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Abstract: Open educational resources (OER) can contribute to democratize education by providing
effective learning experiences with lower costs. Nevertheless, the massive amount of resources
currently available in OER repositories makes it difficult for teachers and learners to find relevant and
high-quality content, which is hindering OER use and adoption. Recommender systems that use data
related to the pedagogical quality of the OER can help to overcome this problem. However, studies
analyzing the usefulness of these data for generating OER recommendations are very limited and
inconclusive. This article examines the usefulness of using pedagogical quality scores for generating
OER recommendations in OER repositories by means of a user study that compares the following
four different recommendation approaches: a traditional content-based recommendation technique, a
quality-based non-personalized recommendation technique, a hybrid approach that combines the two
previous techniques, and random recommendations. This user study involved 53 participants and
400 OER whose quality was evaluated by reviewers using the Learning Object Review Instrument
(LORI). The main finding of this study is that pedagogical quality scores can enhance traditional
content-based OER recommender systems by allowing them to recommend OER with more quality
without detriment to relevance.

Keywords: OER; open educational resources; learning objects; recommender systems; quality; digital
repositories; TEL

1. Introduction

Open educational resources (OER) have a huge and irrefutable potential to provide universal and
equal access to education at all levels, contributing to education’s democratization [1]. This potential
has been noticed by the European Union, who recognized that stimulating supply and demand
for high-quality OER is essential for modernizing education and that these resources contribute to
broadening access to education, as well as to alleviating costs for educational institutions and students,
especially among disadvantaged groups [2]. The first definition of the OER term was proposed at
a UNESCO conference in 2002 which defined OER as “the open provision of educational resources,
enabled by information and communication technologies, for consultation, use, and adaptation by a
community of users for non-commercial purposes” [3]. A definition more often used nowadays states
that OER are “digitized materials offered freely and openly for educators, students, and self-learners
to use and reuse for teaching, learning, and research” [4]. The educational benefits of OER most
frequently recognized include the encouragement of improvement and localization of content, the
drastic reduction of costs without detriment to instructional effectiveness, and the capacity to offer
equal access to knowledge for all.
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The current OER panorama reveals that there is an enormous and growing amount of digital
learning resources available for learners and teachers through OER repositories. Repositories such as
Wikimedia Commons [5], Europeana [6], OER Commons [7], MERLOT [8], ODS [9], or the LRE [10]
are offering thousands or even millions of OER. For example, Wikimedia Commons offers more than
61 million freely usable media files, whereas Europeana makes available nearly 59 million digitized
materials from European museums, galleries, and multimedia archives.

This massive amount of resources available in OER repositories makes it difficult for users to
find relevant and high-quality content when searching using these systems. A recent systematic
literature review [11] indicated that discoverability of quality open learning resources was one of the
major barriers hindering OER adoption and impact. According to the results of the OER Data Report
2013–2015 [12], finding resources of sufficiently high quality and related to a specific subject area are
challenges often experienced by both educators and learners when searching for OER. Other studies
have also pointed out difficulties in locating relevant and quality educational resources. Najjar et al. [13]
investigated usability problems of search tools for repositories of educational resources and concluded
that these tools were not easy to use. John et al. [14] explored the search services offered by eight of the
most popular OER repositories and pointed out gaps, as well as possible solutions. Another study [15]
showed that teachers could require more than an hour to find a suitable learning resource, and that this
search process was perceived in many occasions to be time consuming and occasionally frustrating.

An aspect that deserves special attention in OER repositories is the pedagogical quality of the
learning resources, as many of these repositories follow a production model in which OER are created
by communities of volunteers and lack an effective quality control mechanism. These are the main
reasons why quality assurance is still often pointed out as an open issue for OER [16–19]. There are
two main reasons why quality assurance is especially important for OER repositories. On the one
hand, teachers need to have some guarantee of quality before including OER in the syllabus. Two
surveys [12,20] have provided evidence that lack of quality control has been a problem for teachers
when using OER authored by others and that user ratings were important for teachers when searching
for OER. On the other hand, if no quality control mechanism is used in an OER repository, learners in
self-directed or student-centered educational settings in which they are expected to choose their own
materials could be at risk of being misinformed by wrong, inaccurate, or outdated content, as well as
wasting time with poor or inappropriate instructional designs [21]. In order to assure the pedagogical
quality of their learning resources, many OER repositories have developed their own quality control
mechanisms. Evidence of this fact has been provided by a survey of 59 popular repositories of learning
resources [22], which found that 27 (46%) of them followed a quality control policy, and 23 (39%)
had a resource assessment or rating policy. Moreover, with the aim of addressing the clear need
of OER repositories to assess the quality of their learning resources in a systematic way, plenty of
evaluation models have been elaborated such as the Learning Object Review Instrument (LORI) [23],
UNE 71362 [24], WBLT-S and WBLT-T [25,26], COdA [27], LOEM [28], and MECOA [29]. Furthermore,
some software systems have been developed in order to facilitate the quality evaluation of digital
learning resources according to these evaluation models [29–33].

In order to facilitate users to find OER of their interest and of enough quality, OER repositories
can apply different measures such as developing easy-to-use search tools [13], adopting ranking
metrics [34–37], and using recommender systems [38–40]. Recommender systems are software tools
that provide suggestions for items likely to be of use to a user [41,42]. In the context of technology
enhanced learning (TEL), these systems are mainly used to help teachers and learners find suitable
digital learning resources and, to a lesser extent, to suggest sequences of resources, didactic activities,
full courses, and peer learners [39,40]. Therefore, in OER repositories, the items suggested by
recommender systems are generally learning resources, educational activities, or courses relevant to
the users’ interests. In this regard, it should be noted that, in the literature, the term “learning objects”
is often used to refer to digital learning resources, concretely to refer to any “reusable digital resources
tagged with metadata that are self-contained and that can be used for education” [43]. With respect to
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the use of recommender systems by OER repositories, it should be noted that, although the automatic
recommendation of digital learning resources has been identified as a feature that any OER repository
should have in order to meet the current needs of the educational community [44], only a very small
percentage have implemented a recommender system to provide this feature [45].

Different types of recommender systems exist according to the recommendation technique used
for generating the recommendations, including content-based, collaborative filtering, demographic,
knowledge-based, social (or community-based), and hybrid recommender systems. The major types
are: content-based recommender systems, which recommend items that are similar to the ones that
the user found relevant or liked in the past; collaborative filtering, where item recommendations are
generated by the system using only information about ratings or usage from other users; and hybrid
recommender systems, which are those that combine two or more techniques in order to generate the
recommendations. The context, understood as “any information that can be used to characterize the
situation of a person, place, or object that is considered relevant to the interaction between a user and an
application, including the user and applications themselves” [46], is an important source of information
from which recommender systems can take advantage. Recommender systems with a recommendation
process that makes use of context are called “context-aware recommender systems” [47,48]. These
systems are able to suggest items to users by using contextual information such as activity, time of day,
or location. In TEL environments, it is also quite common that recommender systems consider learning
resources that are relevant to the user [48], for instance, with the goal of recommending resources
similar to those that the user is currently consuming, viewing, or searching. Other information that
could be useful for TEL recommender systems is information related to the pedagogical quality of the
learning resources [49].

There is a wide range of studies related to the use of recommender systems for assisting users
with the search and discovery of OER based on their preferences and needs. Clough et al. [50]
discussed the implementation of non-personalized suggestions of digital learning resources from
Europeana using both content-based and collaborative recommendation techniques. In a more recent
work, Otegi et al. [51] examined the use of personalized PageRank to recommend Europeana resources.
Another study [52], also related to Europeana, described and evaluated a hybrid recommender
system capable of generating recommendations of digital learning resources retrieved from Europeana.
Gordillo, Barra, and Quemada [53] implemented two different recommender systems for two OER
repositories based on the same hybrid recommendation model, which combined three recommendation
techniques (content-based, demographic, and context-aware) and the use of quality and popularity
scores. The authors of [54] introduced a recommender system for suggesting learning objects to
teachers by exploiting their ICT competence profiles elicited from their relevance feedback data
and evaluated this system using datasets retrieved from three OER repositories. Lemos et al. [55]
evaluated a traditional collaborative filtering technique and a new recommendation technique based
on clustering and collaborative filtering in a dataset extracted from the MERLOT repository. In [56], a
semantic recommender system capable of assisting learners in searching learning objects was proposed
and discussed. Another recommender system to assist learners in searching for learning objects in
repositories of educational resources was presented by [57]. More recently, an implementation in this
same system of a learning object group recommendation approach was described [58]. In another related
work, Ruiz-Iniesta et al. [59] described the application of a knowledge-based OER recommendation
strategy to enhance the users’ search experience in OER repositories. Cechinel et al. [60] evaluated OER
recommendations generated according to distinct collaborative filtering recommendation algorithms
using OER from the MERLOT repository. A theoretical model for generating proactive context-aware
recommendations in an OER repository by using community-based and collaborative filtering
techniques was proposed by Gallego et al. [61,62]. In a later work, Gallego et al. [63] presented
another model that could be used to generate proactive context-aware OER recommendations in
learning object authoring tools.
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Despite the number of research works that have been carried out on the use of recommender
systems to find and discover relevant OER, and the key role that OER pedagogical quality plays in OER
repositories, research analyzing the use of information related to pedagogical quality for generating
OER recommendations is very scarce. Among all related works described, only two ([53,57]) have
reported an evaluation of a learning object recommender system that took into account information of
this kind, and neither of them investigated the specific added value of incorporating this information
into the recommendation process. Another issue, which has been raised in the literature on TEL
recommender systems, has been the high number of studies that lacked evaluations involving human
users in spite of the need to evaluate these systems from the user perspective [38]. Regarding this
matter, it is also important to note that most evaluations of these systems, so far, have focused solely on
algorithm accuracy [40], despite the fact that other factors beyond this one need to be considered when
evaluating TEL recommender systems since high recommender accuracy does not always correlate
with user satisfaction or perceived usefulness [64]. In the particular case of recommender systems for
OER repositories, it is essential to take into account the pedagogical quality of the recommended OER
in order to evaluate the actual value of the recommendations. In this regard, only two studies ([53,55])
have been found that reported an evaluation of OER recommendations considering pedagogical quality.
Nevertheless, neither of them analyzed the influence of using measures of OER quality on this variable.

This article examines the usefulness of using pedagogical quality scores for generating learning
object recommendations in OER repositories through a user study involving 53 participants and 400
OER. This user study compares the following four different recommendation approaches: a traditional
content-based recommendation technique; a quality-based non-personalized recommendation
technique; a hybrid approach that combines the two former techniques; and a random recommendation
method, which was used as a baseline for comparison purposes. These four recommendation
approaches were compared in terms of both relevance and pedagogical quality of the recommended
OER in order to answer the following two research questions:

1. Are learning object quality scores useful to generate OER recommendations?
2. Can existing OER recommender systems be enhanced by using learning object quality scores?

The results of this article provide strong evidence that learning object pedagogical quality scores,
although they have limited utility by themselves, can be successfully used to enhance traditional
content-based OER recommender systems by enabling the recommendation of OER with higher quality
without detriment to relevance.

The remainder of the article is organized as follows: the user study is explained in Section 2,
including details about the sample, the recommendation approaches, the dataset, and the quality scores
of the OER that compose it; Section 3 presents the results of the user study, which are then discussed
in Section 4; finally, Section 5 concludes the article by summarizing the main findings and giving an
outlook of future work.

2. Materials and Methods

2.1. Sample

A total of 53 potential users of OER repositories participated in the user study. Of these participants,
42 (79%) were teachers and 11 (21%) were learners, and of these participants, 33 (62%) were males and
20 (38%) were females. All participants were between 21 and 70 years old, the mean age being 39 with
a standard deviation of 13.4. When asked about their experience using OER repositories, 10 (18.9%)
participants declared to have no experience, 14 (26.4%) declared to have low experience, 15 (28.3%)
declared medium experience, and the remaining 14 (26.4%) declared high or very high experience.

2.2. User Study

This user study was conducted online, and therefore participants could complete it by themselves
using their own computers through a web browser. The only guidance received by the participants
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was a text document with the necessary instructions to participate in the user study. All participants
performed the following steps:

1. Participants accessed an OER repository and create a user account. Concretely, participants
accessed ViSH [43], an OER repository publicly available at http://vishub.org, which is enriched
with additional features such as authoring tools, an audience response system, recommendations,
and a social network.

2. Participants accessed an online evaluation tool provided through the ViSH web portal. This tool
was developed specifically for this user study.

3. Once participants had accessed the online evaluation tool, they were asked to provide some
basic information, including demographic data (age, gender, language, and occupation) and their
previous experience using OER repositories.

4. Participants chose a topic of their interest (e.g., engineering, biology, or history) among different
options. It should be clarified that this topic was used in the user study only to select an OER in
the next step (it was not taken into account by any of the recommendation approaches).

5. In this step, participants were told to put themselves in the situation that they are searching for
learning resources in an OER repository (such as ViSH) and that, finally, they find one in which
they are interested and, after clicking on a link, they navigate to a new page where they can see
it. An OER of ViSH tagged with the topic chosen by the participants in the previous step was
randomly selected and shown to the participants in order to act as the particular OER that each
participant found in their fictitious search. Below this OER, a list of recommendations with 20
randomly sorted OER were presented to each participant. Finally, participants were required
to rate, given the described situation, the relevance of each of the recommended OER using a
five-point Likert scale from 5 (very relevant to me) to 1 (not at all relevant to me).

The lists of OER recommendations shown to the users in the last step of the user study were
built by concatenating four distinct lists of five OER, each of them generated by a system using a
different recommendation approach. Each of these four recommendation approaches is described in
detail in the Section 2.4. Therefore, in order to build each list shown to the participants, a total of 20
OER recommendations were generated: five by a traditional content-based recommender system, five
according to a quality-based non-personalized approach, five by a hybrid recommender system that
combines content-based and quality-based recommendation techniques, and five chosen at random. It
should be highlighted that after concatenating the different lists, all OER were shuffled and hence it
was not possible for participants to know which OER was recommended by which system. In fact,
participants did not even know that the recommendations had been generated by different systems.
Furthermore, by using this research design, position bias was prevented. In the case of overlap (i.e.,
when the same OER was recommended by two or more systems), duplicates were removed, and
therefore no OER were shown to a participant more than once. Therefore, in these cases, it should be
taken into account that, although 20 OER recommendations were generated, the OER list shown to the
participants was actually comprised of less than 20 recommendations.

2.3. Dataset

In order to perform a reliable comparison, all the systems used to generate recommendations in
this user study used the same dataset. This dataset was comprised of 400 OER authored by individuals
and published on the ViSH OER repository [43]. All of these OER were learning objects, since they
were self-contained digital learning resources, they were tagged with metadata according to the IEEE
LOM [65] standard, and they were also compliant with the SCORM [66] standard.

Besides metadata specified according to the IEEE LOM standard, each OER of the dataset had an
associated quality score, which represented a measure of its pedagogical quality. This quality score
was generated based on evaluations conducted by experienced reviewers using the LORI (Learning
Object Review Instrument) [23] evaluation model, which defined the following nine items: content

http://vishub.org
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quality, learning goal alignment, feedback and adaptation, motivation, presentation design, interaction
usability, accessibility, reusability, and standards compliance. In order to get a reliable quality measure,
each OER was assessed by at least two different reviewers using LORI. All reviewers conducted
the OER quality evaluations by means of the LOEP [33] tool. LORI is likely the most widely used
instrument for evaluating the quality of digital learning resources, and it has been evaluated by some
studies which have concluded that it can be reliably used to assess learning object quality [21,67].
When a learning object is assessed with LORI, each reviewer rates each LORI item using a scale from 1
to 5. In this study, overall quality scores were calculated for each OER of the dataset as the mean of the
scores of all LORI items and averaging reviewers scores. Nevertheless, it should be taken into account
that the ViSH repository transforms these scores on a 1–5 scale to scores on a 0–10 scale, which are the
ones that are finally available for the recommender systems.

2.4. Recommendation Approaches

2.4.1. Traditional Content-Based Recommendation (CB)

Content-based recommender systems learn to recommend items that are similar to the ones the
user found relevant or liked in the past. In these systems, recommendations are generated based on
item features, user actions or user ratings. In OER repositories, content-based recommender systems
can be mainly used to recommend OER similar to the ones the user has visited, downloaded, shared,
bookmarked, or rated positively, as well as OER similar to the ones the user is currently viewing. In
this context, content-based recommender systems can generate the recommendations by using OER
metadata, which usually include data such as their title, language, resource type, and keywords. All this
information can be defined with IEEE LOM [65], the most used metadata standard for learning objects.

A traditional content-based recommender system was implemented for this user study. This
recommender system generates OER recommendations based on the similarity between the OER that
is being viewed by the user and those OER that can be recommended (hereafter referred to as candidate
OER) taking into account three metadata fields: title, language and keywords. The overall similarity
score for each candidate OER on a 0–1 scale was calculated by this recommender system according to
the following equation:

SCB
(
Ox, Oy

)
= 0.3× SimT

(
Oxt , Oyt

)
+ 0.4× SimL

(
Oxl , Oyl

)
+ 0.3× SimK

(
Oxk , Oyk

)
(1)

where Ox is the OER the user is currently viewing and Oy is the candidate OER; Oxt and Oyt
are,

respectively, the titles of Ox and Oy; Oxl and Oyl
are, respectively, the languages of Ox and Oy; Oxk

and Oyk
are, respectively, the keywords of Ox and Oy; SimT

(
Oxt , Oyt

)
is the similarity score between

the textual fields Oxt and Oyt
on a 0–1 scale calculated by using the TF-IDF function [68] and the cosine

similarity metric according to Equation (2); SimL

(
Oxl , Oyl

)
is 1 if Ox and Oy have the same language

and 0 otherwise; and SimK
(
Oxk , Oyk

)
is the similarity score between the lists of keywords Oxk and Oyk

on a 0–1 scale as calculated by Equation (3).

SimT

(
Tx, Ty

)
=


0, ‖N = 0∑N

i = 1 TFIDF(wi, Tx) × TFIDF
(
wi, Ty

)
√∑N

i = 1 TFIDF(wi, Tx)
2
×

√∑N
i = 1 TFIDF

(
wi, Ty

)2
, ‖N > 0 (2)

where N is the quantity of distinct words in the texts Tx and Ty, and wi is the i-th of these words.

SimK
(
Lx, Ly

)
=


0,

∣∣∣ NLx + NLy = 0
2×NC

NLx + NLy

,

∣∣∣∣∣∣ NLx + NLy > 0
(3)
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where NLx and NLy are, respectively, the number of keywords of the lists Lx and Ly, and NC is the
quantity of common keywords between Lx and Ly.

In order to generate a list of N recommended OER, this recommender system, first, calculates a
similarity score for each OER in the dataset (i.e., for each candidate OER) using Equation (1), then, sorts
all candidate OER according to their similarity score, and finally, generates the recommendation as a
sorted list of the N OER with the highest similarity score. This recommendation approach was included
in the user study for obtaining a baseline that could later be used for comparison, in order to examine
the specific added value of incorporating pedagogical quality scores into a common content-based
recommender system.

2.4.2. Quality-Based Non-Personalized Recommendation (Q)

In this approach, OER recommendations are generated exclusively based on the pedagogical
quality of the OER measured with the LORI evaluation model, as explained in Section 2.3. Therefore,
these recommendations are non-personalized since neither the profile of the users nor their actions are
taken into account for their generation. Thus, the OER that users are viewing at a certain moment
are also not taken into account. A system capable of suggesting OER to the users according to this
quality-based non-personalized recommendation approach was implemented for the study. This
system generates lists of N recommended OER by sorting by quality scores all OER in the dataset and
randomly selecting N OER among the ones in the top quartile (i.e., among the 25% of OER with highest
quality in the dataset). One option for this approach could have been to directly suggest the top N OER
(i.e., always recommend the OER with more quality in the dataset). However, we decided to introduce
some randomness in the recommendation process in order to evaluate a more realistic approach.

There were two main reasons for including this non-personalized recommendation approach in
the user study. On the one hand, this approach gathers evidence on the usefulness of this kind of
recommendations, which can be useful to determine the benefits for OER repositories of providing
users with suggestions such as “the top ten selections of OER” or “the five best OER of the year”.
Although it is recognized that non-personalized recommendations can be useful in some scenarios,
these types of recommendations are not often addressed by recommender systems research [41]. In
fact, no study has ever examined the usefulness of non-personalized OER recommendations based
exclusively on pedagogical quality indicators. On the other hand, this approach provides another
baseline to be used for comparison purposes.

2.4.3. Hybrid Approach: Content-Based and Quality-Based Recommendation (CB + Q)

A hybrid recommender system was developed with the aim of examining the usefulness of learning
object quality scores for generating OER recommendations and for enhancing existing content-based
OER recommender systems. This system combines the traditional content-based recommendation
technique, described in Section 2.4.1, and the quality-based non-personalized recommendation
technique, described in Section 2.4.2. The hybrid recommender system calculates the overall score on a
0–1 scale for each candidate OER as follows:

SCB+Q
(
Ox, Oy

)
= 0.8× SCB

(
Ox, Oy

)
+ 0.2× SQ

(
Oy

)
(4)

where Ox is the OER the user is currently viewing and Oy is the candidate OER, SCB
(
Ox, Oy

)
is a score

calculated according to Equation (1), and SQ
(
Oy

)
is the quality score of Oy on a 0–1 scale.

The recommendation process followed by the hybrid recommender system is the same as the one
followed by the traditional content-based recommender system, except for the way in which scores
are calculated. Therefore, the hybrid recommender system, first, calculates a score for each candidate
OER using Equation (4), then, sorts all candidate OER according to the calculated scores, and finally
generates the recommendation as a sorted list of the N OER with the highest calculated scores.
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This recommendation approach allowed to analyze the specific added value of incorporating
learning object quality scores into the OER recommendation process by comparing its performance
against the one obtained by the traditional content-based approach. This comparison also made it
possible to determine if OER quality scores are useful for enhancing existing recommender systems for
OER repositories.

2.4.4. Random Recommendation (R)

The last approach for providing OER recommendations involved in this user study simply
consisted of choosing, at random, OER from the dataset. In order to enable this approach, a system
that generated recommendations in the form of lists of N OER randomly retrieved from the dataset
was implemented. The random recommendations were included just to get a baseline for comparison
purposes. Thereby, the usefulness of the OER recommendations generated according to the other three
recommendation approaches can be compared with a reference.

2.5. Usefulness Evaluation of the OER Recommendations

Results related to two different factors were obtained in the user study for each of the
recommendation approaches examined. On the one hand, the relevance of each OER recommendation
was rated by the participants using a 5-point Likert scale. These ratings indicated, for each
recommendation approach, how relevant the recommended OER were for the participants. On
the other hand, the quality score (i.e., the pedagogical quality according to the results obtained from
the LORI evaluations conducted by the reviewers) of each of the recommended OER was recorded by
the evaluation tool used by the participants in the user study. These data indicated how good, in terms
of pedagogical quality, the recommended OER were. Thereby, measures of relevance and pedagogical
quality were obtained for each OER recommendation and for each recommendation approach. These
two factors are the most important ones in order to evaluate the usefulness of OER recommendations.
A proof of this fact can be found in the OER Data Report 2013–2015 [12], whose results showed that
the relevance and user ratings were important factors for both teachers and learners when searching
for OER.

In order to obtain an overall measure of the relevance of the OER recommendations generated
by the different recommendation approaches based on the results of the user study, the normalized
R-Score metric was used. This metric, which is a variation of the R-Score metric [69], calculates the
utility score on a 0–1 scale of a list of NL recommendations presented to a user, U, according to the
following equation:

RU =

∑NL
i = 1

MAX(Si− d, 0)

2
i−1
α−1∑NL

i = 1
SMAX− d

2
i−1
α−1

(5)

where Si is the rating assigned by U to the item in the i-th position of the list, SMAX ≥ Si is the maximum
numerical rating that a user can assign to an item, d < SMAX is the value of an adaptable threshold that
determines the minimum numerical rating that a user should assign to an item in order for that item to
be considered useful, and α > 1 is a half-life parameter that regulates the exponential decrease of the
recommendations utility according to their position on the list.

In order to measure the utility of a set of lists of recommendations presented to a set of NU users,
the normalized R-Score metric provides an overall score calculated as follows:

R =
1

NU
×

NU∑
i = 1

RUi (6)

where Ui is the i-th user of the set of NU users and RUi is the utility score of the list of recommendations
presented to Ui calculated according to Equation (5).
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The normalized R-Score metric, like the R-Score metric, presupposes that the utility of a list of
recommendations is determined by the sum of the utilities of each individual recommendation. It also
presupposes that the utility of an individual recommendation decreases exponentially as its position
on the recommendation list decreases. The maximum utility score of a set of lists of recommendations
calculated by means of the normalized R-Score metric is 1 and is reached when all users assign the
maximum rating SMAX to all the items recommended. On the contrary, the minimum utility score of a
set of lists of recommendations calculated through the normalized R-Score metric is 0 and is obtained
when all users rate all the recommended items with ratings that are equal or lower than the threshold
value d. In this user study, the parameter SMAX was set to 5 since participants rated the relevance of the
OER using a 5-point scale, the threshold value d was set to 1, and the half-life parameter α was set to 3.

In addition to calculating overall measures of relevance, the normalized R-Score metric was used,
in this user study, for obtaining an overall measure of pedagogical quality of the OER recommended
for each of the different recommendation approaches. These overall quality measures were calculated
in the same way as the overall relevance measures, but with the following two changes in Equation (5):
Si was the quality score of the OER in the i-th position of the list (calculated according to the LORI
evaluations) instead of the participant rating, and SMAX was set to 10 since it is the maximum value the
quality score of an OER could be. As for calculating the relevance, the threshold value d was set to 1 and
the half-life parameter α was set to 3. When calculating overall quality measures with the normalized
R-Score metric, on the one hand, the maximum utility score of a set of lists of recommendations (i.e., a
value of 1) is reached when all recommended OER have a quality score of 10, which only occurs if
all reviewers rate all those OER with the maximum score in all LORI criteria. On the other hand, the
minimum utility score of a set of lists of recommendations (i.e., a value of zero) is obtained when all
recommended OER have a quality score lower or equal than 1, the value of the parameter d, which in
this case acts as a quality threshold instead of as a participant rating threshold.

In summary, the following data were obtained from the results of the user study by using the
normalized R-Score metric:

• A relevance score for each recommendation approach and participant of the user study on a
0–1 scale indicating how relevant for the participant were the recommendations generated by
the approach.

• An overall relevance score for each recommendation approach on a 0–1 scale indicating, on
average, how relevant were the recommendations generated by the approach for all participants.

• A quality score for each recommendation approach and participant of the user study on a 0–1
scale indicating how good in terms of pedagogical quality were the OER recommended to the
participant according to the approach.

• An overall quality score for each recommendation approach on a 0–1 scale indicating, on average,
how good in terms of pedagogical quality were the OER recommended by the approach to all the
participants of the user study.

Thereby, the usefulness of the OER recommendations generated by each of the four
recommendation approaches was evaluated in terms of both relevance and pedagogical quality.
This evaluation compared these recommendation approaches based on the relevance of their
recommendations and the quality of the recommended OER.

3. Results

Table 1 shows the mean (M) and standard deviation (SD) of the overall relevance and quality scores
of the OER recommendations calculated by means of the normalized R-Score metric based on the results
of the user study for each of the four recommendation approaches analyzed: the hybrid approach
combining content-based and quality-based recommendation techniques (labeled as CB + Q in the
tables), the traditional content-based recommendation technique (labeled as CB), the quality-based
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non-personalized recommendation technique (labeled as Q), and the random recommendations
(labeled as R).

Table 1. Relevance and quality scores of the open educational resources (OER) recommendations.

Factor
CB + Q CB Q R Kruskal-Wallis H Test

M SD M SD M SD M SD H p-Value

Relevance 0.64 0.25 0.60 0.29 0.25 0.21 0.17 0.21 91.6 <0.001
Quality 0.77 0.10 0.60 0.17 0.78 0.04 0.53 0.10 115.1 <0.001

The Kruskal-Wallis and Mann-Whitney U tests were used to determine statistical significance.
Firstly, a Kruskal-Wallis H test was used to determine if there were statistically significant differences
between the overall relevance and quality scores of the different recommendation approaches. The
results of this test can be seen in Table 1. Secondly, a series of Mann-Whitney U tests were conducted
to compare the overall relevance and quality scores between each pair of recommendation approaches
(i.e., CB + Q vs. CB, CB + Q vs. Q, CB + Q vs. R, CB vs. Q, CB vs. R, and Q vs. R). Table 2 shows the
results of these tests.

Table 2. Results of Mann-Whitney U tests comparing relevance and quality scores.

Approaches Relevance Quality

U Effect Size (r) p-Value U Effect Size (r) p-Value

CB + Q vs. CB 1318 0.02 0.586 414 0.60 <0.001
CB + Q vs. Q 351 0.64 <0.001 1148 0.12 0.104
CB + Q vs. R 246 0.70 <0.001 122 0.78 <0.001

CB vs. Q 487 0.55 <0.001 379 0.62 <0.001
CB vs. R 329 0.65 <0.001 1053 0.19 0.026
Q vs. R 1054 0.19 0.026 31 >1.0 <0.001

As shown in Table 1, the OER recommendations generated by the hybrid approach were the most
relevant for the participants (M = 0.64, SD = 0.25), followed very closely by those generated by the
traditional content-based recommendation technique (M = 0.60, SD = 0.29). In fact, this difference
was not found to be statistically significant. The relevance of the OER recommendations generated
according to the other recommendation approaches were found to be much less relevant for the
participants, with those generated based on OER pedagogical quality being more relevant (M = 0.25,
SD = 0.21) than the random recommendations (M = 0.17, SD = 0.21). With the exception of the hybrid
and content-based recommender approaches, the differences between the overall relevance scores for
the other pairs of recommendation approaches were found to be statistically significant. Large effect
sizes (r > 0.5) were found in all comparisons except between Q and R, where the effect size was small
to medium, and between CB + Q and CB, where the effect size was insignificant and, as mentioned
before, the difference between overall relevance scores was non-statistically significant.

Regarding overall quality scores, the recommendation approaches that recommended OER with
highest quality were the quality-based approach (M = 0.78, SD = 0.04) and the hybrid approach
(M = 0.77, SD = 0.10). The difference between the quality scores of these two approaches was small
and non-statistically significant. Both of these approaches outperformed, in terms of overall quality
scores, the traditional content-based recommendation technique (M = 0.60, SD = 0.17), as well as the
random recommendations (M = 0.53, SD = 0.10). In all these cases (CB + Q vs. CB, CB + Q vs. R, Q vs.
CB, and Q vs. R), the difference between overall quality scores was found to be statistically significant
with a large effect size. Finally, the traditional content-based recommendation technique outperformed
randomly generated recommendations in terms of overall quality scores, being the difference between
these scores statistically significant with a small to medium effect size.
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The results obtained from the user study show that the recommendation approach that
generated the more useful OER recommendations in terms of relevance and quality was the hybrid
recommendation approach that combines content-based and quality-based techniques. In terms
of relevance, the better recommendation approaches were the hybrid approach and the traditional
content-based approach, whereas, in terms of quality, the better approaches were the quality-based
approach and the hybrid one. If both factors (relevance and quality) are taken into account for
measuring the usefulness of the OER recommendations, the better approach was the hybrid one,
because it was capable of generating the recommendations with highest relevance (achieving relevance
scores similar to those achieved by the traditional content-based recommender system) and, at the
same time, recommending OER with high pedagogical quality, achieving quality scores similar to
those achieved by the quality-based approach, which was the one that performed best in this factor.
Therefore, the hybrid recommendation approach was capable of recommending OER as relevant as
the ones recommended by the traditional content-based approach but with higher quality, as well as
recommending OER of similar quality as the ones recommended by the quality-based approach but
more relevant to the participants.

Regarding the quality-based approach, the results of this user study indicated that it was useful to
generate high-quality OER. In fact, as expected, this approach was the one that achieved recommending
OER with the most quality. However, in view of the obtained results, this approach clearly failed to
suggest OER relevant to the users’ interests. In this regard, it should be pointed out that, although
the results achieved by the quality-based OER recommendations in terms of relevance were far from
those achieved by the personalized recommendations, these quality-based OER recommendations
clearly outperformed random recommendations, in terms of pedagogical quality, and also in terms
of relevance.

4. Discussion

The results of the conducted user study show that learning object pedagogical quality scores can
be used to improve traditional content-based OER recommender systems, allowing these systems to
recommend OER with more quality and equally relevant for the users. Therefore, this study proves
that OER repositories can make use of OER quality measures in order to help their users to find
OER of sufficiently high quality and related to a specific topic, which is a challenge often faced by
both teachers and learners when searching for OER [12]. The results of this research show that the
hybrid recommendation approach statistically significantly outperformed the traditional content-based
recommendation approach in terms of quality, the quality-based recommendation approach in terms of
relevance, and the random recommendations in terms of both quality and relevance. Therefore, these
results are consistent with those of [53], which also compared the relevance (by means of a user study)
and quality (by means of A/B testing) of random OER recommendations and OER recommendations
generated by a hybrid recommender system using quality scores.

This study has also examined the usefulness of non-personalized OER recommendations generated
by using solely pedagogical quality scores. On the basis of the obtained results, it can be concluded that
these types of recommendations, although they could be useful to provide users of OER repositories
with features such as “the 2020 top OER selections”, they are not very useful for helping teachers
and learners to find educational resources of their specific area of interest. In summary, measures of
OER pedagogical quality have limited utility by themselves to suggest OER to users, but they can be
successfully used for enhancing existing OER recommender systems in order to recommend OER with
higher pedagogical quality.

Most of the results obtained in the user study were expected. Firstly, the hybrid recommender
system was expected to outperform the quality-based approach in terms of relevance because this
latter approach is not able to generate personalized recommendations, and hence it recommended
OER of high quality but that were not found relevant by the users. Secondly, the fact that the hybrid
recommender system outperformed the traditional content-based recommender system in terms of
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quality was also expected, because this latter system recommended the most similar OER to the one
the participant was viewing, without taking into account data related to the pedagogical quality of
these OER. An interesting and unanticipated finding of this study was that the hybrid recommender
system was able to recommend OER as relevant as the ones suggested by the content-based approach
and of similar quality to those recommended by the quality-based approach. This means that this
hybrid recommender system was able to improve the pedagogical quality of the OER it recommended
without having a cost in terms of relevance. A reasonable hypothesis would have been that this system
was capable of enhancing OER quality but with some detriment to relevance. However, the results
obtained in this study indicate that this enhancement occurred at no cost. This fact confirms that hybrid
OER recommender systems, by combining multiple techniques together, are able to overcome the
shortcomings of some of these techniques by using the strengths of the other ones. Lastly, regarding
the comparison of the random recommendations against the other approaches, these recommendations
were, as expected, the least useful ones in terms of both relevance and quality.

By taking into account that a high recommender accuracy does not always correlate with user
satisfaction or perceived usefulness [64], in order to evaluate the real value of OER recommendations
it is necessary to not only evaluate their relevance or accuracy, but also the pedagogical quality of
the recommended OER. In spite of this fact, most evaluations of TEL recommender systems reported
in the literature have focused only on the accuracy of the recommendation algorithms [40]. In this
study, the usefulness of the OER recommendations was evaluated in terms of both relevance and
quality. Therefore, the recommendations considered to be more useful were those that recommended
high-quality OER that were found relevant by the user. If only relevance had been considered for
measuring the usefulness of the generated recommendations, recommendations of OER with low
pedagogical quality (e.g., for having inaccurate content or an inappropriate level of detail) would
have been considered useful in those cases in which participants, after a quick review, considered
that the OER could suit their interests. Obviously, these recommendations should not be considered
to be useful (or at least not as useful as high-quality OER recommendations) because there is little
benefit from providing users with OER with poor quality, and this can even be counterproductive in
some cases.

Quality assurance is of major importance for OER repositories since teachers need some guarantee
of quality before incorporating OER into their lesson plans and low-quality OER can put learners at
risk of being misinformed or wasting time. Therefore, there is little doubt that pedagogical quality
is a key feature of OER that these repositories should consider and evaluate. Notwithstanding, this
feature is usually ignored by OER recommender systems, even for those recommender systems using
content-based techniques, for which it should be easy to incorporate OER quality measures into the
recommendation process since they are able to generate recommendations based on item features
and ratings. This work proves that OER repositories can benefit from evaluating the pedagogical
quality of their OER by incorporating the obtained quality measures into a recommender system. In
spite of these benefits, it is clear that there are important barriers preventing the use of quality-based
recommendation approaches in OER repositories, with the most critical barrier being the difficulty to
effectively collect pedagogical quality scores for all OER. In those OER repositories, such as MERLOT
or ViSH, that systematically evaluate the quality of the published OER following a community-based
mechanism, evaluations are conducted by volunteer reviewers or users, and hence no quality scores
are generated for a significant percentage of OER. Although some measures have been proposed
to face this barrier, such as assigning a temporary score to non-evaluated OER [53], automatically
evaluating quality using intrinsic features [70], or estimating the OER pedagogical quality based on
user interactions [71], this issue remains as an open challenge for OER repositories that requires further
research. In the dataset used for this user study, all OER were evaluated by at least two experienced
reviewers and, based on these evaluations, quality scores were calculated for all of them. Therefore, in
other scenarios where no reliable pedagogical quality data are available for all OER in the dataset, the
performance of the quality-based recommendation approaches is expected to be worse. Nonetheless,
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in the worst scenario where no data related to pedagogical quality would be available at all, the hybrid
approach analyzed in this study would still be able to generate OER recommendations as useful as the
ones generated by the traditional content-based approach.

5. Conclusions

This article examines the usefulness of using pedagogical quality scores for generating OER
recommendations by means of a user study involving 53 participants and 400 OER, which compared,
in terms of both relevance and pedagogical quality, four different recommendation approaches:
a hybrid approach combining content-based and quality-based recommendation techniques, a
traditional content-based recommendation technique, a recommendation approach that generates
OER recommendations based exclusively on the pedagogical quality of the OER, and random
recommendations. The results reported in this article show that learning object quality scores can be
successfully used to enhance traditional content-based OER recommender systems by enabling these
systems to recommend OER that are of higher quality and equally relevant for the users. These results
provide evidence of the usefulness to OER recommender systems of including information related
to the OER pedagogical quality in the recommendation process. Although previous studies [53,57]
had evaluated learning object recommender systems that make use of this type of information, none
of them specifically examined its added value. Furthermore, this study also contributes to the TEL
recommender systems research by examining the usefulness of non-personalized recommendations of
OER that are generated based solely on pedagogical quality scores, which is a valuable contribution
since, to the best of our knowledge, no work had addressed this issue before. In conclusion, the results
of this study show that the appropriate use of learning object quality scores can contribute to enhance
the discoverability of high-quality OER, one of the major barriers hampering the use and uptake of
OER worldwide [11].

In addition to providing better OER recommendations, OER repositories can benefit from
evaluating OER quality by using the obtained quality scores for enhancing the search and discovery of
OER through other types of systems such as search tools or catalog-like applications. For example,
similar to the way in which recommender systems can incorporate quality scores to recommend OER
that are both relevant and of high quality, search tools can use ranking metrics that combine relevance
scores with quality scores in order to sort results not only by relevance, but also taking into account
the OER pedagogical quality. Thereby, between those OER that are equally relevant for the user
search query, the ones with higher quality can be shown first to the users. An example of this type
of ranking metrics is described in [36]. OER repositories can also use quality scores by themselves
to provide quality-based sorting of OER search results. In this regard, it should be mentioned that
OER repositories, such as MERLOT, use this approach, and that there is evidence that quality metrics
based on learning object evaluation models, such as LORI, can be effectively used for this purpose, as
well as for filtering low-quality OER [67], which can be useful, for instance, for allowing catalog-like
applications to specify a minimum quality for the offered OER. Future studies should examine the
usefulness of OER quality scores for improving existing search and discovery tools in the context of
real-world OER repositories.

In order to confirm the results obtained in this study, we plan to conduct a new online experiment
where OER recommendations generated according to the analyzed recommendation approaches will be
presented to users of an OER repository under normal conditions over a long period of time. Another
interesting line of future work would be to examine the usefulness of quality scores for enhancing
other types of OER recommender systems in addition to those using content-based techniques, such
as collaborative filtering, knowledge-based, or demographic recommender systems. Finally, we
recommend research on sustainable solutions for OER repositories that have the capacity to provide
effective quality assurance for a large number of digital learning resources.
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