate the flexibility of the proposed system. Additionally, a
remote human to machine interface (HMI) is deployed through a web client of the IIoT application.
Experimental results show the proper operation of the overall system.

Keywords: fault detection; CIM; IIoT; Multi-tank system; PID; FGS-PID; SCADA

1. Introduction

Industrial automation is currently dominated by solutions which are implemented only with
distributed controllers, such as programmable logic controllers (PLCs). The programming of these
devices is mainly based on the standard IEC 61131, which does not comply with the requirements of
the object-oriented programming (OOP) approach of large-scale distributed systems. Since industrial
control systems are not generic computing systems, OOP must comply with other requirements [1]: the
direct configuration of I/O signals, multiparadigm programming, etc. Additionally, PLCs have limited
processing capabilities, which could be a barrier to scaling their applications to more complex tasks.

The majority of technical solutions deployed in the industrial market have been developed
by proprietary technology manufacturers, which causes great difficulties in communication
between devices. These interoperability problems have generated technology dependency in
most cases. As a consequence, until there is a standardization of interfaces, protocols and
applications, the interconnection required for the implementation of Industry 4.0 will be potentially
expensive, inefficient and possibly an unsafe option [2]. Therefore, continuous innovation in open
hardware and software is important to boost developments in the areas of supervision, industrial
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control and interoperability of manufacturing plants, keeping affordable prices for small and
medium-sized factories.

Several solutions have been proposed to meet the requirements of supervision, control and
communications between production processes using low-cost technologies. For instance, in [3],
a liquid flow monitoring system is detailed that uses a LAN network to transmit data from
a microcontroller, Arduino, which measures liquid flow and controls a solenoid valve, to a
microcomputer, Raspberry Pi, which implements a web server to enable remote control and
monitoring. In [4], the design of supervisory control and data acquisition (SCADA) systems using
open hardware and software is proposed. The structure consists of four elements: a master terminal
unit (MTU), a communication protocol, a remote terminal unit (RTU) and field devices. The MTU
consists of a computer with an HMI, while the RTU is an embedded platform based on Arduino.
The communication protocol is Modbus. In [5], a testbed consisting of six Raspberry Pis is presented
to illustrate a method of troubleshooting communication protocols in intelligent industrial systems.
In [6], an architecture is proposed for a multi-agent system based on OPC-UA for the integration of
systems at manufacturing sites. In [7–9], architectures based on OPC servers with communication and
data logging functionalities between multiple protocols are proposed. In [10], the implementation of
industrial communication protocols using FPGAs is presented.

The research works previously reported have a common disadvantage, which is the low level
of robustness of the prototypes. The implementation results are oriented to simple systems with
constant operating points and controlled operation conditions (laboratory environment). On the
other hand, in [11], the authors propose a distributed service-oriented architecture to make PLC
controllers compatible with Industry 4.0. This solution implies the use of PLCs whose firmware is
easily upgradable to an IEC 61131 programming environment which integrates basic web technologies,
network data processing and communications. Legacy PLCs typically lack these programming features;
therefore, PLCs with embedded processors such as Arduino and Raspberry Pi emerge as feasible
industrial solutions.

This work presents the design, implementation and evaluation of the instrumentation,
communications, control and supervision systems of a multi-tank system by using low-cost PLCs and
communication interfaces compatible with the thinger.io local server IoT platform. The purpose of this
research is to explore low-cost embedded platforms through PLCs based on Arduino and Raspberry
Pi, enabling communication functions, variable preprocessing and advanced control schemes, in the
context of the computer integrated manufacturing (CIM) scheme. Experimental results demonstrate
the operational capacity of the system under various operating conditions.

This document is organized as follows: Section 2 describes the multi-tank system. Section 3 details
the implementation of the instrumentation, communications and control systems of the multi-tank
system. Section 4 presents experimental and simulation results. Section 5 presents the limitations of
the proposed system. Section 6 presents the conclusions.

2. System Description

The process selected for the demonstration of the methodology proposed in this article
corresponds to a multi-tank system. Figure 1 shows the P&ID diagram of this system. The plant
consists of three tanks: two reserve tanks and another one used for pumping purposes. The description
of the measuring and control devices is as follows:

• The check valve (FV-100) protects the pump from water hammer.
• The pressure relief valve (FV-108) protects the pump and the pipe from pressure increases caused

by the closing of the flow control valve (FCV-101).
• The control valves FCV-101, FCV-103 and FCV-106 regulate the levels of the reserve tanks.
• The level transmitters (LT-104 and LT-105) record the levels of tanks 1 and 2 and transmit them to

the main controller (FC-201).
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• The multi-tank system input and output flows are monitored by flow sensors (FT-102 and FT-107).
• The electrical signals from the level and flow sensors are calibrated by the nodes (LY-200 and

FY-200). These data are sent to the node that performs control and supervision functions (FC-201),
which then sends information to a data logger server (UR-300).

• The process is locally monitored by a human to machine interface (HMI) (UG-301), which
communicates directly with the controller node, while a SCADA system (UG-302) exchanges
real-time data with the UR-300.

Figure 1. P&ID diagram of the multi-tank system.

3. System Implementation

The CIM architecture integrates the processes involved in the automation of industrial production,
from the manufacturing of the product to the level of business management. The CIM model consists
of five levels: (1) the field level, (2) process level, (3) level of supervision, (4) management level and (5)
the company level [12].

The architecture proposed in this work involves the first three levels of the CIM pyramid model.
Figure 2 shows the proposed automation system architecture for the multi-tank system. The field level
consists of ultrasonic sensors, flow sensors, a hydraulic pump and three solenoid valves. The process
level consists of two low-cost embedded PLCs: (i) PiXtend based on the Raspberry Pi platform, which
implements the control and fault detection algorithms in the system, and (ii) M-Duino based on
the Arduino platform, which preprocesses the signals from the sensors. This configuration allows
the demonstration of the integration of different platforms (heterogeneity) within the same system.
The supervisory level is made up of an Internet of Things (IoT) local server installed in a Raspberry
Pi connected to the local Wi-Fi router via an Ethernet cable, such that only the devices connected to
the network—either wired or wireless—can access the data hosted on the thinger.io local server. It is
important to mention that both PLCs, M-Duino and PiXtend, are CE certified and have compliance
with the IEC61131 standard. These features offer robustness in industrial applications.

Details regarding the implementation of each level are given below.
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Figure 2. Automation system architecture.

3.1. Field Level

The series HC-SR04 ultrasonic sensors (LT-104 and LT-105) are used to measure tank levels.
The DIGITEN FL-408 flow sensors (FT-102 and FT-107) are used to monitor the input and output
flow of the process, respectively. The level of the tanks is controlled by varying the inflows and
outflows of each tank. The variation of the flows is carried out through the regulation of solenoid
valves. The solenoid valves used are the following models: 1/2′′ ball type Winner WVA4-3 solenoid
valve (FCV-101), BACOENG 2W-15 (FCV-103) solenoid type 1/2′′, and the solenoid valve US SOLID
USSMSV00002 3/4′′ ball type (FCV-106). The entire system is powered by the Favson F3012 pump.

3.2. Process Level

This level comprises the DCs, whose operation involves the control and fault detection systems.
These systems are implemented in the PiXtend PLC (FC-201). The control systems implemented
are based on the PID and FGS-PID control algorithms. The fault detection system uses an EKF.
The proposed control system is of the decentralized type, as shown in Figure 3. Each tank has a
reference of the desired level (re fh1 and re fh2). The error signals are processed to obtain the control
signals u1, u2, and u3, which command the valves. Finally, the EKF receives the tank levels and the
control signals as input signals to estimate the tank levels (h̃1 and h̃2).
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Figure 3. Proposed control system.

In this work, two control schemes are proposed and compared: classic PID and fuzzy + PID.
The classic PID scheme uses three PID controllers, one for each valve of the multi-tank system.
The fuzzy + PID scheme implements the fuzzy gain scheduling (FGS)-PID algorithm for valve 2, while
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the controllers for valves 1 and 3 correspond to classic PIDs. This configuration shows significantly
better performance than other combinations of FGS-PID applied to valves 1 and 2.

Control schemes, including the fault detection and diagnosis module (FDD) system based on the
EKF, are designed from the process model, determined by

dh1

dt
=

1
A1

(
u1q0 − u2a2

√
2gh1

)
dh2

dt
=

1
A2

(
u2a2

√
2gh1 − u3a3

√
2gh2

) (1)

where
h1, h2: Liquid level at tanks 1, 2
u1, u2, u3: % of opening of valves (0 ≤ u1,2,3 ≤ 1)
A1, A2: Cross-section area of tanks 1, 2
a2, a3: Cross-section area of valves 2, 3
q0: Nominal valve flow (q0 = 4 lt/min)
g: Gravity constant (g = 9.81 m/s2).

Faults to be detected correspond to leaks in tanks 1 and 2. A leak is modeled as an outflow caused
by a hole located at the bottom of the tank, as follows:

dh1

dt
=

1
A1

(
u1q0 − u2a2

√
2gh1 − l1

)
dh2

dt
=

1
A2

(
u2a2

√
2gh1 − u3a3

√
2gh2 − l2

)
l1 = kl1al1

√
2gh1

l2 = kl2al2
√

2gh2

kl1,2 =

{
0, no leak
1, leakage

(2)

where
l1, l2: Flow due to leaks in the tanks 1, 2
al1, al2: Leak hole area in tanks 1, 2
kl1, kl2: Fault indicator for tank 1, 2.

Table 1 presents the physical values considered for the calculation and deployment of the system.

Table 1. Physical constants of the system.

Parameter Value

a2 4.380 × 10−5 m2

a3 4.601 × 10−5 m2

A1 0.04 m2

A2 0.04 m2

q0 6.667 × 10−5 m3/s
g 9.81 m/s2

al1 3.1416× 10−4 m2

al2 3.1416× 10−4 m2

3.2.1. PID Controller

Equation (3) presents the discrete control algorithm of the PID controller. Tuning parameters Kp,
Ki and Kd of the controllers are obtained from the Ziegler–Nichols final gain method . Additionally,

through recursive MATLAB simulations, the overshoot vs. settling time ratio
(

min
Kp , Ki , Kd

{
Mp
tss

})
was minimized.

uk = uk−1 + Kp [ek − ek−1 + Kiek + Kd (ek − 2ek−1 + ek−2)] (3)
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3.2.2. FGS-PID Controller

The FGS-PID controller design uses the methodology presented in [13]. The inputs to the control
system correspond to the error variables (e(t)) and the first derivative of the error (ė(t)), while the
outputs are the variables Kp

′, Kd
′ and α, which determine the parameters of the PID controller by

Kp = Kpmin + (Kpmax − Kpmin)Kp
′

Kd = Kdmin + (Kdmax − Kdmin)Kd
′

Ki =
Kp

2

αKd

(4)

For the linguistic variables (e(k)) and (ė(k)), the following membership functions are implemented:
big negative values (NB), medium negative (NM), negative small (NS), zero (ZO), small positive (PS),
medium positive (PM) and big positive (PB) values. Figure 4 shows the error membership functions.
Figure 5 shows the membership functions of the error derivative.

The output variables Kp
′ and Kd

′ have two membership functions, small (S) and big (B),
which are of the Gaussian type with standard deviation 0.4247 and center at 0 and 1, respectively.
These membership functions are shown in Figure 6. The output variable α has four membership
functions, described as 2, 3, 4 and 5, which are implemented as triangular functions. These membership
functions are shown in Figure 7.

The calculation rules of K′p, K′d and α are synthesized in Tables 2–4, respectively.

Figure 4. Membership functions of e(t).

Figure 5. Membership functions of ė(t).

Figure 6. Membership functions of Kp
′ and Kd

′.

Figure 7. Membership functions of α.
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Table 2. Fuzzy rules for Kp′ [13].

ė(k)
NB NM NS ZO PS PM PB

NB B B B B B B B
NM S B B B B B S
NS S S B B B S S

e(k) ZO S S S B S S S
PS S S B B B S S
PM S B B B B B S
PB B B B B B B B

Table 3. Fuzzy rules for Kd′ [13].

ė(k)
NB NM NS ZO PS PM PB

NB S S S S S S S
NM B B S S S B B
NS B S B S B B B

e(k) ZO B B B B B B B
PS B B B S B B B
PM B B S S S B B
PB S S S S S S S

Table 4. Fuzzy rules for α [13].

ė(k)
NB NM NS ZO PS PM PB

NB 2 2 2 2 2 2 2
NM 3 3 2 2 2 3 3
NS 4 3 3 2 3 3 4

e(k) ZO 5 4 3 3 3 4 5
PS 4 3 3 2 3 3 4
PM 3 3 2 2 2 3 3
PB 2 2 2 2 2 2 2

3.2.3. Extended Kalman Filter

The EKF is a variation of the Kalman filter, applied to nonlinear systems. The EKF linearizes
the system over an average value, applying the Jacobian to obtain the state matrices Ak, Hk, Wk and
Vk, where Wk and Vk are the Jacobians calculated with respect to the random variables wk and vk,
respectively [14]. With these considerations, the equations that define the EKF are

x̄k = f (x̂k − 1, uk−1, 0)

P̄k = AkPk−1AT
k + WkQkWT

k

Kk = P̄kHT
k (HkP̄kHT

k + Rk)
−1

x̂k = x̄k + Kk(zk −Hk x̄k)

Pk = (I−KkHk)P̄k

(5)

To design the EKF, it is necessary to describe the process as a linear system, as follows:

ẋ = Ax + Bu

y = Cx + Du
(6)

where ẋ represents the derivative of x, u represents the control vector [u1 u2 u3], x = [h1 h2]
T

and y = x.
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For the Jacobian linearization of the model, the equilibrium point of the system is established at
an operating point. The balance points xe = [he1 he2 ]

T are obtained considering the control signals
ue = [ue1 ue2 ue3 ]

T . The relationships to obtain the equilibrium points are

he1 =
1

2g

(
q0ue1

a2ue2

)2

he2 = he1

(
a2ue2

a3ue3

)2
(7)

The result of the linearization is presented below:

A =

− a2
A1

√
g
2

ue2√
he1

0

a2
A2

√
g
2

ue2√
he1

− a3
A2

√
g
2

ue3√
he2


B =

[ q0
A1
− a2

A1

√
2ghe1 0

0 a2
A2

√
2ghe1 − a3

A2

√
2ghe2

]

C =

[
1 0
0 1

]
; D =

[
0 0 0
0 0 0

]
(8)

The parameters Q, R and Pk of the EKF are adjusted through recursive simulations in MATLAB,
where Pk = I ∈ R2×2 and Q = 1× 10−8I. The R matrix setting considers two scenarios. The first
scenario considers the transition during step-type reference changes, in which the correction component
of the EKF is prioritized to track the measured signal. The value selected for this case is R = 1× 10−8I.
The second scenario is presented when the tank levels enter a range of ±5% error with respect to
their references (steady state); in this case, the EKF estimation component is prioritized, selecting R =

1× 10−2I. The EKF delivers the h̃1 and h̃2 estimations of tank levels as outputs. Equations (9) and (10)
present the residues obtained from the comparison of the estimated and measured values.

r1 = h1 − h̃1 (9)

r2 = h2 − h̃2 (10)

Leak detection is performed by using thresholds. Experimentally, a threshold is determined as
lim = −0.010. When the residue is smaller than this limit, the existence of a leakage is concluded.
The data set that pertains to a leakage is

leak (r) =
{

r =
[

r1 r2

]T
|r ∈ r1 ∨ r2 < lim

}
(11)

3.3. Supervision Level

The automation architecture proposed in this work involves the first three levels of the CIM model
(see Figure 2). The PiXTend PLC works as a Modbus slave node and receives the information from
every device in the network in order to upload selected data to an IoT platform (thinger.io) by using
the open source Linux client library provided in [15]. As seen in Figure 2, the supervision level uses
an IoT local server installed in a Raspberry Pi 3, which is connected to a local Wi-Fi router through
an ethernet cable, meaning that only the devices connected to the network can access the data on the
thinger.io local server by using the fixed IP address of the Raspberry Pi. This configuration warranties
security by creating a virtual industrial network, where PLCs are connected in a different subnet
from the SCADA platform, performing communication tasks among them via Modbus TCP, while the
SCADA platform, running in a separate subnet, isolates the process controllers from external access to
the network.
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4. Results

4.1. Simulation Results

The control systems described in Section 3.2 are first simulated in MATLAB using the module for
the solution of ordinary differential equations. To compare the performance of the proposed control
schemes, the tracking performance index described by Equation (12) is used. This index represents the
ability of the controller to track a reference. A lower value of this index represents a better performance
of the controller [16].

J =
+∞

∑
k=1

(
‖h1(k)− r1(k)‖2 + ‖h2(k)− r2(k)‖2

)
(12)

The simulation model is configured using the parameters described in Table 1, considering a
sampling period (Ts) of 500 ms and introducing measurement noise with power 1× 10−7. Simulation
tests are performed with the purpose of evaluating the performance of the classic PID and fuzzy + PID
control schemes before implementing them.

Table 5 shows the results of the overshoot and settling time obtained in simulation for the two
control schemes. The FGS-PID reduces the settling time and overshoot in tank 2.

Table 6 shows the performance index (Equation (12)) of the control schemes for different tests.
The first test stabilizes the tank levels at particular set points. The second test consists of making
reference changes in the two tanks. The third test consists of simulating leaks in the tanks to evaluate
the fault detection system. It can be seen that, in general, the use of the FGS-PID controller improves
the overall system performance.

Figure 8 shows the simulation results of the control schemes in terms of stabilizing the system at a
reference value. Figure 9 shows the residue obtained in the presence of leaks. The system detects leaks
when the value of the residue is below a defined threshold (lim = −0.010). When the system leak
disappears, the residue increases its value and allows the identification of the fault-free operating state.

Level – Tank 1 (m)

Level – Tank 2 (m)

Time (s)

Figure 8. Simulation results of the control systems.

Residue of the fault detector – Tank 1 (m)

Residue of the fault detector – Tank 2 (m)

Time (2)

Thershold
PID
FGS - PID

Thershold
PID
FGS - PID

Figure 9. Residue simulation results to evaluate fault detection.
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Table 5. Simulation results of the controllers’ transient response.

Control Overshoot Overshoot Settling
Scheme Tank 1 Tank 2 Time

PID 5.58% 8.21% 225 s
FGS-PID 5.58% 7.65% 200 s

Table 6. Controller performance comparison during simulation.

Test Applied Performance Index (12)
PID FGS-PID

Settling over a reference 1.430 1.425
Step reference changes 1.543 1.522

Leaks during the operation 1.451 1.436

4.2. Experimental Results

Table 7 shows the results of the overshoot and settling time obtained in the experimental tests
for the two control schemes. Figure 10 shows a screenshot of the local HMI of the process during
operation, where the tank levels are registered. The FGS-PID reduces the settling time and overshoot
in tank 2. Compared to simulation results (Table 5), the experimental results of the control system
show similar performances. This fact is important because it demonstrates reliability in the design of
the control schemes implemented in the low-cost PLCs. Additionally, these results demonstrate that
there is moderate uncertainty in the dynamic model of the multi-tank system.

Table 7. Experimental results of the controllers’ transient response.

Control Overshoot Overshoot Settling
Scheme Tank 1 Tank 2 Time

PID 3% 8.75% 243 seg
FGS-PID 3% 4.75% 212 seg

Automatic

Manual

Leak – Tank 1 Leak – Tank 2

Reference 1

Reference 2

Controller type – Valve 2

PID FGS-PID

Level – Tank 2          nivel2            656                                      9/18/2018 11:06:03:88...
Level – Tank 1          nivel1            688                                      9/18/2018 11:06:03:88...

Leak – Tank 1 Leak – Tank 2

Figure 10. Human to machine interface (HMI) screenshot.

Figure 11 shows the behavior of the control signal for valve 2 when the two proposed control
schemes are used. The first part of the signal, in blue (first half, left of the graphic capture), corresponds
to the control signal generated by the FGS-PID algorithm, where some chattering is observed due
to changes in the PID parameters. The second part of the signal, in blue (second half, right of the
graphic capture), corresponds to the control signal generated by the PID controller; this signal has a
smoothed behavior. The overall performance of the system, as shown in Table 7, is better with the
fuzzy + PID scheme.
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Control signal 1

Control signal 2

Control signal 3

Figure 11. Control signal comparison for tank 2 when operating FGS-PID and PID control schemes.

Figure 12 shows the behavior of the estimation in the presence of a leak in tank 1 when using the
PID scheme. The residue signal, in red, reduces its value, allowing the leak to be detected when its
value is below the threshold.

Figure 12. Fault detection on tank 1 during operation of the PID classic scheme.

To evaluate the fault detection system, leaks are induced in tanks 1 and 2, as well as simultaneous
leaks. Alarm activation and deactivation times are determined while the fault is present. These
tests were repeated 10 times to obtain their average and 95% confidence interval. The confidence
intervals of the alarm activation time are shown in Figure 13; the labels with * on the x-axis indicate
the existence of simultaneous leaks in the two tanks. In the case of tank 2, the use of the FGS-PID
controller considerably reduces the alarm activation time by 51.33%. On the other hand, in the case
of tank 1, when there are simultaneous leaks, the use of the FGS-PID controller increases the alarm
activation time by 27.93%. In the other cases, due to the overlap between the confidence intervals,
the times are considered to be equal using the two control schemes proposed.

A
la

rm
 d

ea
ct

iv
at

io
n

 t
im

e 
[s

ec
]

Tank 1
FGS – PID

Tank 1
PID

Tank 1*
FGS – PID

Tank 1*
PID

Tank 2
FGS – PID

Tank 2
PID

Tank 2*
FGS – PID

Tank 2*
PID

Figure 13. Confidence intervals for the activation time of the fault detection.
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4.3. Supervision Level

The results related to the supervision level consist mainly of reports from the SCADA
system running in the thinger.io local server IoT platform, which supports the integration of
Arduino-compatible hardware, or Linux-powered devices such as the Raspberry Pi in this case.
The platform has a web browser console with an easy-to-use front end in which users can manage the
devices connected to the server and visualize information in real time. The thinger.io local server runs
in a Raspberry Pi (see Figure 2). Using the local version of the thinger.io platform allows the user to
have better control of the server, extended flexibility for customization and data storage.

The thinger.io platform allows the creation of real-time visualization dashboards and charts for
remote monitoring. Figure 14 shows the dashboard of the multi-tank system, which shows important
data of the system remotely by using a web browser pointing to the address of the Raspberry Pi.
The platform supports notifications via email and also provides an Android or IOS mobile app that
can be connected to a registered device in the server by scanning a QR barcode, displayed in the API
explorer of the platform. The thinger.io Linux client library, written in C++, has been modified to
accomplish the purpose of the proposed topology. A Modbus TCP C++ library [17] is added to the
library’s core of the thinger.io; the implementation of threads inside the main program is needed to
generate individual communication channels between PLCs connected to the local network configured
as Modbus master devices allowing the PiXtend PLC to share data between control units. Modbus data
resources are created inside the PiXtend PLC (coils, holding registers, etc.) and are linked to variables
in the master devices; for this particular test, variables of sensors and actuators were defined in the
main API. These sampled variables are mapped to the thinger.io library to allow data to be published in
the API server explorer and dashboards. Figure 15 shows a waveform chart of the level corresponding
to tank 2, which was queried from the local IoT server through the dashboard application.

Figure 14. Dashboard of the IoT application.
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Figure 15. Waveform chart of h2 queried from the dashboard application.

5. System Limitations

Table 8 presents a comparison of the characteristics of the solution proposed in this work with a
generic commercial solution. In this case, enhanced flexibility of the proposed system is highlighted in
terms of the use of programming languages and the control algorithms implemented. Additionally,
it should be noted that the commercial solution typically uses controllers from a single manufacturer,
and the inclusion of equipment from other manufacturers increases the cost of the system due to the
acquisition of programming licenses and communication drivers, meaning that the heterogeneity in
this system is not guaranteed. On the other hand, the robustness of the system proposed in this work
should still be studied in long-term operations and in more aggressive industrial conditions (dust,
noise, etc.).

In addition to the advantages/disadvantages analyzed in Table 8, it is important to remark that the
current development of this project still has a low technology readiness level (TRL). Current evaluation
of the technology proposed throughout this paper corresponds to a TRL 4, which means the stage of
verification in a representative laboratory [18]. Reaching a higher TRL implies further research and
development (R&D) in order to achieve technological transfer in an effective way to industries with
requirements to be fulfilled by the solutions proposed in this paper. In [18], a thorough methodology is
offered for achieving technological transfer through a process which implies a technological maturity
level (TRL 7).

Table 8. General characteristics comparison between commercial supervisory control and data
acquisition (SCADA) systems and the proposed approach.

Commercial Proposed
Solution System

Supervisory control system X X
Distributed control system X X
Fault detection system Not warranted X
Communications heterogeneity Not warranted Not warranted
Flexibility Medium High
Industry 4.0 scalability Medium High
Robustness X Low

6. Conclusions

The main conclusions from this research work are listed below.

• Interoperability between devices from manufacturing processes is an essential requirement which
still needs to be fulfilled. Among the alternatives available to meet this requirement, this paper
adopts a simple—yet robust—IIoT solution that is compatible with control devices in a plant
process by using low-cost embedded platforms and open software. Additionally, a virtual
interconnection of the control level with the supervisory level was evaluated, with satisfying
results, through the use of the thinger.io IIoT platform.

• The automation devices used in the proposed architecture, the PLCs PiXtend and M-Duino, are
low-cost devices with higher capacities in terms of the processing speed, memory and read speed
of input ports compared to classic automation devices of equal commercial value. Therefore,
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they are useful devices to enhance control, communication and automation systems of small and
medium-sized production processes, such as the case study presented in this article.

• This work also evaluates two control schemes with fault detection capabilities: a classic PID
control scheme for the three valves of the process, which regulates the inflow and outflow of
the multi-tank system, and another control approach based on an FGS-PID algorithm, which
regulates the opening of valve 2 that limits the outflow of the first reserve tank. The two schemes
showed good performance; however, the scheme implementing the FGS-PID controller reduced
the overshoot of tank 2 by 45.71% and the settling time by 12.76%. Fault detection and diagnosis
was implemented successfully, using an EKF, in the PiXtend PLC.
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