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Abstract: Irrigation management continues to be an important issue for tomato cultivation, especially
in plant factories. Accurate and timely assessment of tomato leaf water status is a key factor in
enabling appropriate irrigation, which can save nutrition solution and labor. In recent decades,
hyperspectral imaging has been widely used as a nondestructive measurement method in agriculture
to obtain plant biological information. The objective of this research was to establish an approach
to obtain the tomato leaf water status—specifically, the relative water content (WC) and equivalent
water thickness (MC)—for five different tomato cultivars in real time by using hyperspectral imaging.
The normalized difference vegetation index (NDVI) and two-band vegetation index (TBI) analyses
were performed on the tomato leaf raw relative reflection (RAW), the inversion-logarithm relative
reflection (LOG), and the first derivative of relative reflection (DIFF) from wavelengths of 900 nm to
1700 nm. The best regression model for WC assessment was obtained by TBI regression using DIFF at
wavelengths of 1410 nm and 1520 nm, and the best regression model for MC assessment was obtained
by NDVI regression using RAW at wavelengths of 1300 nm and 1310 nm. Higher model performance
was obtained with MC assessment than with WC assessment. The results will help improve our
understanding of the relationship between hyperspectral reflectance and leaf water status.

Keywords: hyperspectral imaging; tomato leaf; water status; normalized difference vegetation index;
two-band index

1. Introduction

Plant factories are widely used for tomato cultivation. The corresponding automation and
precise management are also becoming increasingly important issues. In particular, precise irrigation
management is a challenge. To ensure that the plants have adequate moisture, irrigation management is
improved by making adjustments considering the growth stage and status of the tomato; however, the
solution waste rate remains at approximately 20–30%, which causes considerable wastage of nutrition
solution and labor. To achieve more precise irrigation management, many studies have focused on the
accurate monitoring the leaf water status dynamics in real time through nondestructive measurements.

In recent decades, with the advancements in spectroscopy and imaging technologies, hyperspectral
imaging (HSI) technology has emerged as a highly efficient nondestructive measurement method.
This technology was originally developed for remote sensing and is widely used in resource
management, agriculture, mineral exploration, and environmental monitoring [1–3].
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Certain properties of the tomato leaf enable the possibility of assessing its water status using HSI.
Tomatoes lose more than 90% of the water they absorb by transpiration from their leaves [4]; therefore,
the leaves are more susceptible to water stress than other organs, such as the fruit. Leaf water stress is
usually indicated by the leaf water status, including the leaf water content (WC) and equivalent water
thickness (MC) [5,6]. There are differences in terms of the physics between WC and MC, where WC is
a percentage, which can be calculated based on the fresh and dry weights of a tomato leaf (FW and
DW, respectively), while MC has units of weight per area (g/cm2 or g/dm2) and is calculated based on
the weight of the water contained in the leaf and the leaf area (LA) [7].

Previous studies have shown that the histological structures and specific components of plant
leaves are the main factors affecting the reflectance spectral characteristics. The high reflectance in the
near-infrared band of 780–1300 nm is due to the structure of plant tissues and cells. The low reflectance
above a wavelength of 1300 nm is due to the absorption of water. Furthermore, numerous studies
have indicated that there are four water absorption bands for all angiosperm leaves, which occur at
wavelengths of approximately 970, 1200, 1400, and 1920 nm [2,3,8,9]. These discoveries enable water
status assessment using HSI.

In HSI, information from across the electromagnetic spectrum is collected and processed,
and conventional imaging and spectroscopy are integrated to obtain both spatial and spectral
information from an object. This information can be used to characterize objects with great precision and
detail. However, preprocessing of hyperspectral data is necessary to reduce random noise and improve
the accuracy of the assessment model. The preprocessing methods employed for this purpose include
normalization processing [2,10]; the spectral derivative technique, including first-order, second-order,
and fractional differential processing [2,11,12]; and the logarithmic transformation of the inverse of the
reflectance [10,12,13], among others.

To establish a water status assessment model based on hyperspectral data, numerous researchers
have focused on hyperspectral indices using two wavelength bands, such as (1) λ1/λ2, which is also
called the water index [14], sample ratio water index [15], simple ratio water index [16], or moisture
stress index (MSI) [17]; and (2) (λ1 − λ2)/(λ1 + λ2), which is called the normalized difference water
index (normalized difference vegetation index (NDVI) [18], normalized difference infrared index
(NDII) [19], normalized difference water index [20], normalized multi-band drought index [21],
or short-wave infrared water stress index [22]. In addition, new wavelength combinations for leaf
water status (WC and MC) are constantly being proposed using the above model expression [2,7].
However, the relationships between the wavelength bands and water status indicators (WC and MC)
have not been well investigated to date. Furthermore, the study of different objects requires the use of
different wavelength combinations that correspond to them.

Based on the aforementioned background, the main objectives of this research were to (1) perform
statistical analysis on the leaf water status (WC and MC); (2) investigate the impact of hyperspectral
data preprocessing on improving the model accuracy, and identify the best combination of wavelength
bands for leaf water status (WC and MC) assessment based on the NDVI and two-band index
(TBI); (3) evaluate the performance of the leaf water status model based on various types of indices;
and (4) establish an approach for obtaining the tomato leaf water status (WC and MC) in real time
using HSI technology for tomato plant irrigation management in plant factories.

2. Materials and Methods

2.1. Research Site and Tomato Cultivation

The experiment in this study was conducted in the sunlight-type plant factory of the National
Agriculture and Food Research Organization (36.025399◦ N, 140.101125◦ E), Tsukuba, Ibaraki, Japan.
The eave height of the plant factory was 5.1 m, and the total area was 2551 m2 (63 m × 40.5 m).
The whole building was covered with an ethylene tetrafluoroethylene film (F-clean GR diffused type,
AGC Greentech, Tokyo, Japan), including the roof and the glass on the walls. The plant factory was
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divided into eight small compartments to accommodate several hydroponic systems and crops [23].
One small compartment with a growing area of 162 m2 (9 m × 18 m) was employed for cultivating the
tomato plants used in this experiment. The Ubiquitous Environment Control System was adopted to
control the environment in the growing house. The temperature target was set between 14 ◦C and
25 ◦C. An automatic shade curtain (LS screen, XLS16, Seiwa Co., Ltd., Tochigi, Japan) was used to
shield the light when the outdoor solar radiation was greater than 1.2 kW·m−2.

The tomato plant samples were selected from five tomato cultivars for investigation in this
experiment. They included “CF Momotarou”, “Rinnka 409”, and “DR03-103”, which are Japanese
tomato cultivars that are produced for consumption as raw food; and “Tomimaru mucyo” and
“Endeavour”, which are tomato cultivars from the Netherlands that are produced for processing and
cooking. All of the samples were seeded on July 13, 2016. After three days of processing under a
dark condition at 28 ◦C, with hastening by sprouting equipment, all the tomato plants were moved
to a “Nae Terrace” to raise the seedlings for 21 days. They were then transplanted in sunlight in a
plant-factory growing house on August 12 after secondary raising of the seedlings in the grow room.
A rock wall slab and high wire (3.4 m) were adopted in this experiment. The nutrient solution was
initially set to 1.0 dS/m−1 and then gradually increased to 2.8 dS/m−1. The fruit setting was increased
by using 4-cholorophenoxy acetic acid (4-CPA), a plant growth hormone (0.15%, Ishihara), until the
third fruit setting. Then the pollination was conducted by bees.

2.2. Tomato Leaf Sampling and Leaf Water Content Measurement

For nondestructive measurement of the tomato leaf water status using a portable hyperspectral
camera, the measuring zone was divided into three parts (Figure 1): the top leaf position (LP) (near the
growing point, 250 cm from the ground, LP-1), middle leaf position (150 cm from the ground, LP-2),
and bottom leaf position (60 cm from the ground, LP-3). The distribution differences of the tomato
plants under a year-round cultivation condition were considered. All three plants from the five tomato
cultivars described above were chosen for the tomato leaf sampling.
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Figure 1. Overview of the tomato leaf sampling at varying leaf positions (LPs). LP-1: Top; LP-2:
Middle; LP-3: Bottom.

Tomato leaf sampling was conducted on April 6, 2017 (267 days after seeding), for a total of
45 samples. Three groups worked as a line operation for leaf sampling to ensure measurement accuracy
and to make all the measurements simultaneous. Firstly, the compound leaf was sampled in accordance
with the different measuring zones. Secondly, the terminal leaflet was separated from the compound
leaf, and its fresh weight (FW) was immediately measured. Thirdly, the HSI data of the terminal
leaflet were obtained using a hyperspectral camera. The leaf sampling was initiated at 10:00 a.m. after
irrigation and completed in two hours. All leaf samples were dried in a drying machine at 105 ◦C
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for 72 h. Then, the dry weight (DW) of the terminal leaflet was measured. The tomato leaf WC and
equivalent water thickness (MC) were calculated in terms of the fresh weight, dry weight, and leaf
area (LA) by using Formulas (1) and (2), respectively, as follows [5–7]:

WC (%) =
FW −DW

FW
× 100%, (1)

MC =
FW −DW

LA
. (2)

2.3. Hyperspectral Imaging and Data Analysis

2.3.1. Leaf Hyperspectral Measurement

A portable hyperspectral camera (SIS-I, EBA Japan Co., LTD., Tokyo), standard reflector,
and halogen lamp (CHP-500, Caster) were employed to obtain the spectral data of the tomato
leaves from the bottom, middle, and top leaf positions. The wavelength range of the hyperspectral
camera is 900 nm to 1700 nm, which is within the near-infrared (NIR) region. A dedicated NIR CCTV
lens was set up in front of the camera using a C mount. A standard reflector (White Balance, X-Rite)
and a halogen lamp were adopted in this experiment to reduce experimental errors. The hyperspectral
image data of the terminal leaflet were immediately obtained after measuring the FW by using NIR
Capture software (SIS-I, EBA Japan Co., LTD., Tokyo). The camera was set to a frame rate below 80 fps
and to the maximum exposure time of 4.5 ms. The spectral resolution and image resolution of the
hyperspectral camera were 10 nm and 400 × 320 pixels, respectively.

2.3.2. Image Processing for Hyperspectral Data

HSAnalyzer (EBA Japan Co., Ltd.) software was employed to preprocess the hyperspectral data,
whose format was NIR and which were based on the band interleaved by the line data arrangement
format. Further processing and data analysis were conducted using a MATLAB (MathWorks) program,
which was developed for this study. Each leaf image was extracted from the hyperspectral data by image
processing with MATLAB. To determine the leaf morphological characteristics, a region of interest
(ROI) was selected, and a single wavelength of 1390 nm was used to construct a two-dimensional
image (Figure 2).
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Figure 2. Hyperspectral image at a 1390 nm wavelength. Figure 2. Hyperspectral image at a 1390 nm wavelength.

To produce a red–green–blue (RGB) format image file, wavelengths of 1000 nm, 1430 nm,
and 1530 nm were respectively chosen as the special wavelengths to produce the individual fake colors
of red, green, and blue. Then, the combined RGB image was transformed into a Lab (CIELAB) color
space image to reduce the noise by threshold filtering. Subsequently, the grayscale image (Lab) was
converted into a binary image to obtain binary statistics, which were used to calculate the LA (Figure 3).
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Figure 3. Hyperspectral image processing and data analysis. (a) Extraction of the leaf image (R: 1000 nm,
G: 1430 nm, B: 1530 nm). (b) Leaf area calculation.

2.3.3. Hyperspectral Data Analysis and Waveband Selection

The tomato leaf ROI was 15 × 15 pixels (225 pixels) and it was selected from the tip of each terminal
leaflet. For each sample, the spectral data were calculated using the average ROI of the spectral data.
The relative reflectance (Figure 4) and the standardized spectrum of the tomato leaf were calculated for
each leaf sample by using Formulas (3) and (4), respectively [10].

R =
rlea f

rre f er
, (3)

Ni = log10(
1
R
). (4)

where

rlea f : Spectrum of the tomato leaf sample, raw spectral data;

rre f er: Spectrum of the standard reflector;

R : Relative reflectance of the standard reflector;
Ni : Standardized spectrum of the tomato leaf (i = 1–81 wavelength bands).
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The first-order derivative of spectral reflectance (DR) and second-order derivative of spectral
reflectance (SR), based on the raw reflectance, were calculated using Formulas (5) and (6) with the
Norris gap method [24].

ρ′(λi) =
ρ(λi+1) − ρ(λi−1)

2∆λ
, (5)

ρ′′ (λi) =
ρ(λi+1) − 2ρ(λi) + ρ(λi−1)

∆λ2 . (6)

where ρ is the spectral reflectance, λi denotes the wavelength of each band, and ∆λ represents the
interval from λi−1 to λi.

Partial least squares regression analysis was employed to assess the tomato leaf water status (WC
and MC) by using all wavelengths from 900 nm to 1700 nm. For this purpose, Unscrambler X software
(CAMO Software Inc., Oslo, Norway) was used because it is effective for multivariate analysis. Kernel
partial least squares and cross-validation were employed in the regression analysis. NDVI and TBI
were also adopted to assess the tomato leaf water status by using Formulas (7) and (8), respectively.

NDVI =
λ1 − λ2

λ1 + λ2
, (7)

TBI =
λ1 + λ2

λ1 − λ2
. (8)

where λ1 is the wavelength of Band 1, from 900 nm to 1700 nm, and λ2 denotes the wavelength of
Band 2, from 900 nm to 1700 nm. In the wavelength range from 900 nm to 1700 nm, 81 bands were
identified by the 10 nm spectral resolution. All 6561 combinations of λ1 with λ2 were calculated for
NDVI and TBI modeling by using MATLAB. Autocorrelation analysis was employed to improve the
model accuracy and ensure model stability.

3. Results and Discussion

3.1. Tomato Leaf Water Status

In the agricultural production of tomato, the increase of plant stress, especially water stress,
is widely used to improve the tomato fruit quality. However, it is difficult to accurately control the
amount of plant stress given. The desired effect cannot be achieved with insufficient plant stress; on the
other hand, excessive increase of plant stress will cause damage to the plant, even if the amount of plant
stress is slightly larger than optimal. Tomato leaf water status has been adopted as an index to evaluate
plant stress because leaves are the most susceptible organs to water stress compared with other organs,
such as the fruit, as noted earlier. Although the leaf water potential can be a strong indicator for
assessing the tomato leaf water status, WC was employed as an indicator in this experiment because it
is easy to measure and is a stable parameter [25].

The tomato leaf from Leaf Position 1 (LP-1) (Table 1) has a significantly lower FW than those
from Leaf Position 2 (LP-2) and Leaf Position 3 (LP-3). This is considered to be owing to the LP-1
tomato leaf being a new leaf and being located much closer to the growth point. There are significantly
different WCs among the LP-1, LP-2, and LP-3 tomato leaves, the averages of which are 86.88%, 89.12%,
and 90.25%, respectively. The higher the leaf position is, the smaller the leaf area (LA). The fresh weight
per unit leaf area (FW/LA) and equivalent water thickness (MC) in LP-1 are significantly smaller than
those in LP-2 and LP-3.
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Table 1. Characteristic differences of the tomato leaves according to height layers.

FW (g) WC (%) LA (cm2) FW/LA (g/dm2) MC (g/dm2)

LP-1 1.19 b 86.88 c 48.96 b 2.30 b 2.00 b
LP-2 1.89 a 89.12 b 67.31 a 2.75 a 2.48 a
LP-3 2.02 a 90.25 a 73.11 a 2.79 a 2.49 a

FW: fresh weight, WC: water content, LA: leaf area, FW/LA: fresh weight per unit leaf area; MC: equivalent water
thickness. Values with different letters are significantly different according to Tukey’s test at p < 0.05.

For the different tomato cultivars (Figure 5), “DR03-103” shows a higher leaf FW and leaf area than
the other tomato cultivars. Differences in WC are observed among the different cultivars. The highest
leaf WC is observed in the typical Japanese cultivar “CF Momotarou”, with a 3.77% difference between
LP-3 (87.58%) and LP-1 (91.35%). The lowest leaf WC is observed in the Dutch “Endeavour” tomato
cultivar, with a difference of 2.80% between LP-3 (86.12%) and LP-1 (88.92%). The equivalent water
thickness (MC) shows almost the same value in LP-2 and LP-3, whereas the WC in the LP-3 leaf is
on average 1.13% higher than the WC in the LP-2 leaf. This difference is considered to be due to the
influence of the water potential, which may depend on the height difference of the leaf position.
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Figure 5. Tomato leaf characteristics of five cultivars under different height layers. (a) Fresh weight;
(b) water content; (c) leaf area; (d) equivalent water thickness (g/dm2). E: Endeavour; R: Rinnka409;
T: Tomimaru mucyo; Y: CF Momotarou; Z: DR03-103.
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3.2. Relationship between Individual Wavelength and Water Status

Many different types of random noise exist in an HSI system, including a dark current from the
camera, light from the environment, noise from digitization owing to analog to digital conversion,
and so on. These noise values will obviously impact the results obtained from subsequent image
analysis [26]. To improve the assessment accuracy of the leaf water status, the spectral derivative
technique and the logarithmic transformation (log (1/R)) of the inverse of the reflectance method were
adopted for proper HSI preprocessing. The study reported in [13] showed that low-order differential
processing of the spectrum has a low sensitivity to noise and is more effective in practical applications.
Thus, first-order differential processing technology was adopted in this study to remove part of the
linear or near-linear background and the influence of the noise spectrum on the target spectrum [2,24].
The logarithmic transformation (log (1/R)) of the inverse of the reflectance method was employed
to address the nonlinear problem. The logarithmic transformation of the reciprocal of the spectral
reflectance tends to not only enhance the spectral difference in the visible and infrared region, but also
reduce the effects of multiplicative factors caused by changes in lighting conditions [11].

To determine the correlation coefficient between the tomato leaf water status (WC and MC) and
individual wavelengths of the raw relative reflection (RAW), the first derivative of relative reflectance
(DIFF) and the inverse-logarithm relative reflectance (LOG) were calculated from 900 nm to 1700 nm
(Figure 6).
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Figure 6. Correlation coefficient between the leaf water status and individual wavelength. (a) Leaf WC;
(b) equivalent water thickness (g/dm2). RAW: raw relative reflectance; DIFF: first derivative of relative
reflectance; LOG: inverse-logarithm relative reflectance (1og(1/R)).

The maximum negative correlation coefficient between the raw relative reflectance and WC is
observed at 1410 nm, where the coefficient value is r = −0.3334. Regarding the relationship between the
raw relative reflectance and MC, the maximum negative correlation coefficient is obtained at 1410 nm
with the coefficient value of r = −0.6803. The maximum positive correlation coefficient between the
inverse-logarithm relative reflectance and WC is observed at 1420 nm with a low coefficient value
of r = 0.2795. With regard to the relationship between the inverse-logarithm relative reflectance
and MC, the maximum positive correlation coefficient is obtained at 1420 nm, and the coefficient
value is r = 0.5745. For the relationship between the first derivative of relative reflectance and WC,
the maximum positive correlation coefficient value is r = 0.4694 at 1430 nm. Moreover, the maximum
negative correlation coefficient is obtained at 1140 nm with r = −0.7298, and the second largest
correlation coefficient value is obtained at 1430 nm with r = 0.6457.

It should be noted that, as indicated by Pu [2], compared to other plant biochemical parameters,
water has several obvious absorption bands at 970, 1200, 1400, and 1940 nm. Of these bands, 1400 nm
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and 1900 nm are considered the main bands that characterize water absorption [9]. The maximum
negative or positive correlation coefficient in this experiment was thus concentrated in the range from
1410 nm to 1430 nm owing to the high water absorption in this region.

Recent studies have revealed that reflectance is related to changes in MC rather than to changes in
WC. It is considered that WC depends on two independent leaf variables: the leaf equivalent water
thickness and leaf dry mass area, both of which affect the leaf optical properties [6,7,27]. The correlation
value between MC and wavelength was always observed to be higher than that between WC and
wavelength in the present experiment.

3.3. Partial Least-Squares Regression Applied to Wavelength and Water Status

Partial least squares (PLS) regression is an alternative statistical regression technique that employs
data compression to reduce the number of independent variables. PLS regression, followed by a
calibration regression stage consisting of a least-squares fit of the parameters to the obtained regression
factors [2,28], was employed to calibrate the relationships between the spectral variables derived from
the hyperspectral data (RAW, DIFF, and LOG) and the tomato leaf water status (WC and MC).

To evaluate the effectiveness of the PLS regression model, cross-validation was employed in this
experiment. Moreover, the root-mean-square error (RMSE) was calculated by using the following formula:

RMSE =

√
1
n

∑n

i=1
(yi − ŷi)

2. (9)

The largest coefficient of determination of PLS regression for the wavelength and water status was
obtained by the analysis of DIFF and MC, as shown in Figure 7f, where the coefficient of determination
for calibration is R2 = 0.5822 and that for the validation is r2 = 0.5144. In addition, the two wavelength
bands are the only two factors adopted in this model. The use of fewer factors will ensure model
stability in practical applications. This is because the use of fewer factors will decrease the noise that
always accompanies wavelength acquisition. The PLS regression results show a higher coefficient of
determination for MC than that for WC.

Some conclusions can be drawn in terms of the effect of hyperspectral data preprocessing before
PLS regression: (1) Inverse-logarithm relative reflectance transformation helped improve the model
performance, enabling a higher coefficient of determination and lower RMSE compared with RAW in
WC modeling. Furthermore, the opposite effect was observed in MC modeling. (2) The first derivative
of relative reflectance transformation degraded the model performance, leading to a lower coefficient
of determination and higher RMSE compared with RAW in WC modeling. Meanwhile, the opposite
effect was observed in MC modeling. The aforementioned aspects are considered the differences
between WC and MC in terms of physics and the applicability of the data processing methods.
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3.4. Autocorrelation Coefficient of Wavelength Bands

Hyperspectral data include extensive image and spectral information. However, not only do
these spectra contain a considerable amount of redundant information, but a strong autocorrelation
exists among different wavelength bands. To reasonably increase the amount of useful information
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and optimum index factors for modeling, a spectral autocorrelation calculation was employed to
assist in selecting the characteristic spectra (Figure 8). For RAW and LOG, two strong autocorrelation
zones are observed in the wavelength bands of 950–1350 nm and 1400–1700 nm. In contrast with the
autocorrelation coefficient of RAW, the inverse-logarithm processing enhances the correlation between
the wavelength bands. Nevertheless, first-order differential processing decreases the correlation
between wavelengths in most wavelength bands.
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3.5. Application of NDVI and TBI to Wavelength and Water Status

For leaf water status assessment, studies have been conducted to establish a regression model
using different wavelength bands. In addition to the multiple-band models employed in some
studies [14,29–31], the two-band model has been the focus of many studies in applications with
different mathematical expressions, where λ1/λ2 [6,14–17,32] and (λ1 − λ2)/(λ1 + λ2) [6,18–20,33,34]
have been employed. In the present experiment, NDVI and TBI were adopted to establish the regression
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3.5.1. NDVI

With regard to WC assessment, a region corresponding to a higher coefficient of determination
is observed with λ1 near 1400 nm and with λ2 at approximately 1450–1650 nm (Figure 9). Better
NDVI regression model performance is obtained with LOG, where the model is y = 87.995x + 85.649,
the coefficient of determination for calibration is R2 = 0.6080, the coefficient of determination for
validation is r2 = 0.3696, and the root-mean-squared error is RSME = 1.44 (Table 2) at the wavelengths
λ1 = 1370 nm and λ2 = 1610 nm. For MC assessment, better NDVI (Figure 9) regression model
performance is obtained with RAW, when λ1 = 1300 nm and λ2 = 1310 nm, where the model is
y = 317.11x− 0.3247 (R2 = 0.8042, r2 = 0.6467, RSME = 0.2689).
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Table 2. Model performance by using NDVI and TBI according to wavelength and water status.

Regression Models Data Sets
WC (%) MC (g/dm2)

Wavelength
Bands (nm) R2 r2 RMSE Wavelength

Bands (nm) R2 r2 RMSE

NDVI
RAW 1390, 1600 0.6060 0.3672 1.44 1300, 1310 0.8042 0.6467 0.2689
LOG 1390, 1600 0.6080 0.3696 1.44 950, 1350 0.7550 0.5699 0.2967
DIFF 1370, 1610 0.5643 0.3185 1.49 1310, 1410 0.7733 0.5980 0.2869

TBI
RAW 1400, 1570 0.5950 0.3540 1.45 1300, 1310 0.7886 0.6389 0.2720
LOG 1390, 1620 0.5851 0.3430 1.47 950, 1350 0.7500 0.5707 0.2971
DIFF 1410, 1520 0.6369 0.4057 1.39 1310, 1400 0.7716 0.5972 0.2878

R2: coefficient of determination for calibration, r2: coefficient of determination for validation, RMSE:
root-mean-square error.

3.5.2. TBI

Compared with NDVI, almost the same characteristic wavelength bands were obtained for the TBI
of the wavelength and water status (Figure 10). Better performance of the TBI regression model for WC
was obtained with DIFF, where the model is y = −56.752x + 109.12, the coefficient of determination
for calibration is R2 = 0.6369, the coefficient of determination for validation is r2 = 0.4057, and the
root-mean-square error is RMSE =1.39 at the wavelengths λ1 = 1620 nm and λ2 = 1390 nm. Better
performance of the TBI regression model for MC was observed with RAW at wavelengthsλ1 = 1310 nm
and λ2 = 1300 nm, where the model is y = 0.0202x+ 4.7953 (R2 = 0.7886, r2 = 0.6389, RMSE = 0.2720).

Overall, for WC assessment, the spectral preprocessing affected the model accuracy to varying
degrees. The best model was obtained using TBI with DIFF (Table 2). It is considered that the
combination of first-order differential processing and TBI helped improve the model performance.
For MC assessment, the best model performance was obtained using NDVI with RAW; LOG and DIFF
preprocessing did not help improve the regression model performance.

3.5.3. Characteristic Wavelength Bands

Numerous studies have demonstrated that the wavelengths that are the most sensitive to leaf
water status are in the 900–2500 nm range, which includes four water absorption bands for all
angiosperm leaves around 970 nm, 1200 nm, 1400nm, and 1900 nm [2,8]. Nevertheless, owing to
equipment limitations in the present experiment, wavelengths ranging from 1700 nm to 2500 nm were
not addressed. Only several different characteristic wavelength bands in the 900–1700 nm range were
employed to establish models based on spectral preprocessing for different water statuses (Table 2).

For WC assessment, one of the two characteristic wavelengths for NDVI or TBI was concentrated
at 1390 nm, very close to 1400 nm, which is well known as the main water absorption band of the
leaf [9]. Another characteristic wavelength was concentrated at 1600 nm, which is a wavelength
band that is also often chosen by researchers. By using the wavelengths of 1600 nm and 819 nm,
Hardinsky et al. [19] and Hunt and Rock [17] developed a normalized difference infrared index (NDII)
model and moisture stress index (MSI) model for detecting variations in the leaf WC with different
respective expressions. All of the above proved that the wavelengths around 1400 nm and 1600 nm
have a strong correlation with leaf WC. However, on account of the different characteristics of the leaf
itself, the measuring equipment, and other factors, the characteristic wavelength selection may be
slightly offset in the actual application.

The best model for WC assessment was obtained in this experiment using TBI with DIFF and the
1410 nm and 1520 nm wavelengths. Similar results were demonstrated by Cao et al. [35]. To identify
the best indices for relative water content (RWC) and equivalent water thickness (EWT) based on the
first-derivative reflectance, they chose the wavelengths of 1415 nm and 1530 nm for RWC by using the
same NDVI expression, and 1530 nm and 1895 nm for EWT by using a simple ratio expression.

For MC assessment, several characteristic wavelengths exist for NDVI or TBI models with high
performances in this experiment. They are concentrated around 950 nm, 1300 nm, 1350 nm, and 1400 nm.
The wavelength bands of 950 nm and 1400 nm are very close to or equal the central wavelengths of
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the water absorption bands of 970 nm and 1400 nm [2,8]. It is well explained why these two bands
are chosen as characteristic wavelengths for high performance modeling. Regarding the wavelength
of 1350 nm, in 2007, Jose et al. developed a simple ratio vegetation index using wavelengths of 1070
and 1340 nm, and a moisture stress index using wavelengths of 870 and 1350 nm, to detect the MC
for grape leaves, and both quantities exhibited excellent correlations with MC, with R > 0.90 [36].
It is known that obvious high reflectance occurs at 1300 nm for a leaf with sufficient moisture [37].
However, few studies have adopted 1300 nm as the characteristic wavelength band in a model, except
Seelig et al. [38], who reported the plant WC parameter and the remote sensing leaf water index by
using 1300 nm and 1450 nm wavelengths.

Furthermore, many studies have focused on estimating the leaf water status using a leaf
dehydration dataset. The difference in leaf water status can assist in easily selecting the wavelength
bands that correspond to strong absorption by water. However, in the present experiment, all leaf
samples were obtained under normal conditions with sufficient moisture but without water stress.
The fewer differences in leaf water status among the samples resulted in the decreased influence of
water absorption on wavelength, duo to which the wavelengths of 1300 nm and 1350 nm, both of
which are not water absorption bands, were chosen in this experiment. Meanwhile, the smaller leaf
water status difference makes modeling much more difficult.

In this experiment, the best model for MC assessment was attained using NDVI with RAW and
1300 nm and 1310 nm wavelengths. Previous studies have shown that the NIR plateau between
800 nm and 1300 nm, as well as water absorption bands above 1300 nm, are common characteristics of
reflectance spectra of all healthy green plants. The high reflectivity in the NIR region of 800 nm to
1300 nm is due to the porous plant leaf structure (tissues and cells), whereas the low reflectivity above
1300 nm is caused by water absorption [3,39]. The 1300 nm wavelength is the dividing line of the
histological structures and the specific components of plant leaves, both of which are the main factors
affecting the reflectance spectral characteristics of the leaves. That causes the reflectance of tomato
leaf to start changing from the reflectivity peak to the absorption valley at 1300 nm. This may also
have resulted in 1300 nm and 1310 nm being adopted in modeling as the characteristic wavelength
bands. In addition, a higher autocorrelation coefficient exists in the 1300 nm and 1310 nm wavelengths
(Figure 8). Although this combination is not suitable for a model, non-linear stretching by using NDVI
enhances the contrast ratio of these two bands, which may assist in modeling.

4. Conclusions

Irrigation management is an important issue in tomato cultivation, especially in plant factories.
Accurate and timely tomato leaf water status assessment is essential for determining appropriate
irrigation management. The aim of this study is to establish an approach to obtain tomato leaf water
status in real time by using HSI technology. The results demonstrate the strong potential of using HSI
technology for tomato leaf water status monitoring in plant factories, the application of MC assessment
showed higher model performance compared with WC, and the best model for MC assessment was
observed with NDVI–RAW in this study. In a subsequent study, other formulas will be used to achieve
a higher prediction accuracy in tomato leaf water status assessment. To ensure the accuracy of that
assessment, the optimal combination with the fewest wavelength bands will be selected. Accordingly,
the applicability of the model for assessing different plants under various environmental conditions will
be enhanced by directly using a portable hyperspectral camera. This approach is expected to reduce
equipment costs and improve equipment stability in the development of visualization equipment in
the future.
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