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Abstract: We present a tunable terahertz (THz) metamaterial using an electric split-ring resonator
(eSRR), which exhibits polarization-sensitive characteristics. The proposed eSRR is composed of
double symmetrical semicircles and two central metal bars. By changing the lengths of two metal
bars, the electromagnetic responses can be tuned and switched between dual-band and triple-band
resonances in transverse magnetic (TM) mode. Furthermore, by moving the bottom metal bar
to change the gap between the two metal bars, the first resonance is stable at 0.39 THz, and the
second resonance is gradually blue-shifted from 0.83 to 1.33 THz. The tuning range is 0.50 THz.
This means that the free spectrum ranges (FSR) could be broadened by 0.50 THz. This proposed
device exhibits a dual-/triple-band switch, tunable filter, tunable FSR and polarization-dependent
characteristics. It provides an effective approach to perform tunable polarizer, sensor, switch, filter
and other optoelectronics in THz-wave applications.
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1. Introduction

It is generally accepted that the terahertz (THz) range is the frequency range of 0.1–10 THz.
In recent years, THz technology has attracted growing attention with the progress of THz sources and
instrumentation [1,2]. THz technology has been widely used in many fields, including but not limited to
filtration [3], molecule identification [4], imaging [5,6] and environmental monitoring systems [7] because
it has many fascinating electromagnetic characteristics, such as being harmless to the human body and
having artificial magnetism and high chemical sensitivity [8–11]. However, the electromagnetic responses
of general natural materials to THz waves are always very weak and cannot meet the requirements for
real-world applications. Currently, people put much effort into incremental THz-wave efficiency by
using metamaterials [12–14] to enhance the coupling effect between the THz wave and the metamaterial.

Metamaterials are special materials with artificial micro/nanostructures. By adjusting their geometric
dimensions, they have many unique electromagnetic responses, including asymmetric transmission,
negative refraction index, perfect absorption, and superlens [15–19], and they can work in visible, infrared
(IR), THz and microwave spectra ranges [20–23]. Such a unique electromagnetic response can be used in
THz optics applications. To date, there has been a significant amount of literature reporting on tunable
metamaterials [24,25] by using a split-ring resonator (SRR) [26,27], complementary SRR (CSRR) [28],
electric SRR (eSRR) [29], F-shaped SRR [30], V-shaped SRR [31], I-shaped SRR [32], U-shaped SRR [33],
C-shaped SRR [34], and three-dimensional SRR [35], etc. However, the tuning ranges of these proposed
THz metamaterials are not large enough for the THz filter application. Therefore, the requirement of
realizing a tunable THz filter with a large tuning range has become a hot topic of scientific research.
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In this study, we propose a tunable THz metamaterial using an eSRR to exhibit polarization-sensitive
characteristics. An eSRR is composed of double symmetrical semicircles and two central metal bars
on silicon on an insulator (SOI) substrate. By changing the relevant geometrical dimensions of the
semicircles and two central metal bars, the resonances of the eSRR device are always stable in transverse
electric (TE) mode, and the resonances of TM polarized mode can be tuned with a tuning range of
0.50 THz by moving the bottom metal bar. Moreover, the resonances can be switched between dual-band
and triple-band resonances by changing the lengths of two metal bars.

2. Materials and Methods

Figure 1 shows schematic drawings of the 3D view of the eSRR device and the corresponding
geometrical denotations of the unit cell. The eSRR device is composed of double symmetrical semicircles
and two central metal bars on the SOI substrate. The thickness of the Au layer is kept constant at
300 nm. The corresponding geometrical denotations of the eSRR unit cell are represented in Figure 1b.
They are lengths (L1, L2) of the metal bars, the gap (g) between the two metal bars, gaps (g1) between
semicircles and bars, and outer and inner radiuses (R, r) of semicircles. The metal line width is kept as
a constant at 4 µm. The period of the eSRR is 80 µm × 80 µm. The proposed eSRR device is designed
based on finite difference time domain (FDTD) solutions. The periodic boundary conditions are applied
along the x- and y-axis directions, while the boundary condition of the z-axis direction is a perfectly
matched layer (PML). The monitor of resonant frequency is set under the eSRR device to calculate the
transmission of the incident THz wave. The resonant frequency (fLC) can be expressed by [36]:

fLC =
1

2π
√

LeqCeq
=

(
c0

l
√
εc

)√
geq

w
(1)

where c0 is the light velocity in a vacuum, Leq and Ceq are the equivalent inductance and capacitance of
eSRR, εc is the relative permittivity of the materials within the eSRR, l is the size of models, w is the
metallic line width, and geq is the equivalent gap width of the eSRR. The resonant frequency of the
eSRR can be tuned by changing different parameters. According to Equation (1), the impact of metallic
thickness is minor [37–39]. Here, the Au layer is designed to be 300 nm in thickness.
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Figure 1. Schematic drawings of (a) 3D view of an electric split-ring resonator (eSRR) array and
(b) geometrical denotations of an eSRR unit cell.

3. Results and Discussion

In our design, the TE electric field is perpendicular to the g1 parameter, and the transverse magnetic
(TM) electric field is perpendicular to the g parameter. To clarify the electromagnetic responses of
the eSRR device, we first simulate the transmission spectra of only two metal bars or two semicircles
to figure out the source of the individual resonance. Figure 2a,b show the transmission spectra of
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metal bars with different L1 values in TE and TM modes, respectively. By increasing the L1 value of
the bottom metal bar from 12 µm to 24 µm under the condition of L2 = 12 µm, there is no resonance
in TE mode and the electromagnetic responses can be switched between dual-band and triple-band
resonances in TM mode, as shown in Figure 2a,b, respectively. By increasing the gap between two
semicircle-shaped metamaterials (g0) from 6 to 10 µm under the condition of R = 20 µm, there are
two stable resonances in TE mode and one stable resonance in TM mode, as shown in Figure 2c,d,
respectively. Therefore, we investigate the electromagnetic responses of the eSRR device with different
L1 values by keeping the parameters of g1 = 6 µm, L2 = 12 µm, and R = 20 µm, as shown in Figure 3.
In TE mode, there are two stable resonances (ω1, ω2) at 0.69 and 1.21 THz, as shown in Figure 3a.
Meanwhile, by increasing L1 values, the electromagnetic responses can be tuned and switched between
dual-band (L1 = L2) and triple-band (L1 , L2) resonances in TM mode, as shown in Figure 3b. The first
(ω1) and second (ω2) resonances are both stable at 0.39 and 1.34 THz, while the third (ω3) resonance is
gradually red-shifted from 1.71 to 0.83 THz by increasing the L1 value from 8 to 24 µm. The tendencies
of resonances and L1 values of the eSRR device are summarized in Figure 3c. The corresponding
electric (E) and magnetic (H) field distributions with L1 = 24 µm are illustrated in Figure 4. In TE
mode, the E- and H-field energies are distributed around the semicircles at 0.69 (ω1) and 1.21 THz
(ω2). In the TM mode, the E- and H-field energies are distributed around the semicircles at 0.39 THz
(ω1). Such a result shows that the first resonance of the eSRR comes from the semicircle structures.
The E-field energy is distributed on the upper and lower parts of the upper metal bar, and the H-field
energy is distributed in the center of the upper metal bar monitored at 1.34 THz (ω2). This means that
the second resonance of the eSRR is caused by the upper bar. When f = 0.83 THz (ω3), the E-field
energy is distributed on the upper and lower parts of the lower metal bar, and the H-field energy is
distributed in the center of the lower metal bar, which indicates that the third resonance of the eSRR is
generated by the lower bar. Therefore, when the length of the lower bar changes (different L1 values),
the electromagnetic responses of the eSRR can be tuned and switched between the dual-band and
triple-band resonances in TM mode.
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When two metal bars are equal at a certain length (i.e., L = L1 = L2 by keeping R = 20 µm and
g1 = 6 µm), the corresponding electromagnetic responses of the eSRR device are shown in Figure 5.
There are two stable resonances (ω1, ω2) at 0.69 and 1.21 THz in TE mode, as shown in Figure 5a.
In TM mode, the first resonance (ω1) is very stable at 0.39 THz, while the second resonance (ω2) is
gradually red-shifted from 1.71 to 0.82 THz by increasing the L value from 8 to 24 µm, as shown in
Figure 5b. The tuning range of the second resonance and the free spectrum range (FSR) is 0.89 THz.
This characteristic is very suitable for THz filter and sensor applications. The tendency of resonances
and L values of the eSRR device are summarized in Figure 5c. Figure 6 represents the corresponding E-
and H-field distributions with L = 12 µm. It is worth mentioning that the E-field energy is distributed
on the upper and lower parts of the two metal bars and the H-field energy is distributed in the center
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of the two metal bars monitored at 1.33 THz in TM mode, which is obviously different from the case
where the lengths of two metal bars are not equal (L1 , L2).
Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 9 

 
Figure 5. Transmission spectra of eSRR with different L (L = L1 = L2) values in (a) TE and (b) TM modes. 
(c) The relationships of resonances and L values in (a,b). 

 
Figure 6. E- and H-field distributions of eSRR with L = 12 μm in TE and TM modes. 

The lower metal bar is connected to the suspending microelectromechanical systems (MEMS) 
comb driver moving along the y-axis direction to change the gap between two metal bars (i.e., g value) 
and determine tunability and applicability. The transmission spectra of the eSRR with different g 
values are shown in Figure 7. There are two stable resonances in TE mode, as shown in Figure 7a. In 
TM mode, the first resonance (ω1) is very stable at 0.39 THz and the second resonance (ω2) is gradually 
blue-shifted from 0.83 to 1.33 THz by increasing the g value from 0 to 12 μm, as shown in Figure 7b. 
The tuning range is 0.50 THz. That means that FSR can be broadened by 0.50 THz. Therefore, the 
eSRR could be controlled to broaden the tuning of FSR by increasing the g value and narrowed by 
increasing the L value, which can be used in a tunable bandwidth filter. The tendencies of resonances 
and g values of the eSRR device are summarized in Figure 7c. In order to further understand the 
physical mechanism of electromagnetic responses of the eSRR, the corresponding E- and H-field 
distributions of the eSRR with g = 6 μm are plotted in Figure 8. The E-field energy is distributed on the 
upper and lower parts of the two metal bars, and the H-field energy is distributed in the center of the two metal 
bars monitored at 1.30 THz in TM mode. Therefore, by moving the lower metal bar to a different position, the 

Figure 5. Transmission spectra of eSRR with different L (L = L1 = L2) values in (a) TE and (b) TM modes.
(c) The relationships of resonances and L values in (a,b).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 9 

 
Figure 5. Transmission spectra of eSRR with different L (L = L1 = L2) values in (a) TE and (b) TM modes. 
(c) The relationships of resonances and L values in (a,b). 

 
Figure 6. E- and H-field distributions of eSRR with L = 12 μm in TE and TM modes. 

The lower metal bar is connected to the suspending microelectromechanical systems (MEMS) 
comb driver moving along the y-axis direction to change the gap between two metal bars (i.e., g value) 
and determine tunability and applicability. The transmission spectra of the eSRR with different g 
values are shown in Figure 7. There are two stable resonances in TE mode, as shown in Figure 7a. In 
TM mode, the first resonance (ω1) is very stable at 0.39 THz and the second resonance (ω2) is gradually 
blue-shifted from 0.83 to 1.33 THz by increasing the g value from 0 to 12 μm, as shown in Figure 7b. 
The tuning range is 0.50 THz. That means that FSR can be broadened by 0.50 THz. Therefore, the 
eSRR could be controlled to broaden the tuning of FSR by increasing the g value and narrowed by 
increasing the L value, which can be used in a tunable bandwidth filter. The tendencies of resonances 
and g values of the eSRR device are summarized in Figure 7c. In order to further understand the 
physical mechanism of electromagnetic responses of the eSRR, the corresponding E- and H-field 
distributions of the eSRR with g = 6 μm are plotted in Figure 8. The E-field energy is distributed on the 
upper and lower parts of the two metal bars, and the H-field energy is distributed in the center of the two metal 
bars monitored at 1.30 THz in TM mode. Therefore, by moving the lower metal bar to a different position, the 

Figure 6. E- and H-field distributions of eSRR with L = 12 µm in TE and TM modes.

The lower metal bar is connected to the suspending microelectromechanical systems (MEMS)
comb driver moving along the y-axis direction to change the gap between two metal bars (i.e., g value)
and determine tunability and applicability. The transmission spectra of the eSRR with different g values
are shown in Figure 7. There are two stable resonances in TE mode, as shown in Figure 7a. In TM
mode, the first resonance (ω1) is very stable at 0.39 THz and the second resonance (ω2) is gradually
blue-shifted from 0.83 to 1.33 THz by increasing the g value from 0 to 12 µm, as shown in Figure 7b.
The tuning range is 0.50 THz. That means that FSR can be broadened by 0.50 THz. Therefore, the eSRR
could be controlled to broaden the tuning of FSR by increasing the g value and narrowed by increasing
the L value, which can be used in a tunable bandwidth filter. The tendencies of resonances and g



Appl. Sci. 2020, 10, 4660 6 of 9

values of the eSRR device are summarized in Figure 7c. In order to further understand the physical
mechanism of electromagnetic responses of the eSRR, the corresponding E- and H-field distributions
of the eSRR with g = 6 µm are plotted in Figure 8. The E-field energy is distributed on the upper and
lower parts of the two metal bars, and the H-field energy is distributed in the center of the two metal
bars monitored at 1.30 THz in TM mode. Therefore, by moving the lower metal bar to a different
position, the eSRR device exhibits different optical characteristics. This design provides an effective
approach to realize the tunable THz filter, polarizer and sensor applications.
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4. Conclusions

In conclusion, a tunable THz metamaterial using eSRR is presented to demonstrate the
electromagnetic responses could be tuned by changing geometrical parameters. By changing the length
of the lower metal bar, the electromagnetic responses can be tuned and switched between dual-band
and triple-band resonances. The tuning ranges of the FSR can be broadened by 0.50 THz and narrowed
by 0.89 THz by changing g and L values, respectively. The eSRR device exhibits tunable and switchable
polarization-sensitive characteristics. The gap between semicircles and central metal bars would not
influence the electromagnetic response of the eSRR, which indicates that the eSRR device has high
stability to allow manufacturing tolerance. These results pave the way for the use of eSRR devices in
tunable filters, switches, detectors, sensors and other THz optoelectronics applications.
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