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Abstract: At present, deep learning drives the rapid development of face recognition. However, in 
the unconstrained scenario, the change of facial posture has a great impact on face recognition. 
Moreover, the current model still has some shortcomings in accuracy and robustness. The existing 
research has formulated two methods to solve the above problems. One method is to model and 
train each pose separately. Then, a fusion decision will be made. The other method is to make 
“frontal” faces on the image or feature level and transform them into “frontal” face recognition. 
Based on the second idea, we propose a profile to the frontal revise mapping (PTFRM) module. This 
module realizes the revision of arbitrary poses on the feature level and transforms the multi-pose 
features into an approximate frontal representation to enhance the recognition ability of the existing 
recognition models. Finally, we evaluate the PTFRM on unconstrained face validation benchmark 
datasets such as Labeled Faces in the Wild (LFW), Celebrities in Frontal Profile (CFP), and IARPA 
Janus Benchmark A(IJB-A). Results show that the chosen method for this study achieves good 
performance. 

Keywords: face recognition; unconstrained scenes; multi-pose; profile to frontal revise mapping 
(PTFRM) 

 

1. Introduction 

In recent years, the emergence of deep learning has achieved great success in the field of face 
recognition. However, in unconstrained scenes, factors such as changes in the illumination, occlusion, 
pose, and expression still largely interfere with the accuracy and robustness of face recognition. The 
current models have some deficiencies in accuracy and robustness, especially with large angles and 
pose variations. Intuitively, the main reason is that the number of the front faces and multi-pose faces 
in the training set are highly unbalanced because detecting multi-pose faces is more difficult than 
finding front faces. In addition, given the pose variations, learning the feature representation with 
geometric invariance to large pose variations directly is challenging. 

Existing face recognition methods based on deep learning mainly include the following 
modules: image preprocessing, training a convolutional neural network (CNN) to extract features, 
face verification, and recognition. Image preprocessing includes face detection, alignment, 
normalization, and random flipping. It unifies the facial image into a fixed size as the input of the 
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CNN network. The target of face verification and recognition is achieved by comparing the voting 
score obtained by the similarity measure or the Euclidean distance measure with the threshold. 

In this study, we propose a profile to the frontal revise mapping (PTFRM) module based on 
Residual Nets(ResNet). On the one hand, we use a branch of pose estimation when an image is input, 
as shown in Figure 1. The input image and its corresponding key points (center of the left eye, center 
of the right eye, nose tip, left mouth corner, and right mouth corner) are computed by this branch to 
obtain a pose estimation that includes the three components of pitch, yaw, and roll [1]. The pose labels 
of each face image are obtained by the pose mapping function. On the other hand, we add the PTFRM 
module branch into CNN. The PTFRM module consists of our transformation layer (defined in the 
paper), fully connected layer, and batchnormal layer. The transformation layer takes the features of 
the previous layer and the pose classes of the new branch as input. Then, it selects the transformation 
vector with the pose classes to realize the revision of the arbitrary pose features. After the 
transformation layer, we add the full connection layer and the batchnormal layer to output a new 
feature, which is the representation of the approximate frontal feature space. The PTFRM module 
realizes the transformation from the multi-pose space to the approximate frontal feature space. 

 
Figure 1. Face recognition method based on profile to the frontal revise mapping(PTFRM) module. 

As shown in Figure 1, according to the pose categories obtained by the pose module and the 
basic features obtained by the shared CNN, we transform the basic features, which imply different 
attitude information, into approximate frontier features. We also use pose loss and softmax loss to 
constrain the optimization of network parameters. 

The main contributions of this study are as follows: 

1. The PTFRM module is proposed to complete feature transformation based on CNN and 
transform the features of different poses linearly into the frontal features. It improves the 
computational efficiency and achieves outstanding recognition accuracy in three datasets of 
LFW, CFP, and IJB-A. 

2. The pose category is estimated by combining the pitch, yaw, and roll, which fully considers the 
generalization ability of the model to perform face recognition under different poses. Therefore, 
the entire model is called PTFRM_PYR. 

3. The pose loss is adopted, and the pose category label is used to optimize the conversion from 
the multi-pose space to the approximate frontal feature space and to enhance the recognition 
ability and robustness of the model for multiple poses. 

2. Related Works 

From DeepID 1 [2] proposed by Sun in 2014 to InsightFace [3,4] proposed by Deng in 2019, deep 
learning has rapidly been developed in face recognition applications and has become the mainstream 
method for face recognition. The existing research based on CNN adopts different loss functions for 
optimization, such as softmax loss [5], center loss [6], triplet loss [7], arcloss [4], and RegularFace loss 
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[8]. Among them, center loss reduces the intraclass distance and enhances the recognition ability, 
while strengthening the interclass distance and enhancing the classification and recognition ability, 
which is representative in the loss functions. 

For unconstrained scenes, especially for large angle and multi-pose face recognition, the current 
solutions are as follows. The first solution is to model each pose separately, and then discriminate the 
outcome by merging the results of each pose assessment, such as Pose-Aware Models(PAMs) [9]. The 
PAMs classify the face images according to the yaw angle. They construct a network to extract 
features for each type of face image. They fuse all the features to construct a new feature 
representation for face recognition. However, modeling each pose separately greatly consumes 
computing resources and time resources. 

The second solution is to change a side face to a frontal face at the image level, which contains 
many excellent results. Hayat, M et al. [10] used a spatial transformer network to approximate the 
frontal view of a non-frontal image. Stacked Progressive Auto-Encoders(SPAE) [11] progressively 
maps the face images at large poses to a virtual view at smaller ones through a stack of several 
autoencoders. Yin et al. [12] incorporated a 3D morphable face model into the Generative Adversarial 
Networks(GAN) structure to guide the generator to create a frontal face. In Disentangled 
Representation learning-Generative Adversarial Network (DR-GAN) [13,14], the decoder 
synthesizes a face at a specified pose using identity representation and a pose label. Face 
Normalization Model(FNM) [15] can recover a canonical-view and expression-free image and 
directly improve the performance of the face recognition model by generating a confrontation 
network. These methods regenerate the face image with the pose into a frontal face image. Then, face 
recognition is performed according to the existing face recognition methods. Nonetheless, the process 
of regenerating an image is complicated and time-consuming. Causing distortion and increasing the 
difficulty of recognition is easy in the process of regenerating a new image. 

The third solution is to change the poses to create a frontal image at the feature level and to 
revise the multi-pose feature to improve the ability of face recognition. Template Deep 
Reconstruction Model(TDRM) [16] uses a sparse representation-based method for pose 
approximation. The Deep Residual Equivariant Mapping(DREAM) model proposed by Rong et al., 
[17] maps profile features to the frontal features. The DREAM model only considers the yaw pose 
component, which is not comprehensive. 

The PTFRM module that we propose considers not only the yaw component but also the pitch 
and roll components. It makes full use of the pose information of the face to obtain the corresponding 
pose class label. We can directly obtain the pose tags for large-angle and multi-pose face images, 
which makes up for the shortcomings of the DREAM model. We also use pose loss to optimize the 
feature transformation from the multi-pose feature space to approximate a frontal space, thus 
enhancing the generalization ability of the model and strengthening the recognition ability for multi-
pose features. 

3. PTFRM Module 

Figure 2 shows the principle of the proposed method. The feature extraction network takes the 
face images with various poses as inputs and extracts the original feature representation, which is 
mapped into the approximate frontal feature space by the PTFRM module. With only one feature 
extraction network and a PTFRM module added at the end of the network, we can achieve a “frontal” 
pose at the feature level, which greatly saves space and time resources. This approach maintains end-
to-end characteristics and makes the entire process easy to train and verify. 
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Figure 2. Transform multi-pose features to approximate frontal features. 

3.1. Pose Estimation and Classification 

We assume that facial landmark is detected. We take Face Image I and estimate five key points, 
which include the center of the left eye and the right eye, the nose tip, the left mouth, and the right 
mouth. 

Pose estimation is used to estimate the angle values of the three pose components (pitch, yaw, 
and roll), given a two-dimensional face image. This study also uses the Perspective-n-Point (PnP) 
method [1] to realize pose estimation. This method makes the 2D projection of 3D feature points on 
the model coincide with the feature points on the 2D face image as much as possible by rotating the 
default 3D mode. The rotation angle of the 3D model is the required three-pose angles. 

We can obtain the three pose components, namely, pitch, yaw, and roll, from the pose 
estimation. The three pose components are further processed so that the information they contain can 
be used. According to Part I, most models only consider the yaw component. More scientifically, the 
influence of the three pose components should be equally weighted. Our main objective is to combine 
the three pose components and classify the poses to transform the features of multi-pose faces to the 
front feature space. Given that the poses with different classifications have different degrees of 
correction, the classification formula is as follows: 

Nሺ𝑝, 𝑦, 𝑟ሻ = ⎩⎪⎨
⎪⎧0,                ሺ𝑝 + 𝑦 + 𝑟ሻ ൑ 251,                25 ൏ ሺ𝑝 + 𝑦 + 𝑟ሻ ൑ 452,                45 ൏ ሺ𝑝 + 𝑦 + 𝑟ሻ ൑ 753,                75 ൏ ሺ𝑝 + 𝑦 + 𝑟ሻ ൑ 904,                ሺ𝑝 + 𝑦 + 𝑟ሻ ൐ 90  (1) 

where 𝑝 represents the pose component pitch, 𝑦 represents the yaw, r  represents the roll, and 0, 
1, 2, 3, 4 indicate the classification labels for different poses; 25, 45, 75, 90 are the default 
hyperparameters, which serves as the threshold to classify pose categories. As a rule of thumb, each 
component should be less than 10 in the case of small positive or pose changes, and less than 30 in 
the case of large pose changes. Therefore, we roughly divided poses into several different levels 
according to the sum of the three pose components, i.e., the deviation from the fully frontal angle. 
Different mapping relationships are used to provide a mathematical basis for the realization of the 
different degrees of revision. 

3.2. PTFRM Module 

The PTFRM module consists of a custom transformation layer, a fully connected layer, and a 
batchnormal layer. The transformation layer takes the feature of the CNN and the corresponding 
pose class as input controls the projection matrix according to the pose class and maps the original 
feature representation to the new feature representation. Our essential objective is to map the features 
of the multi-pose angle feature space to the approximate frontal feature space through the 
transformation layer, which is a transformation at the feature level. Compared with the 
transformation at the image level, our proposed idea is more efficient and concise. 
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Figure 3 shows the transformation process of the transformation layer. 𝑥 represents the face 
image input. The output of the feed-forward CNN is 𝜙ሺ𝑥ሻ, which is a basic feature representation. 𝑁௜ is the corresponding pose class of the face image, which is obtained from the pose estimation and 
classification function 𝑁ሺ𝑝, 𝑦, 𝑟ሻ . New feature representation 𝛧ሺ𝑥ሻ  is obtained through the 
transformation layer. The mathematical expression is as follows: 𝛧ሺ𝑥ሻ  = 𝑃ே೔𝜙ሺ𝑥ሻ, (2) 

where 𝑃ே೔ is the projection matrix corresponding to the pose class 𝑁௜, which represents the pose 
class corresponding to the input 𝑥. 𝛧ሺ𝑥ሻ represents the transformed feature representation of 𝜙ሺ𝑥ሻ. 
Then we obtain the output feature representation of the PTFRM module through the fully connected 
layer and batchnormal layer. This representation is also the feature representation extracted in the 
validation stage of this study. 

 
Figure 3. Schematic diagram of the transformation layer. 

3.3. Optimizing Objectives 

From Section 2, we can see that the mapping function in the study does not specifically address 
the true identity of the face. Only the face image is classified. As long as the face with the same pose 
class does not need its identity tag, the same mapping relationship maps the basic feature to 
approximate frontal feature representation. For faces with the same identity, the PTFRM module 
uniformly converts the face features of different poses into approximately positive features. This 
process narrows the distance within the class. However, for faces with similar facial features, the 
same posture, and different categories, the new feature representation is still similar after the 
mapping process of the PTFRM module. Therefore, in the optimization process, the existence of small 
differences among different categories must be considered, as shown in Figure 4: 

 
Figure 4. The reason for the small difference between classes. 

To solve the problem of the distance among classes being too small, we consider using identity 
tags as constraints. After the mapping module outputs the features, we construct a feature center for 
the features of the same identity class. The feature center is a standard feature representation of the 
frontal face image of the same person. Next, we construct an optimization function to minimize the 
distance between feature representations and the feature center of all the same identities. Thus, all 
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similar feature representations are centered on feature centers and the cohesion between the features 
is enhanced. Then, we can reduce the intraclass distance and enhance the interclass distance. We 
define the target loss function as follows: 𝐿௣ = 12 ෍ ‖𝑍ሺ𝑥௜ሻ − 𝑓௦௬೔ฮଶଶ௠ଵୀ௜  (3) 

where 𝐿௣ is the center loss function, 𝑚 represents the number of samples of a batch, and 𝑥௜ is the 𝑖 − 𝑡ℎ sample. 𝛧ሺ𝑥௜ሻ is the map-converted feature representation, and 𝑓௦௬೔ is the feature center of 
the identity class, which is also a feature representation. 

Figure 5 shows the function diagram. 

 
Figure 5. The cohesion of the objective function. 

The deep color point is the feature center, and the same color is the same category. By 
constructing a feature center and constraining distance, similar features can be compact, and the 
inter-class distance increases, which is conducive to target classification. 𝑓௦௬೔cannot be directly obtained. Thus, we update the center in each batch, that is, we randomly 
initialize the center, and calculate the distance between the current data and the center in each batch. 
Then, we add the distance in the gradient form to the center. The optimization formula is as follows: 

∆𝑓௦௝ = ∑ 𝛿ሺ𝑦௜ = 𝑗ሻ × ቀ𝑓௦௬೔ − 𝑍ሺ𝑥௜ሻቁ௠௜ୀଵ 1 + ∑ 𝛿ሺ𝑦௜ = 𝑗ሻ௠௜ୀଵ  (4) 

where 𝑗 represents the 𝑗 − 𝑡ℎ feature center, and 𝑚 represents the size of the mini-batch. 𝛿ሺ𝑦௜ = 𝑗ሻ 
represents where each sample only affects the corresponding feature center. 

Supposing that the loss function of the classification task is 𝐿௖, the formula is as follows: 

𝐿௖ = − 1𝑚 ෍ log 𝑒ఏ೤೔೅ ௫೔＋௕೔∑ 𝑒ఏೕ೅௫೔＋௕೔௡௝ୀଵ
௠௜ୀ଴  (5) 

where 𝑚 is the number of samples in a batch.  𝜃௬೔் is the weight vector corresponding to the category 𝑦௜  and the 𝑖 − 𝑡ℎ sample. 𝑏௜  is the offset value used for the 𝑖 − 𝑡ℎ  sample. 𝑛 is the number of 
identity classes. 

Given that we have to learn two interrelated tasks, we use the same training set. We consider 
using the multi-task joint supervision learning method. Then, we set the final loss function to 𝐿௟௢௦௦, 
which is defined as follows: 𝐿௟௢௦௦ = 𝜆𝐿௣＋𝐿௖ (6) 

where 𝜆 is a hyperparameter, which is mainly used to balance the convergence of a network. If 𝜆 is 
too large, the network will be over-fitting. If 𝜆 is too small, it will have difficulty being convergent. 
In this study, this hyperparameter is set to 0.005. 

4. Experiments 

The effective training of the deep face recognition model is based on a sufficiently large training 
dataset. We choose the CASIA-Webface[18] dataset as the training set. After cleaning, the amount of 

Center loss function 
optimization
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data is approximately 1 M with more than 10,000 categories. We firstly perform accurate face 
detection through the Multitask Cascaded Convolutional Networks(MTCNN) [19] model and obtain 
the coordinates of the five key points corresponding to the face image. The affine transformation 
between the key points is used to align the faces to obtain the inputs of the CNN. Then we normalize 
each image size to 112 × 112. At the same time, we use the estimation of the coordinates of the five 
points to obtain the pose results. Then, we obtain the pose categories through the pose classification 
function 𝑁ሺ𝑝, 𝑦, 𝑟ሻ. 

After using the PnP method mentioned in Section 3.1 to solve the initial solution, a deep CNN, 
which adopts the Visual Geometry Group(VGG) [20] network architecture, is used to learn a direct 
mapping from the picture to the three pose angles. The pose estimation network is trained separately 
within the images and the initial solution calculated by the PnP. This network does not participate in 
iterations during trunk training. 

The backbone model we adopt is based on LResnet50E-IR [3,4] in ArcFace, which is used to find 
the segmentation hyperplane of the feature space. However, it is no longer based on the segmentation 
of the Euclidean feature distance space. Instead, it is only mapped to the cosine angle space to find 
the appropriate segmentation hyperplane. The model can achieve efficient and robust segmentation 
in the angle space, while the angle space-based metrics closely matches with the cosine similarity-
based verification. 

The overall network structure is shown in Figure 6. 

 
Figure 6. The overall network architecture. 

The network starts with an input layer. Then, it gradually extracts features from coarse to fine 
through four blocks, and the size of the output feature graph of each block is halved. Block1 contains 
3 Squeeze-and-Excitation residual (SE-Res) blocks and the output feature channel is 64. Block2 
contains 4 SE-Res blocks and the output feature channel is 128. Block3 contains 14 SE-Res blocks and 
the output feature channel is 256. Block4 contains 3 SE-Res blocks and the output feature channel is 
512. If the input image size is 112 × 112, the feature sizes of the blocks are 56 × 56, 28 × 28, 14 × 14, and 
7 × 7, respectively. Finally, a dropout layer is used to prevent overfitting, and the 512-dimensional 
feature representation is output through the full connection layer. After each full convolutional layer, 
the BN layer is used to accelerate network convergence and the PReLU function is used to enhance 
nonlinear mapping capability. The structure of SE-Res [21] is shown in Figure 7. 
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Figure 7. Schematic diagram of the Squeeze-and-Excitation residual(SE-Res) module. 

Based on the Res structure, SE-Res uses the dependency relationship between feature channels 
to learn the weight coefficient of each feature map to represent the important relationship of the 
feature map. Then, the feature map of the Res block is multiplied channel by channel to obtain the 
feature map representation containing a lot of information. SE-Res can suppress unimportant features 
and amplify important features. 

In this study, we chose CASIA-Webface dataset as the training set, while the LFW, CFP, and IJB-
A dataset are only used for evaluating algorithm performance, they do not actually participate in the 
updating of the network parameter 𝑊. 

We adopt joint training and trained pose loss and softmax loss on the same dataset at the same 
time. Then, we set the weight of the pose loss to 0.005. The initial learning rate is 0.005 and the batch 
size is 32. 

4.1. Validation on LFW Dataset 

The Labeled Faces in the Wild (LFW) dataset is one of the main test sets for studying face 
recognition in unconstrained scenarios. Its images are derived from the images in movies, including 
face images of various scenes. The LFW dataset contains more than 13000 face images, with 
approximately 1680 categories [22]. Moreover, it is used for face verification. The test protocol 
diagram is as Figure 8. 

  
(a) (b) 

Figure 8. The Labeled Faces in the Wild (LFW) test set face verification pair. (a) Face verification for 
the same objects. (b) Face verification for different objects. 
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4.1.1. Ten-Fold Cross-Validation 

The standard LFW evaluation protocol defines a verification experiment under ten-fold cross-
validation with 300 genuine comparisons and 300 impostor comparisons per fold. Through the 
feature extraction network designed in Figure 6, we obtain 512 dimensions that correspond with 
output feature pairs. Each pair of feature representations receives a corresponding similarity score 
by calculating a distance. Furthermore, we classify all distances by choosing appropriate thresholds. 
Finally, we compare the actual classification to acquire the final accuracy on the test set. Using a direct 
calculation of the distance, we perform ten-fold cross-validation. We take turns to use 9 folders for 
training, these folders are used to determine the optimal value of hyperparameter threshold. In the 
last folder, we use the best threshold to achieve accuracy and use the average of the results for 10 times 
to estimate the algorithm accuracy. Figure 9 shows the feature distances and labels of 6000 image 
pairs. We can set a threshold. If the distance of the image pairs is smaller than the threshold, the image 
pairs will be set to the same category. If the distance of the image pairs is larger than the threshold, the 
image pairs will be set to different categories. Then, we can calculate the accuracy. Evidently, the 
maximum accuracy is achieved when the threshold value is around 1.5. 

 
Figure 9. The histogram of LFW verification pairs. 

From Table 1, we can see that the average accuracy of the algorithm in this study is 99.43%, and 
the deviation is ±0.16%, which is better than the comparison algorithm. The results show that the 
network of the algorithm in this study is very stable and has a strong generalization ability. The 
advantage of this algorithm is mainly attributed to the stable basic network, which can steadily 
extract the basic features with strong expression ability. However, the PTFRM module has good 
transformation mapping ability under the optimization of pose loss, which can transform the feature 
of the multi-pose into a front feature and enhance the discrimination of those misclassified features. 

Table 1. Accuracy of related algorithms on the LFW test set. 

Algorithms LFW(Accuracy ± 
Std) 

DeepFace [23] 95.92% ± 0.29% 
COTS matcher [24] 98.2% ± 0.6% 

DeepID-2+ [25] 98.70% ± 0.15% 
Chen et al. [26] 99.16% ± 0.31% 
PTFRM_PYR 99.43% ± 0.16% 
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4.1.2. Shuffle-Split Cross-Validation 

Although ten-fold cross-validation is the standard validation method of the LFW dataset, we 
use shuffle-split cross-validation to explore the influence of different proportions of training sets on 
the performance of the validation algorithm. 

During the validation of LFW, 6000 pairs are used for face verification, 3000 pairs of which 
belong to the same tags, and 3000 pairs of which belong to the different target tags. We divided the 
dataset into the training set and the test set after random shuffling, and the proportion of training set 
gradually increased from 0.1 to 0.9. There are 9 groups of experiments. We repeated the experiment 
10 times in each group and then used the average and median of the results to estimate the accuracy 
of the algorithm. Table 2 shows the results. 

Table 2. Accuracy of different validation methods on the LFW test set. 

As shown in Figures 10 and 11, as the proportion of training set increases, the average and 
median accuracy rise, but the overall change range is not large, which shows good algorithm 
performance. A small training set can also have good performance, which indicates that the model 
has great stability. From the perspective of standard deviation, when the training dataset is small, the 
stability of the model obtained is relatively poor, and the standard deviation is relatively large. In the 
process of increasing the training dataset, sufficient training data are selected to obtain a stable model. 
However, as test samples reduce, a few wrong judgments have great impact on the standard 
deviation of the accuracy. That is the reason the standard deviation goes up after group 6. 

 
Figure 10. The average accuracy of different validation methods on the LFW test set. 

99.10%

99.20%

99.30%

99.40%

99.50%

99.60%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Training set proportion 

Average accuracy

Training Set Proportion 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Average accuracy 99.29% 99.32% 99.36% 99.36% 99.35% 99.39% 99.41% 99.43% 99.43% 
Median accuracy 99.35% 99.34% 99.38% 99.36% 99.33% 99.40% 99.39% 99.42% 99.42% 

Standard deviation 0.16% 0.09% 0.05% 0.08% 0.08% 0.13% 0.14% 0.14% 0.20% 
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Figure 11. Median accuracy of different validation methods on the LFW test set. 

Therefore, we draw the following conclusions: 

1. The higher the proportion of the training data, the higher the accuracy of model verification. 
2. In small datasets, a few test samples will increase the standard deviation of accuracy. 
3. For the LFW dataset, the ten-fold cross-validation is a good way to estimate generalization 

performance, but the more appropriate proportion of the training dataset is maybe 0.3–0.8. 

4.2. Validation on CFP Dataset 

As a common face dataset, the Celebrities in Frontal Profile (CFP) dataset focuses on the profile 
faces. It contains a total of 500 face images of individuals. The face image set of each person contains 
10 frontal face images, 4 side face images, and a total of 7000 images in the dataset [27]. The CFP 
dataset is used for testing face verification. The test protocol is similar to the LFW dataset, but the 
CFP dataset has two types of test methods. The first is the frontal-frontal (ff) mode, in which we select 
verification pairs from the frontal face images. The other is the frontal-profile (fp) mode, in which one 
of the validated images is selected from the frontal faces and the other from the side faces. This test 
protocol is equivalent to separating the unified test of the LFW dataset into two types. One type 
verifies the ability of the algorithm to distinguish frontal faces, and the other verifies the ability to 
distinguish the side faces. Figures 12 and 13 show the schematic diagram of the CFP test protocol. 

  
(a) (b) 

Figure 12. Test protocol for Celebrities in Frontal Profile dataset frontal-frontal(CFP_ff) mode. (a) Face 
verification for the same objects. (b) Face verification for different objects. 
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(a) (b) 

Figure 13. Test protocol for Celebrities in Frontal Profile dataset frontal- profile(CFP_fp) mode. (a) 
Face verification for the same objects. (b) Face verification for different objects. 

The test methods of the ff-mode and the fp-mode are the same as the LFW dataset. We obtain 
the feature representation through the network, calculate the distance between the features, and 
obtain the classification through a unified threshold. Finally, we achieve accuracy by comparing 
results with the ground truth. We divide the entire test set into 10 parts randomly and obtain the final 
accuracy by taking the average accuracy of 10 subsets. Each test set contains 350 verification pairs of 
the same target and 350 verification pairs for different targets. Table 3 shows the algorithm accuracy 
in CFP_ff and CFP_fp modes. 

We compare the four algorithms that can improve the performance of face verification in the fp 
mode and human face recognition capability given in [27]. Human face recognition capability is given 
in [27] from a human experiment. 

Table 3. Accuracy of related algorithms on the CFP test set. 

Algorithms CFP_ff (Accuracy ± Std) CFP_fp (Accuracy ± Std) 
Sengupta et al. [27] 96.40% ± 0.69% 84.91% ± 1.82% 
Sankarana et al. [28] 96.93% ± 0.61% 89.17% ± 2.35% 

Human [27] 96.24% ± 0.67% 94.57% ± 1.10% 
DR-GAN [13] 98.36% ± 0.75% 93.89% ± 1.39% 
PTFRM_PYR 99.74% ± 0.20% 92.06% ± 1.86% 

The CFP dataset has some large angular profile faces. No matter how close they are to frontal 
faces, compared with full-frontal faces, the face information may be greatly lost. Thus, the accuracy 
of face verification in the fp mode cannot be compared with that in the ff mode. 

4.3. Validation on IJB-A Dataset 

The IARPA Janus Benchmark A (IJB-A) dataset contains 5712 face images from the network and 
2085 face images from the video. These face images come from 500 different persons. On average, 
each target has 11 images from the network pictures and 4 images from the network video [29]. 

The IJB-A dataset has two test protocols: face verification (1:1) and face identification (1:N). 

4.3.1. Face Verification 

The face verification of the IJB-A dataset is different from the face verification of the LFW and 
the CFP datasets. The face verification of the IJB-A dataset is based on templates. The concept of a 
template refers to a collection of face images containing the same identity, which may come from 
network images or frames in a movie. Figure 14 shows the test protocol diagram. 
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Figure 14. The IARPA Janus Benchmark A (IJB-A) dataset face verification (1:1) test protocol. (a) Face 
verification for the same objects. (b) Face verification for different objects. 

As shown in Figure 14, the green boxes represent the same target and the red boxes represent 
the different targets. In Figure 14a, each row represents the face template of the same person, while 
the upper and lower rows belong to the face of the same person, that is, the real classification is the 
same target. In Figure 14b, each row represents the face template of the same person, while the upper 
and lower rows represent the face of the different person, that is, the real classification is not the same 
target. In the test, the average feature representation of the template replaces the feature 
representation of a single image. Then, we calculate the distance of the feature pair, use the threshold 
to classify and discriminate, and obtain the prediction classification Finally, we compare the 
prediction with the real classification to obtain the accuracy. Table 4shows the test result of face 
verification (1:1). 

We design and compare three schemes, namely Backbone, PTFRM_Y, and PTFRM_PYR. For 
PTFRM_Y, only the yaw angle for depth feature transformation is taken into account. For 
PTFRM_PYR, the yaw, pitch, and roll are taken into account comprehensively. Figure 14 shows the 
receiver operating characteristic(ROC) comparison on IJB-A Face Verification (1:1) for these three 
schemes. 

The IJB-A dataset presents additional challenges for large-angle face data. We can explore the 
role of the PTFRM module by comparing ROC curves and performance of different models in the 
IJB-A face validation (1:1). 

Table 4. TPR of different algorithms in IJB-A face verification (1:1). 

Algorithms TPR@FPR = 0.001 TPR@FPR = 0.01 
Deep-Multi-Pose [30] - 78.76%± - 
Multi-task CNN [31] - 78.74% ± 4.31% 

PAMs [8] 71.10% ± 3.70% 84.70% ± 1.60% 
DR-GAN [13] 70.3% ± 5.79% 85.70% ±1.60% 

Chen et al. [26] 74.30% ± -- 87.30%± - 
PTFRM_Y 85.25% ± 0.37% 89.73% ± 0.76% 

PTFRM_PYR 89.30% ± 1.39% 93.82%±0.78% 

FPR is the false positive rate, that is, the proportion of samples whose true label is negative but 
predicted to be positive in all samples whose true label is negative. For example, FPR = 0.001 
represents 1000 negative samples, allowing one negative sample to be predicted as a positive sample. 
FPR = 0.001 represents 100 negative samples, allowing one negative sample to be judged as a positive 
sample. The scene represented by FPR = 0.001  is more stringent than 0.01. TPR stands for the true 
positive rate, that is, the proportion of samples whose true label is positive and predicted as positive 
classes in all samples whose true label is positive. In general, when the FPR is fixed, the higher the 
TPR, the better the network performance. 

As seen from the comparison in Figure 15, we can find that the PTFRM module is a lightweight 
and effective component, which can be embedded in the backbone network. The PTFRM module can 
be used to convert the profile features in the deep network into frontal features effectively to improve 
the performance of face recognition. In addition, most research only considers the impact of yaw 
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angle on facial postures. However, the comprehensive consideration of pitch, yaw, and roll can 
improve the performance of the PTFRM module. 

 
Figure 15. Receiver operating characteristic(ROC) comparison of IJB-A face verification (1:1). 

4.3.2. Face Identification 

Figure 16 shows the test protocol for face recognition. The first row is the template to be tested. 
All images in the template are the same target. The black boxes below are all search template libraries. 
Among them, two green boxes are templates of the same target, and the rest are templates of different 
targets. During the test, we compare the template to be tested with the template in the search template 
library one by one. Then, we obtain a similarity list. According to the test protocol and the specific 
requirements of the scenario, we can find one or several targets with the highest similarity, which is 
predicted to be the same class as the template to be tested. Finally, we compare it with the real 
classification to achieve accuracy. The test results are shown in Table 5. 

 
Figure 16. IJB-A identification (1:N) test protocol. 

Table 5. Accuracy of related algorithms in face recognition (1:N). 

Algorithms Accuracy@Rank = 1 Accuracy@Rank = 5 
COTS matcher [24] 82.20% ± 2:3% 93.10% ± 1.4% 

Deep-Multi-Pose [30] 84.60% ± - 92.70% ± - 
Multi-task CNN [31] 85.80% ± 1.40% 93.80% ± 0.9% 

PAMs [8] 86.20% ± 1.3 0% 94.30% ± 0.9% 
DR-GAN [13] 91.0% ± 1.5% 95.6% ± 1.1% 

……… 
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Chen et al. [26] 87.30% ± - 93.10% ± - 
PTFRM_Y 91.62% ± 0.62% 93.87% ± 0.57% 

PTFRM_PYR 94.33% ± 0.84% 97.06% ± 0.64% 

The accuracy@Rank = 1 indicates that the proportion of the templates with the highest similarity 
in the similarity list is the same as the template to be tested to all the templates. The accuracy@Rank 
= 5 that indicates the ratio of five templates with the highest similarity in the similarity list is the same 
as the templates to be tested in all the templates. Evidently, Rank = 1 is more demanding than Rank 
= 5. Table 5 shows that the accuracy of the proposed algorithm is relatively stable, and the deviation 
is relatively small, indicating that the stability and generalization ability of the network is strong. 
Given the fine classification of the three pose components at the same time, the transformation 
mapping ability of the PTFRM module is enhanced. Thus, we can convert complex pose facial feature 
representations into frontal facial feature representations. The proposed algorithm in this study is 
better than the comparison algorithm, especially the accuracy in the Rank = 1 scenario. Moreover, it 
has a greater advantage than other algorithms. 

4.4. Runtime 

The effect of PTFRM is demonstrated by testing the accuracy and runtime of face detection and 
face recognition with and without the PTFRM module. We use Intel-core i7-8700k CPU and a single 
GTX 1080Ti GPU to complete the experiment. One hundred images with only one face per picture 
are taken as an example. Table 6 shows the results. 

Table 6. The processing speed of each model. 

Model Cost Time/100 Images 
Backbone 13 s 

PTFRM_PYR 14 s 

The PTFRM_PYR model completes the feature extraction and feature comparison of a face image 
with 140 ms. The processing speed can reach 10 fps. After adding the PTFRM module, the runtime 
does not increase significantly. The test results indicate that the PTFRM is beneficial to face 
recognition under multi-pose conditions within the allowable computational complexity. 

5. Conclusions 

This study focuses on the multi-pose face recognition problem in unconstrained scenes and 
summarizes the principles and shortcomings of the existing methods, such as PAMs, DR-GAN, and 
DREAM. Based on the core idea of approximating a “frontal” image at the feature level, we propose 
the PTFRM module. The module maps the original feature representation by using pose labels and 
choosing different mapping relationships. Then, the original feature representation becomes a feature 
representation of the approximate “frontal” face. While maintaining the end-to-end characteristics of 
the network, this method has higher resource utilization and better recognition effect than other 
methods. 

Author Contributions: C.T. is the leader of this research. He proposed the basic idea and participated in the 
discussion. X.Z. conducted the experiments for the revision. He participated in the discussion and development 
associated with this research. S.R. wrote and revised the manuscript. Z.J. developed the algorithm and conducted 
the experiments. S.C. participated in the research discussion and experimental design. H.W. was responsible for 
the data curation. H.L. and D.T. conducted the experiments of the ten-fold cross-validation and corresponding 
analysis. All authors have read and agreed to the published version of the manuscript. 

Funding: The research was funded by a research grant from the Chongqing Science and Technology 
Commission (Project Code: cstc2016shmszx40005) and the Ministry of Industry and Information Technology 
2018 Industrial Internet Innovation and Development Project (Project Code: Z20180898). 

Conflicts of Interest: The authors declare no conflict of interest. 



Appl. Sci. 2020, 10, 4669 16 of 17 

 

References 

1. Huber, P.; Hu, G.; Tena, R.; Mortazavian, P.; Kittler, J. A multiresolution 3D morphable face model and 
fitting framework. In Proceedings of the 11th International Conference on Computer Vision Theory and 
Applications (VISAPP 2016), Rome, Italy, 27–29 February 2016. 

2. Sun, Y.; Wang, X.G.; Tang, X. Deep learning face representation from predicting 10,000 classes. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Columbus, OH, 
USA, 23–28 June 2014; pp. 1891–1898. 

3. Deng, J.; Guo, J.; Xue, N.; Zafeiriou, S. ArcFace: Additive angular margin loss for deep face recognition. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, 
CA, USA, 15–20 June 2019; pp. 4685–4694. 

4. Deng, J.; Jia, G.; Zafeiriou, S. ArcFace: Additive angular margin loss for deep face recognition. arXiv 2018, 
arXiv: 1801.07698. Available online: https://arxiv.org/abs/1801.07698 (accessed on 3 July 2020). 

5. Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep Face Recognition; University of Oxford: Oxford, UK, 2015. 
6. Wen, Y.; Zhang, K.; Li, Z.; Qiao, Y. A discriminative feature learning app. roach for deep face recognition. 

In Proceedings of the European Conference on Computer Vision(ECCV 2016), Amsterdam, The 
Netherlands, 11–14 October 2016; pp. 499–515. 

7. Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A unified embedding for face recognition and clustering. 
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 
USA, 7–12 June 2015; pp. 815–823. 

8. Zhao, K.; Xu, J.; Cheng, M.-M. RegularFace deep face recognition via exclusive regularization. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, 
CA, USA, 15–20 June 2019. 

9. Masi, I.; Chang, F.J.; Choi, J.; Harel, S.; Kim, J.; Kim, K.; Leksut, J.; Rawls, S.; Wu, Y.; Hassner, T.; et al. 
Learning pose-aware models for pose-invariant face recognition in the wild. IEEE Trans. Pattern Anal. Mach. 
Intell. 2019, 41, 379–393. 

10. Hayat, M.; Khan, S.H.; Werghi, N.; Goecke, R. Joint registration and representation learning for 
unconstrained face identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1551–1560. 

11. Kan, M.; Shan, S.; Chang, H.; Chen, X. Stacked Progressive Auto-Encoders (SPAE) for face recognition 
across poses. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 
Columbus, OH, USA, 23–28 June 2014; pp. 1883–1890. 

12. Yin, X.; Yu, X.; Sohn, K.; Liu, X.; Chandraker, M. Towards large-pose face frontalization in the wild. In 
Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 
2017; pp. 4010–4019. 

13. Tran, L.; Yin, X.; Liu, X. Representation learning by rotating your faces. IEEE Trans. Pattern Anal. Mach. 
Intell. 2019, 41, 3007–3021. 

14. Tran, L.; Yin, X.; Liu, X. Disentangled representation learning GAN for pose-invariant face recognition. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 
USA, 21–26 July 2017; pp. 1283–1292. 

15. Qian, Y.; Deng, W.; Hu, J. Unsupervised face normalization with extreme pose and expression in the wild. 
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long 
Beach, CA, USA, 15–20 June 2019; pp. 9843–9850. 

16. Hayat, M.; Bennamoun, M.; An, S. Deep reconstruction models for image set classification. IEEE Trans. 
Pattern Anal. Mach. Intell. 2015, 37, 713–727. 

17. Cao, K.; Rong, Y.; Li, C.; Tang, X.; Loy, C.C. Pose-robust face recognition via deep residual equivariant 
mapping. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 
(CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 5187–5196. 

18. Yi, D.; Lei, Z.; Liao, S.; Li, S.Z. Learning face representation from scratch. arXiv 2014, arXiv: 1411.7923. 
Available online: https://arxiv.org/abs/1411.7923 (accessed on 3 July 2020). 

19. Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint face detection and alignment using multitask cascaded 
convolutional networks. IEEE Signal. Proc. Lett. 2016, 23, 1499–1503. 

20. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 
2014, arXiv:1409.1556v6. Available online: https://arxiv.org/abs/1409.1556 (accessed on 3 July 2020). 



Appl. Sci. 2020, 10, 4669 17 of 17 

 

21. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–
7141. 

22. Learned-Miller, E.; Huang, G.B.; RoyChowdhury, A.; Li, H.; Hua, G. Labeled faces in the wild: A survey. 
In Advances in Face Detection and Facial Image Analysis; Springer International Publishing: New York, NY, 
USA, 2016; pp. 189–248. 

23. Taigman, Y.; Yang, M.; Ranzato, M.A.; Wolf, L. DeepFace: Closing the gap to human-level performance in 
face verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 1701–1708. 

24. Wang, D.; Otto, C.; Jain, A.K. Face search at scale. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1122–1136. 
25. Yi, S.; Ding, L.; Wang, X.; Tang, X. DeepID3: Face recognition with very deep neural networks. arXiv 2015, 

arXiv:1502.00873. Available online: https://arxiv.org/abs/1502.00873 (accessed on 3 July 2020). 
26. Chen, G.; Shao, Y.; Tang, C.; Jin, Z.; Zhang, J. Deep transformation learning for face recognition in the 

unconstrained scene. Mach. Vis. Appl. 2018, 29, 513–523. 
27. Sengupta, S.; Chen, J.C.; Castillo, C.; Patel, V.M.; Chellappa, R.; Jacobs, D.W. Frontal to profile face 

verification in the wild. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 
Lake Placid, NY, USA, 7–10 March 2016. 

28. Sankaranarayanan, S.; Alavi, A.; Castillo, C.; Chellappa, R. Triplet probabilistic embedding for face 
verification and clustering. In Proceedings of the IEEE 8th International Conference on Biometrics Theory, 
Applications and Systems (BTAS), Niagara Falls, NY, USA, 6–9 September; 2016; pp. 1–8. 

29. Klare, B.F.; Klein, B.; Taborsky, E.; Blanton, A.; Cheney, J.; Allen, K.; Grother, P.; Mah, A.; Burge. M.; Jain, 
A.K. Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 
USA, 7–12 June 2015; pp. 1931–1939. 

30. AbdAlmageed, W.; Wu, Y.; Rawls, S.; Harel, S.; Hassner, T.; Masi, I.; Choi, J.; Lekust, J.; Kim, J.; Natarajan, 
P.; et al. Face recognition using deep multi-pose representations. In Proceedings of the IEEE Winter 
Conference on Applications of Computer Vision, Lake Placid, NY, USA, 7–10 March 2016. 

31. Yin, X.; Liu, X. Multi-Task convolutional neural network for pose-invariant face recognition. IEEE Trans. 
Image Process. 2018, 27, 964–975. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


