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Abstract: With the innovative composite material carbon-reinforced concrete, thin-walled,
high-performance components can be realized. A combination of carbon fiber reinforced polymer
(CFRP) bars and non-metallic textile grids is advantageous as it exploits the full potential of the
high-performance materials to reduce dead loads, increases durability, and extends lifespan. For new
components with such mixed reinforcement, applicable design concepts and engineering rules are
necessary to accurately determine the structural and deformation behavior. To validate models and
detailing rules previously developed, three large carbon reinforced concrete I-beams were designed
and tested to failure with a realistic line load. CFRP bars served as principal bending reinforcement,
whereas shear and flange reinforcement consisted of textile grids. Results showed that existing models
for bending using variation of strain distribution as well as non-linear finite-element analysis predicted
the flexural behavior of structural components with mixed reinforcement in ultimate limit state
(ULS) appropriately. Yet, calculation of shear capacity requires further studies to determine textile
reinforcement contribution and estimate reduction for concrete strength in reinforced compression
struts. For serviceability limit state (SLS), three methods for determination of deflection delivered
good results. In future, a rethinking is required with regard to the ductility and robustness of
CFRP-reinforced concrete components. In this respect, pronounced cracking as well as the large
ultimate strain and deflection compensate for the lacking yield capacity of the reinforcement.

Keywords: textile-reinforced concrete; carbon reinforced concrete; continuous load;
finite-element calculation

1. Introduction

Global mega trends such as climate change, growth of population with further urbanization, and
increase of land consumption as well as further increase in mobility require great efforts from society
in general and the construction sector in particular. Construction industries world-wide will struggle
to meet the demands of those mega trends with established methods and incremental innovations
thereof. Completely new approaches and radical innovations are called for. Carbon concrete
composites or carbon reinforced concrete (CRC) and textile reinforced concrete (TRC) qualify as such
disruptive innovations [1], which are atypical for the building sector. Indeed, using those materials
enables a complete rethinking of established construction strategies [2-5]. The higher tensile strength of
reinforcement fibers such as carbon compared to typical reinforcement steel, combined with the complete
insensitivity to corrosion, allows for optimization of cross-sectional designs. Often, the potential
of reduction of CO,-consumption by use of CRC in new structural components is highlighted [6,7].
This is said to be achieved through reduction of concrete mass (and especially cementitious binder) by
minimization of concrete cover, member web thickness, and consequently dead load. Here, the idea
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of merely replacing steel reinforcement is prevalent. Equally important is the extension of lifespan
of new concrete components which is enabled by better durability of the reinforcement materials [8],
especially in environments with severe exposition. The same reasoning applies for strengthening of
existing structures with non-metallic reinforcement [9,10]. By extending lifespan, the embodied CO,
in concrete parts can be spread over a longer period of use, and furthermore, cost-efficiency increases.
Decrease of life-cycle cost for certain applications through use of non-metallic reinforcement (see
for example [11,12]) might be the most convincing argument for most stakeholders in construction.
This is typically the case when maintenance-intensive additional polymeric coatings are no longer
needed [13-15].

Despite those advantages, market share of non-metallic reinforcement is still negligible, and thus
the potential effect on consumption of resources is limited. One explanation next to higher initial
investment costs for production of elements [16] might be the shortfall of a comprehensive set of
design models and standardized test procedures based on fundamental research. World-wide, first
building codes were established for use of fiber reinforced polymer (FRP) reinforcement [17-19],
but in Europe, an implementation is still pending. Even then, design rules might be insufficient:
New construction strategies really exploiting the potential of thin, non-metallic reinforced membranes
are lacking. Instead, engineers try to keep conventional principles and cross-sections, just replacing
the steel.

The C3-initiative [20], a large-scale coordinated research program in Germany, examines various
facets of the topic in depth: Fundamental research, potential applications, and market penetration.
This study presents results from the final stage of this project, focusing on engineering models,
design approaches and standardization of test methods for CRC constructions. With experimental
and subsequent numerical investigations of large-scale I-beams, verification of approaches to design
and calculation of members with mixed carbon fiber reinforced polymer (CFRP) reinforcement
in serviceability limit state (SLS) and ultimate limit state (ULS) is possible. We should mention that
the idea of combining (different) textiles and FRP-bars is not new. Previous application examples
from practice are facades [21,22], pedestrian bridges [23,24], or precast elements [25]. Kromoser et al.
conducted studies on slender I-beams with mixed reinforcement [3]. Kueres [24,26] investigated
beams with CFRP prestressing strands and textile shear reinforcement. May et al. investigated
ceiling systems with CFRP bars and textile grids [4]. Schumann et al. tested I-beams with Glass-FRP
longitudinal bars and carbon textile shear reinforcement [27]. Chudoba et al. performed numerical
investigations of members containing different textiles [28]. So far, a systematic investigation of the
effect of loading with line loads, the focus on specific deflection configurations in SLS and chosen
failure mechanisms in ULS, and the influence of cross-sectional slenderness and large (and realistic)
scale of the beams has not been not investigated. The latter is of importance for detailing, as several
aspects of load-bearing behavior relate to scale. For example, providing sufficient anchorage length of
textile shear reinforcement is more difficult for beams with smaller effective depth [29-31]. Also, bond
failure of longitudinal reinforcement might be more relevant for beams with less anchorage length at
the supports. Downscaled tests might prove inapt to investigate those aspects.

The main research questions addressed in this paper can be summarized to:

e  Areexisting calculation models for bending capacity using material characteristics from component
tests applicable to members with mixed CFRP rebar and textile reinforcement?

e  Can the strength of non-prestressed carbon bars and of carbon textiles fully exploited at SLS
and ULS?

e  Can detailing rules be transferred from steel reinforced concrete members?

e  Are predictions of deflection with existing models (for example [32]) possible?

First, the materials and methods used in experimental and numerical investigations of three beams
are presented. Then, the presentation of the experimental and numerical results enables a detailed
discussion. The paper finishes with concluding remarks.
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2. Experimental Investigation: Materials and Methods

2.1. Reinforcement

For the experimental part in this study, various non-metallic reinforcement types were combined
to make use of their individual strengths. The main reinforcement in the tension flange of the I-shaped
beams was a non-prestressed CFRP rebar (Figure 1c, and Table 2) with milled helix ribs. As shear
reinforcement, an epoxy-impregnated biaxial carbon grid was utilized. This type of reinforcement is
pre-impregnated and pre-hardened by the manufacturer. Figure 1a shows the open structure of the
symmetrical reinforcement with a 38 mm axial spacing of the yarns in both directions. Pre-formed textile
grids made of CFRP (Figure 1b) or alkali-resistant (AR-) glass (GFRP) served as reinforcement of the
flanges. Both had the same mesh geometry as the planar shear reinforcement.

—~~
(g)
~

Figure 1. Reinforcement types: (a) Planar biaxial carbon fiber reinforced polymer (CFRP) grid;
(b) pre-formed CFRP grid; (c) CFRP rebar with milled ribs.

As the yarns were fully impregnated, a homogeneous stress distribution over the cross-section
with full activation of all filaments can be assumed, while non-impregnated “dry” yarns would exhibit
different behavior, with telescopic failure and inhomogeneous stress distribution [33]. Thus, in the
present case, material characteristics (strength, modulus of elasticity) can be tested on individual
yarns extracted from the grid without surrounding concrete [34]. Key properties are listed in Table 1.
The ultimate stress and modulus of elasticity were analyzed in uniaxial tension tests on individual
yarns according to the setup described in [35]. It should be highlighted that, due to the well-known
statistical effects for a bundle of linear-elastic yarns with brittle failure, the strength of an individual
yarn underestimates the strength of the fabric [36,37]. For the textile reinforcement in this study,
Rempel proposes a reduction factor of 0.85 [34,38] for n -> oo yarns. The bond properties of the
textile reinforcement were analyzed in a previous study [39,40]. The complete epoxy impregnation
enables form closure with splitting of the concrete as primary bond mechanism. This is different from
non- or incompletely impregnated textiles with failure mechanisms such as pull-out and jamming of
the yarns [41]. The bond strength is highly dependent on local yarn geometry. Resulting from the
production process of the pre-formed grids, individual filaments are less straight than in planar grids.
This results in a higher waviness, as can be seen in Figure 1a,b. As a consequence, higher form closure
and higher tendency for splitting [42—44] occur.

Table 1. Reinforcement characteristics for impregnated planar carbon and alkali resistant (AR)-glass
grid (properties of one individual yarn, from [34] with test setup according to [35]).

Characteristic Unit Carbon AR-Glass *
(0°) (90°) 0°) (90°)
Modulus of elasticity [MPa] 244,835 243,828 70,843 74,618
Mean ultimate stress [MPa] 5221 3334 1590 1599

n=204% m=218)T m=448)t (n=477)%
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Table 1. Cont.

Characteristic Unit Carbon * AR-Glass *
0°) (90°) 0°) (90°)
5% quantile ultimate stress [MPa] 2737 2762 1363 1372
Mean ultimate strain [%0] 13.2 13.7 224 214
Axial spacing of yarns [mm] 38 38 38 38
Cross-sectional area per yarn [mm?] 3.62 3.62 4.62 4.62
Cross-sectional area per meter ¥ [mm?%m] 95 95 121 121

" Values for planar material. Tensile characteristics of pre-formed grids may differ.  Number of tests. ¥ Filament
cross-sectional area without epoxy-impregnation.

In preparation of the large-scale tests, uniaxial tensile tests on the main CFRP rebar were
conducted to verify the manufacturer’s specifications. While test procedures for FRP elements exist
(e.g., [45,40]), they were typically developed for glass-fiber reinforced polymer bars. With higher fiber
strength, anchorage failure might occur despite longer sleeve length prior to failure in the free length.
ASTM D7205 recommends 460 mm sleeve length for a 9.5 mm CFRP bar. More sophisticated clamping
devices use inversely segmented cones [47,48] or a pressure gradient. Here, two different test were
utilized: A horizontal setup with two hydraulic jacks and a 400 mm concrete anchor block on both sides
and a setup with adhesive anchorage using a two component epoxy resin in 150 mm threaded steel
sleeves (Figure 2). To reduce the necessary anchorage length and prevent anchorage failure, an inner
thread M16 was cut in the sleeve. With both setups, it was possible to achieve failure in free length.
Yet, for some specimen of the second setup, failure of the milled ribs (shearing off) at the beginning
anchorage was observed.

(b)

Figure 2. (a) Testing of carbon bars in uniaxial tension with concrete anchorage and (b) with adhesive
anchorage in steel sleeve.

The results of both tests are summarized in Table 2. The difference to the material characteristics
given by the manufacturer might result from a different definition of cross-sectional area. For our tests,
all stress values relate to the nominal cross-section area of 61.5 mm?, corresponding to the measured
core diameter of approximately 8.9 mm. As the rebar was still under development during production
of the beams, a high variation in material properties from batch to batch has been observed.
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Table 2. Reinforcement characteristics for carbon bars.

Characteristic Unit Own Tests Manufacturer [49]
Modulus of elasticity [MPa] 165,515 * 151,000
Mean ultimate stress [MPa] 1828 * (n = 5 tests) 1650 *
Mean ultimate strain [%00] 11.04 10.9

core diameter [mm] 8.9 8.5

nominal diameter ([50], Annex A) [mm?2] 9.5 -

outer diameter [mm?2/m] 10.0 10.0

Mean bond force per embedded length, _ T
values from MFPA Leipzig GmbH [51] [kN/mm] 0976 (n = 12 tests)

* Reference cross-section area 61.5 mm?. + Reference cross-section area not given by manufacturer, supposedly
56.7 mm?2. ¥ Determined on cubic specimen (age 28 d) according to RILEM-Pull-out [52], embedded length (50, 75 or
100 mm) in the center of the specimen, concrete C3-B2-HF-145-3 with f, cm,pris = 111.3 MPa and fetma = 10.3 MPa.

2.2. Concrete

The concrete utilized in this study (Table 3) was adapted by the manufacturer Hentschke Bau
GmbH from a mixture developed within another subproject of C3 [53]. It meets the requirements
of industrial production and is suitable for densely reinforced, thin-walled CRC. The maximum
diameter of the crushed aggregate (4 mm) matched the size of the grid openings and rebar spacings.
The cementitious binder compound with its optimized fine grain size distribution and the fine sand
paired with the high-performance superplasticizer led to self-compacting properties of the fresh mix.
However, during production, external vibration was applied to further enhance concrete flow speed
and venting.

Due to its small aggregate size and high content of fine particles, the mixture does not qualify as
standard concrete according to DIN EN 206 [54]. Yet, the term “concrete” is used within this paper
to distinguish its use for new concrete parts clearly from repair and retrofitting applications of TRC,
where the term “mortar” is preferred [55,56].

Table 3. Mix design of concrete C3-B2-HF-2-155-5.

Substance Content
kg/m?3

Cementitious binder compound CEM II/C-M Deuna 663
Fine quartz sand BCS 413 0.06/0.2 mm 240
Quartz sand Hahnenberg 0-0.2 mm 506
Lengefelder Marmor Saxogran (crushed marble) 2.0-4.0 mm 832
Superplasticizer (polycarboxylatether-basis) MC-VP-16-0205-02 14
Water 145

The material characteristics of the hardened concrete, tested on the same day as the I-beams,
are given in Table 4. The bending tensile strength f..n g was determined on prism specimens
(40 x 40 x 160 mm), according to the standard test method for mortar [57]. The splitting tensile
strength fctsp was tested on shortened cylinders (d/h = 150/150 mm, only the lower half was
tested). The compressive strength was determined on 150 mm cubes (fomcube), On cylinders
with d/h = 150/300 mm (fcm,cy1) according to [58] and prism halves (fem pris) according to [57].
The mean modulus of elasticity Ecy of the cementitious matrix was tested on cylindrical specimens
(d/h = 150/300 mm) with method “B” specified in [59]. The compressive strain at maximum load &
was determined with external strain gauges glued on one cylinder from each batch.

2.3. Test Setup and Instrumentation

To test the beams with a uniformly distributed load, an inverse setup was employed (Figure 3) [60].
Ten equally spaced hydraulic jacks connected to one hydraulic circuit applied the load to the lower chord
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of thebeams. A package of steel (300 x 300 x 30 mm) and plywood (t = 21 mm) plates reduced local stress
concentrations. Spherical bearings centered the vertical load while curvature of the beams increased
during the test. Initial geometrical non-linear finite-element calculations employing a horizontal
line-load equivalent to an imperfection of 30 mm in mid-span predicted deformation-induced lateral
failure of the beams’ compression chord prior to bending failure. Thus, lateral supports in mid-span
with polytetrafluorethylene (PTFE) facings were added. All specimens were tested under quasi-static
conditions with a load rate of 10 kN/min. At predefined intervals, the test was halted to mark new
cracks and document the crack pattern. After reaching a midspan deflection of 28 mm, all beams were
completely unloaded and reloaded to identify plastic deformation and remaining crack-openings.

Table 4. Material properties of hardened concrete at the day of testing.

Test No. Age f cm,cube f cm,cyl f ct,sp f cm,pris f ctm, fl Eem €c1
[d] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [%o0]
FTO01 28 112.7 98.8 5.58 95.75 12.29 38,750 2.69
FT02 22 111.0 - 5.25 94.96 13.42 39,890 -*
FT03 30 104.6 97.0 4.77 97.01 13.23 40,620 2.65

* For numerical calculation, fem, cy1 was converted with the factor 1/1.11 from fem,cube (Mean conversion of FT01 and
FT02) to fem,cy1 = 100.0 MPa. The mean value of e¢1 = 2.67%o0 was chosen for calculation of FT02.

Vertical displacement (DU1-DU6) was measured at supports, in in mid-span and at two locations
in between (Figure 3). Three horizontal linear variable displacement transducers (LVDT) Bil-Bi3
in the tension zone and nine (eleven for FT02) concrete strain gauges in the compression chord tracked
deformations from the exterior. For internal measurement, strain gauges were applied to the main
carbon bars. Therefore, one section of a rib was carefully sanded off without damaging the core
diameter of the bars and the gauges were glued on the CFRP rebars. The feasibility of this measurement
was evaluated in previous uniaxial tensile tests, where strain measurements with conventional LVDTs
and strain gauges yielded similar results. For FT01 and FT02, six gauges (D15-D6S) were fixed at the
second and fourth bar of the outermost reinforcement layer (Figures 3 and 4). For FT03, a total of eight
gauges were used, four outside of the splice, and four in the first and last third of the splice length.

2.4. Cross-Section and Reinforcement Layout

The dimensions of the cross-section of beams FT01-FT03 (Figure 5) were chosen based on
an preliminary design using sectional analysis and a conventional finite-element program [61] designed
for steel-reinforced concrete utilizing adapted material parameters. The main design criteria were:

e Toinvestigate the bending behavior at ultimate limit state, especially

O Rupture of tensile reinforcement (FT01)
O Flexural failure of concrete compressive zone (FT02)
O The behavior of a zone with full rebar splice (FT03)

e To prevent unintended failure, e.g., in shear, in anchorage, or in deformation induced failure
(for example in lateral failure of the compression chord or in local failure of the web)

e To evaluate sufficient announcement of failure between SLS, defined by the limits of deflection,
and ULS for bending
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Figure 3. Test setup with continuous loading and instrumentation.

The slenderness of I/h = 700/90 = 7.8 resulted from full utilization of the non-prestressed carbon
rebars at ULS and complying with SLS requirements for FT01, i.e., deflection limit. No precamber was
chosen for the beams. The width of 200 mm for the tension flanges was necessary to place 20 bars
of FT02 with adequate spacing. The same width was chosen for the compression flange to increase
lateral stiffness. The depth of 150 mm of the tension and compression chords ensured anchorage of
the planar shear reinforcement (see e.g., [39] for determination of the full anchorage length in warp
direction of 78 mm for a comparable cementitious matrix). However, the compression chord depth for
FT02 was reduced in mid-span to diminish the resistance of the compression zone in order to provoke
flexural compression failure of concrete. A web width of 50 mm allowed for concreting the beams
in upright position with 4 layers of shear reinforcement for FT02. A minimum concrete cover of 10 mm
was chosen in the web based on previous experience from uniaxial tensile tests [62]. Previous studies
on tensile specimen reinforced with the same carbon rebar indicated that a cover of 25 mm is necessary
in the tension zone to transfer bond forces [40] without premature longitudinal cracking and concrete
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spalling. The same cover was chosen for the grid in the compression flange. As shown in Figure 5
(left), preformed grids in compression (CFRP grid) and tension flange (GFRP grid) were chosen to
take the tension forces resulting from lateral connection of the outlying rebar and concrete areas.
The profiles were open to the center of the beam, allowing the primary shear reinforcement to penetrate
and securely anchor in the flange. To close the open profiles and to increase the resistance in lateral
direction, short carbon bars from the same material as the main rebars were added (see Figure 6).
AR-glass fabrics were chosen specifically for the tension flange for their higher ultimate strain (Table 1)
to prevent premature rupture of the longitudinal yarns and spalling of the concrete. The lap length
of 50 cm was chosen based on bond strength value from Eurocode 2 [63], clause 8.4.2, using mean
tensile strength of a C100/115 (fctm = 5.2 MPa), for ultimate strength of carbon bars (1828 MPa) and
the corresponding diameter (8.9 mm). Because of self-compacting concrete properties, good bond
conditions were assumed and a factor o = 1.4 was assumed.

Figure 4. Left: Detail of internal strain gauge for carbon bar; right: position of strain gauges for FT01

in tension chord.
2.5. Production

The production of the beams in the precast plant utilized conventional formwork and production
methods (Figure 6). Textile planar and preformed grids and rebars were combined to a complete
reinforcement cage which was equipped with conventional short fiber reinforced concrete spacers at
the bottom and at the top to prevent uplift. At the sides, special plastic spacers for textile grids kept
the 10 mm concrete cover of the shear reinforcement. The concrete was poured in the formwork slowly
by a screw conveyor, aided by mild external vibration. Each beam was demolded after one day and
stored under plastic foil until transport to the testing facility. The outstanding surface quality with
almost no pores is evidence of good compaction of the concrete despite dense reinforcement.

All beams were stored in statically determined manner until testing, allowing for free deformation.
At an age of 2-3 weeks, vertical cracks in beams FT01 and FT02 occurred. The cracking was caused
by restraint of drying shrinkage deformation due to high reinforcement ratio in the tension flange
(eigen stress). FT01 cracked on a length of 2 m in the center of the beam with 11 cracks, 6 of which
running from the top flange through the web and into the bottom flange with crack widths of 0.05 to
0.1 mm and a mean spacing of 12 cm. FT02 exhibited a denser crack pattern (97 cracks) in the highly
reinforced tension flange with a mean spacing of 8.1 cm and a mean crack width of 0.1 mm. Seven cracks
in midspan over a length of two meters ran into the web, but did not reach the compression flange.
FT03 remained uncracked until testing.

3. Methods of Theoretical Investigation

3.1. Design with Spreadsheet Calculation

For bending design, sectional analysis with iterative variation of the linear strain distribution
assuming perfect bond was utilized. As stress—strain relation for concrete in compression, the approach
according to EC2 [64] was chosen. In addition to the main reinforcement, each longitudinal yarn of
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flange and shear reinforcement in the tension zone was considered with its respective contribution.
For FT01, the failure criterion was set to reaching the ultimate strain of the main carbon bars, while for
FT02 reaching the ultimate compressive strain ¢ ,, was decisive.

, FTO1 FTO02 FTO03
glass preformed grid ENEE 210/33
J S E'D ®© 0,00 0 L T oo oo
: & / 5 ;:Iﬂi:: _____ bars \ gflassed
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25 H— £ | Al S ) e
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DR I 75 |t {[50 75
¢ 900. 1 7
@10/33 carbon
carbon bars 210/33 preformed
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i T =if
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Figure 5. Cross-sections and reinforcement layout of beams FT01-FT03 in mid-span.

The limit of shear resistance was determined with a strut-and-tie model with variable inclination
of the compression field from EC2 [64]. While for FT01 with two layers of shear reinforcement
a strut inclination of cot(0) = 2.5 was chosen, for FT02 with a doubled shear reinforcement a strut
inclination of 45° was estimated. In both cases the maximum compressive stress of the concrete strut
was 0. = 0.6 - (1 — 100/250) - 100 = 36 MPa. Strain in shear reinforcement of FT01 did not exceed 2.87%o.
Direct loading within distance d from the support was not considered in shear verification. The strain
in shear reinforcement of FT02 was calculated to 8.3%o, which is lower than the upper limit 9%o given
e.g., by [65].

3.2. Non-Linear Finite Element Approach

ABAQUS/CAE [66] was employed in a refined geometrical and physical non-linear FE analysis.
Key input parameters are given in Figure 7. For simple bending analysis, a 2D-modelling approach
would have been sufficient and computationally much more efficient. Beams FT01 and FT02
were modeled in 3D using symmetry conditions to be able to account for global stability (lateral
deformation-induced failure of compression chord) and local stability (deformation-induced failure
of the web in compression). For textile reinforced concrete, often a smeared approach to modeling
reinforcement is chosen (see for example [67]). Here, all tension reinforcement is modeled discretely, using
two node truss elements with experimentally determined material characteristics given in Tables 1 and 2.
For shear reinforcement, three CFRP yarns were bundled in one truss element to reduce total computational
time, while CFRP bars were modelled individually. The reinforcement was embedded in 8 node brick
elements forming the concrete body with perfect bond. All parameters for concrete damaged plasticity
model (CDPM) are listed in Figure 7 (right). Uniaxial compression behavior is predicted with the
model by Sargin [68], and for simulation of concrete under tension, the model by Hillerborg [69] is



Appl. Sci. 2020, 10, 4625 10 of 26

used. Calculation was performed with general/static increments of pressure on the loaded surface,
with maximum step size 0.01 and minimum step size 1 - 10~%, which represent a percentage of the
maximum applied pressure.

Figure 6. Production of I-beams in precast plant of Hentschke Bau GmbH: top: reinforcement cage and

detail of FT01; bottom: casting and beam after demolding.

mesh size
0 steel _rre;rggrcemenlt: 30x30m
u,= truss elements e
UZ =0 support HEE jfﬂ
R
=1 i ke
HEERERRNSES L u, =
T ¢,=0
|RUE (N8 (U (WU (EWE (UNE NN NEE ('pz = O
N it
W p
z
l‘d*x C3D8R group of 3 2o plane of
y brick elements carbon yarns z Symmetry

Figure 7. Schematic of input parameters and FE-mesh for FT01 simulation in ABAQUS. CDPM variables:
VP =50° [70]; € = 0.1 [71]; opg/o0 = 1.16 [71,72]; K. = 2/3 [71,72]; u = 0.0001 [70]. Concrete: D = 0.2;
Gy =73 fa18 [17].
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4. Results

4.1. Failure Mechanisms

As all beams were tested to failure, their distinctive fracture pattern gives insight on load-bearing
mechanisms. With FT01, a brittle rupture of the main bending reinforcement in mid-span was observed
at a total load of 686 kN (Figure 8). This was the predicted and desired failure mode. The sudden
release of energy upon rupture of CFRP bars led to a brittle failure without residual load-bearing
capacity. As secondary effect, the horizontal yarns of shear reinforcement ruptured and subsequently
web concrete cover was spalled. No premature spalling of concrete in the tension chord or rupture of
the glass grid could be observed prior to reaching ultimate load.

tensile failure
‘of CFRP bars

secondary
failure of
CFRP grid

Figure 8. Failure of FT01: (a) beam at peak load 0.24 s prior to failure; (b) ruptured CFRP bars and
secondary rupture of grid reinforcement with spalling of concrete.

FTO02 was designed to fail in bending through failure of the compressive chord at approximately
1530 kN total load. Yet, at 1468.5 kN total load in the experiment (96% of the predicted load) a large
part of the concrete cover in the last compression field near the support was split off and spalled.
Subsequently, the shear zone failed in compression. All 20 bars of the longitudinal reinforcement and
all four layers of textile grid were sheared-off in the angle of the shear crack (Figure 9). A sudden
release of energy led to a brittle failure of the beam.

As FT03 was designed to evaluate the failure mechanisms of a full splice, the beam failed
in mid-span at 52.7% of FT01’s ultimate load, with longitudinal splitting cracks in the plane of the
textile grid and perpendicular to the concrete surface, originating from one end of the splice (Figure 10).
After side and top concrete cover were split off explosively, the splice was no longer able to carry loads.
Transverse glass yarns were intact, while longitudinal yarns ruptured.

Figure 9. Failure of shear strut in compression near the support of FT02.
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Figure 10. Failure sequence of FT03 in the overlap section in mid-span (At = 0.32 s).
4.2. Crack Pattern

All beams showed a dense crack pattern (Figure 11). As FT01 and FT02 had shrinkage cracks, first
bending cracks opened from these existing cracks. FT03 had a first crack at 65 kN total load (56.9 kNm
in mid-span). For all beams, first shear cracks formed out of bending cracks, with steeper angles near
the center of the span and flatter angles towards the supports. At the range of failure load, new diagonal
cracks with flatter angles formed in FT02 (Figure 12), crossing the existing bending-shear cracks.

4.3. Load-Deflection Behavior and Numerical Calculation

Beam FT01 and FT03 reveal a similar load-deflection behavior up to failure of FT03 (Figure 13,
left). Numerical calculations with ABAQUS over-estimates cracking load. Ultimate load (—8%) and
deflection of FT01 are well predicted. DamageT parameter for FT01 given in Figure 14 (top) shows
damage similar to the observed crack pattern (Figure 11). Obviously, the real crack spacing cannot
be predicted by this model, as bond-slip relation is not considered, shear reinforcement is bundled
in groups of three yarns and mesh size is of the same magnitude as yarn spacing. The horizontal
damage zone near the support of specimen FT02 is not a numerical error: A horizontal crack at the left
end of the specimen actually occurred.

Numerical calculation of deflection for FT02 is comparable to the experimentally observed up to
75 mm deflection. Figure 14 (center) shows the DamageT and principal compressive strain trajectories
at 850 kN total load where experimental and numerical curves are still congruent. Then, redistribution
occurs, and a loss of stiffness caused by the shear zone combined with large shear distortions of
elements results in increase of the calculated deflection. The DamageT plot for FT02 at 1450 kN
(Figure 14, bottom) indicates the critical zone where failure occurred. This is in accordance with the
observed failure in the compression field near the support. However, the model cannot predict the
longitudinal cracking in the plane of the shear reinforcement with subsequent spalling of concrete
cover, causing a brittle failure. This explains the overestimation of deformation in the simulation.
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Figure 11. Crack pattern of beams FT01-FT03 after failure.



Appl. Sci. 2020, 10, 4625 14 of 26

¥
Figure 12. Change of inclination of bending-shear cracks at 500 kN and 1200 kN total load of
specimen FT02.
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Figure 13. Load-deflection-behavior of I-beams and results of numerical calculation.
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and FT02.
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5. Discussion

5.1. Prediction of Ultimate Strength

Prediction and verification of ultimate load is an essential step in design of reinforced concrete
beams. Both methods, the manual calculation with spreadsheet using variations of linear strain
distribution and non-linear FE analysis predict the ultimate load (and moment) in good accordance
with the tests (Table 5). Although FTO02 failed in shear, bending-compression failure was imminent,
as can be concluded from measured strains of 2.66%o in the compression zone at mid-span which
were close to concrete failure strain of 2.67%o measured in cylinder tests (Figure 15, bottom right).
This explains the good agreement with predicted ultimate bending failure load.

With results from strain measurements on carbon bars in the outermost layer, a comparison with
the assumed strain is possible. However, it should be noted that depending on the distance to the next
bending crack and the effective length of debonding, the measured strain might be slightly reduced
compared to the theoretical value. Linear increase of strain in the carbon bars indicates that the internal
measurement was successful. Towards the end of the test FT01, strain gauges D25, D4S, D5S and
D3S failed. Concrete strain gauges D10C and D11C in FT02 (Figure 15, bottom right) show that the
compression zone reached into the web of the beam, which is in accordance with calculations.

Table 5. Comparison of ultimate loads and strains in compression chord and main reinforcement.

Experiment Spreadsheet ABAQUS
Muy,exp Fexp Strain Fealc Strain Falc Strain
No. [kNm] [kN] [%o0] [kN] [%o0] [kN] [%o]
EFRP = 8.96 * EFRP = 11.04 EFRP = 10.73
FT01 600.23 6860 ————— 699 ——————— 6313
ec=173" =171 e =1.81
EFRP = 6.74* EFRP = 7.89 EFRP = 9.06
FT02 128493  1468.5 T 15342 ————————— 1533.0
ec =2.66 ec =2.67 at 1450 kN: ¢ = 3.18
EFRP = 5.81* - - - -

FT03 3166  361.8
ec=092"1 - - - -

* only strain gauges considered which were functional at ultimate load. ' strain gauge D9C.
5.2. Failure of Compression Strut

The design of beam FT02 indicated that compression failure of the web might be governing at
cot(0) = 1 with a compressive stress resistance of Urm max = 0.6 - (1 — 100/250) - 100 = 36 MPa. At failure,
crack angles between 39.1° (cot(8) = 1.23) and 43.7° (cot(6) = 1.05) were observed (Figure 9, right).
The results of FE calculations in Figure 14 (bottom) show that in the last compressive field near the
support the principal compressive stress trajectories are inclined with 44° to 45.4° (cot(6) = 1) at
the level of experimental peak load. Compressive stresses in this region range from 19 to 37 MPa.
This corresponds well with the assumptions in design. At lower load levels and towards mid-span,
the angle of the compressive field is smaller, with 30.3° (cot(8) = 1.71) (Figure 14 (center)). The model
shows a redistribution of different compressive struts and the change of crack inclination throughout
the test, which was also observed in the experiments (Figure 12).

With experimentally determined maximum shear force and the angle of compressive field from
FE-results, reverse calculation of compressive stresses in the concrete struts at failure (o¢strut = V1 * fem)
is possible (shown in (1)). As marked in Figure 11, the load from one of the five hydraulic cylinders
acted within distance d from the support and was transferred directly to the support. Thus, it was not
considered for ultimate shear load in the section of compressive failure of the web.

wZ Ocstrut__ 4 1.469 MN — 0.05-0.9- 0.832 - v1-100
(cotO+tan6) 10 (1+1/1)

VRm,max = — V1 = 0.31 (1)
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with: z=0.9-d = 0.9 - 0.832 m measured at the centroid of all 20 carbon bars in the shear crack after
failure.

The strength reduction factor v; = 0.6 - (1 — f/250) = 0.36 chosen in design is larger than the
experimentally determined vq = 0.31. This additional reduction of concrete strength might be attributed
to the dense reinforcement in the web. The artificial discontinuities of the yarns with lower transverse
modulus of elasticity compared to concrete lead to out-of-plane stresses due to internal deviation
of stress trajectories. Compressive tests on cubic specimen (2 = 50 mm) with a similar concrete and
the same reinforcement layout as a representative section of the web showed a reduction of ultimate
strength of 10% with a restraint of transverse strain by the stiff loading plates of the testing equipment.
Bochmann et al. observed similar strength reductions for textile-reinforced cubes in a constraint-free
test setup where the compressive stress field is parallel to the reinforcement layers [73-75]. In both
test campaigns, longitudinal cracking in the layer of the reinforcement led to failure in compression.
The very same mechanism was observed at ultimate load of FT(02, where longitudinal cracking in the
layer of shear reinforcement in the web and subsequent spalling of the concrete cover initiated failure
of the compressive strut.

FT01 FTO02
750 1500
600 - 1250 A
1000
=450 - / =
é é'a 750 A ——D1S
a0 | u® ——D2S
! — %001 s
] D1S —Dis
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Figure 15. Strain measurements for FT01 (left) and FT02 (right) indicating that good prediction of
strain distribution with spreadsheet calculation is possible.
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In addition to the effect of local discontinuities, the concrete is subjected to out-of-plane stress
through bond of textile reinforcement (splitting stress). This combined in-plane/out of plane stress has
not been investigated in compressive tests on textile reinforced specimens, yet.

It can be concluded that existing pure truss models for verification of compressive struts neglecting
aggregate interlock, dowel action of longitudinal reinforcement and a shear contribution of the
compressive zone might be transferred to textile-reinforced shear zones when strength reduction factor
v1 is modified to account for dense textile reinforcement parallel to the compressive field. Future tests
specifically designed for shear compression failure in realistic scale as well as small-scale tests on
combined compression/out of plane tension are necessary to deepen the knowledge of the necessary
reduction factor.

5.3. Lap Length

The lap length of 500 mm in FT03 failed prematurely by splitting of the concrete cover and was
not able to provide the capacity necessary to reach the same ultimate load as FT01. Assuming the
same bond conditions as in pull-out material tests (Table 2), an anchorage length of 115 mm would
have been sufficient for one individual bar. However, this assumption neglects failure mechanisms of
concrete splitting in a lap of five carbon bars, which does not occur in pull-out tests. Using mean bond
strength from from Eurocode 2 [63,64], clause 8.4.2, with concrete characteristics from Table 4, the lap
length increased with the coefficient for multiple bars spliced in one section (o) results in:

Io = ac %] Omm___q4. 8.85 1828

F 25 fn T 2254y MM @

Although this value is slightly larger than the given 500 mm, it does not explain a decrease to 53%
of FT01’s ultimate bending capacity. Figure 10 clearly shows that the loss of bond of the CFRP bars
leading to failure of the beam was caused by splitting of the concrete cover. After a pronounced pattern
of bending cracks, horizontal splitting cracks in the plane of the preformed stirrups occurred, spalling
off the complete concrete cover of the tension chord. Then the preformed reinforcement cage of the
stirrups opened, and the confinement action of the transverse reinforcement was lost. The horizontal
stress from the planar splice could no longer be restrained, even if the glass yarns in transverse direction
were still intact. From the crack development can be assumed that a larger concrete cover would not
have increased resistance to longitudinal cracking of concrete in the plane of the preformed glass grid.
A significant portion of the concrete in this plane is disturbed by the presence of textile and could not
contribute to tensile resistance perpendicular to it. A larger spacing in longitudinal and transverse
direction might increase resistance to longitudinal cracking, but meanwhile the cross-sectional area of
yarns would need to be increased to maintain the same amount of reinforcement area. An alternative
explanation for the premature lap failure could be the very high bond capacity of the carbon bars, which
caused localized cracking at the outset of the splice with extensive horizontal cracking. The failure
starts at one side of the splice (see Figure 10), and cracks run from left to right (zipper effect). The few
glass yarns provided by the pre-formed stirrup grid with relatively low stiffness were unable to confine
the lap length effectively.

5.4. Compatibility of FRP Rebar and Grids

Combinations of reinforcements with different material characteristics for strength, modulus of
elasticity and bond are well-known from steel-reinforced concrete: Bonded prestressing strands and
mild steel rebar differ substantially regarding ultimate strength, strain, and bond properties, while
their modulus of elasticity is very similar. In principle, the relationships derived for steel reinforced
concrete are transferable to mixed FRP reinforced sections, because FRP grids and FRP bars are of
the same type (bundles of uniaxial continuous fibers with anisotropic behavior) and are subject to
the same load-bearing principles. Yet, those reinforcements differ in one essential point from steel:
Their lack of yield capacity and their brittle failure. In consequence, different bond and stiffness
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need to be considered not only in SLS (as it is usual for mixed steel reinforced sections) but also
in ULS. For the beams described in this paper, this was taken into account by choosing glass grids as
stirrups in the tension chords. Their lower modulus of elasticity allows higher strains in longitudinal
direction parallel to the main CFRP reinforcement at rupture, and thus premature failure with spalling
of the concrete was prevented. By assuming perfect bond in cross-sectional verification for bending,
differences in bond strength were not considered. Pre-formed textile grids with their mechanical
interlock exhibit high bond stresses, potentially better strengths than CFRP bars, depending on their
surface treatment. A redistribution of tensile stresses in bending cracks towards the better bonded
component can be assumed. With given bond-slip-relations for reinforcement materials, the numerical
solution of the differential equation system for bond can be used to calculate the stress distribution
along the embedment length. While this procedure is suitable for research, simpler detailing rules for
practical applications are to be developed.

The definition of cross-sectional area for FRP rebar (nominal, core diameter) and textile grids
(effective, filament area) differs. In principle, the definition is arbitrary if the same reference value
is used for stress and stiffness. This is true for cross-sectional verification of bending. However, if
geometrical properties are derived from cross-sectional areas, this is disputable. For example shear
verification in Eurocode 2 [64] for structural elements without shear reinforcement uses geometrical
reinforcement ratio, which implicitly accounts for dowel action. It is known that resistance of dowels
depends on cross-sectional stiffness of the individual reinforcement element. Also, for detailing
specifications (maximum/minimum reinforcement ratios), a general definition of cross-sectional area
for mixed reinforcement would be recommended.

The large-scale tests show that compatibility of impregnated textiles and CFRP bars is given.
While CFRP bars contribute large cross-sectional areas and thus high bending tensile resistance,
the distributed textile shear reinforcement bridges shear cracks efficiently. Short anchorage length
in compression and tension chords for the straight yarns are advantageous, while good bond and the
multitude of yarns produce a dense shear crack pattern. Yet, enabling the intersection of the dense
planar shear reinforcement and preformed stirrup reinforcement is challenging. With matched yarn
spacing of high-quality reinforcement, which is dimensionally accurate, it becomes possible for small
and medium-sized elements.

5.5. Prediction of Deflection

At serviceability limit state (SLS), a deformation at midspan of w = L/250 = 28 mm is permitted,
corresponding to the limit defined in [64]. To compare the quality of the calculation approaches,
the moment applied in the test at a deflection of 28 mm is used as input value for the deflection
calculation. A manual calculation with the method by Branson [76], a piecewise integration based on
the moment-curvature diagram and a non-linear FE-calculation with ABAQUS were performed.

In Equation (3), the adaption of the original Branson equation by Bischoff and Scanlon [77-79] for
calculation of the effective moment of inertia I, is given:

I
IE = cr ] < Ig fOT’ Mu > Mcr (3)

1=y - £

with:

y=172- 0.72( AA//IIZV ), Factor for structural system with continuous loads according to [78,79]

Iy and I, moment of inertia of cracked and uncracked section
My and M,, moment at first cracking and moment at SLS

The moment of inertia of the cracked section, I.;, was calculated considering all longitudinal
reinforcement layers including longitudinal yarns from shear reinforcement with their respective
lever arm. Using I, deflection in mid span is calculated with equations from linear-elastic structural
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analysis. The moment at first cracking has a large influence on calculation results. Thus, the accuracy
of the results depends to a large extent on concrete tensile strength. Eigen stresses (e.g., resulting
from drying shrinkage) need to be considered, as they reduce the first cracking moment. Table 6
shows the influence of M., on predicting deflection. Using tensile strength fct = 1.0 - fctsp as given
in Table 4 and the section modulus Wy of the uncracked cross-section, the theoretical moment at
first cracking is 111.3 kNm. Bischoff and Gross [79] propose a reduction to 80% to account for eigen
stresses. As FT01 was pre-cracked, no experimental first cracking moment could be determined.
Employing uncracked specimen FT03, the ratio of experimental to theoretical first cracking moment
results in 57.6%. Applying this reduction to calculation for FT01 and FT02 gives the best results.
The prediction for higher reinforced FT02 with its smaller ratio of Ma/M is less affected by changes of
My, which is in accordance to statements in [80].

Results of the second calculation method by piecewise numerical integration with Simpson’s
rule based on moment-curvature (M-k) relation are given in Table 6 (center). The theoretical M-k
curve (Figure 16) is derived using material characteristics and geometrical properties of cracked and
uncracked section. The four points defining the yellow curve in Figure 16 (x = k, y = M) are P0 [0|0],
P1[0.576% - Mcr / (Eem - Ig) | 0.576% - M|, P2 [1.3 - 0.576% - Mcr / (Eem - Ier) | (1.3 - 0.576% - Mcr)]
and P3 [My,cal / (Ecm - Ier) | Mycall. M-k experimental is taken from strain gauge measurements at the
compression chord and strains in the tension flange determined by LVDT (D9C and Bi2 in Figure 3).
Both calculations yield good predictions of the obtained experimental values. Taking into account
shear strains would further improve prediction of deflection quality. However, the results also rely on
a realistic estimate of first cracking moment.

Table 6. Prediction of deflection with Equation (3), with M-k-relation and with FE-model.

Branson/Bischoff M-k theor. M-k exp. ABAQUS
No. Mexp Wexp Ier M, Y Ie Weale Wealc Wealc Weale
[kNm] [mm]  [em*] | [kNm] [-] [em?] [mm] [mm] [mm] [mm]
115.5 1.35 152,248 19.9
(100%) (—28.9%) *
924 142 133,463 22.7 28.2 25.7 25.6
FTO1  229.7 28 106334 | go0 (C18.9%)* | (+07%)*  (-82%)* | (-86%)*
66.6 1.50 119,666 25.3
(57.6%) (~9.6%) *
105.4 1.56 288,145 229
(100%) (~18.2%) *
84.3 1.59 283,616 23.3 23.9 23.3 26.1
FT02 5157 28 275512 | (go0, (C168%)% | (C146%)*  (<167%)* | (-6.6%)
60.7 1.63 279,742 23.6
(57.6%) (-15.7%) *

* deviation to the experimental deflection of 28 mm.

Finally, non-linear FE-analysis was employed to predict the deflection of SLS (Table 6, right column).
Quality of all results depends mainly on material input values. Over-estimation of first cracking load
for FT01 and FT02 can be explained with eigen stress from dry shrinkage and shrinkage cracks.

For prediction of deflection in practice, all three methods seem suitable. Especially the easy-to-use
hand calculations based on simple mechanical relations allow for quick and realistic estimates of
deflection, if the reduction of tensile strength by eigen stress is considered. However, for verification of
long-term deflections, a reduced modulus of elasticity for concrete should be considered accounting
for creep strain.

5.6. Ultilization Ratio of Carbon Bars—SLS to ULS Reserve

CFRP reinforcement is costly, and thus a high utilization ratio of material strength is a major goal.
High utilization means that reinforcement necessary for satisfying SLS deflection limits is utilized
in ULS up to design strength. This discussion is known from high-strength steel in conventional
reinforced concrete, which is usually utilized in flexural members only for prestressing.
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Figure 16. Theoretical and experimentally obtained M-k curve for FT01 (left) and FT02 (right).

Based on strain gauge measurements in specimen FT01, the main CFRP bar reinforcement in SLS
(at 28 mm short-term deflection) was utilized at 542 MPa, 30% of mean CFRP material strength.
In design, the strength reserve of 70% is required for incorporation of time-dependent material strength
reduction coefficients and material and load safety factors (SLS to ULS reserve).

In specimen FT02 which was designed for flexural compression failure, strain measurements
show that the reinforcement was subjected to at a lower stress of 450 MPa (25% of material strength).
As the outermost reinforcement at ULS was strained only up to 6.74%o (1115 MPa), overall utilization
ratio of reinforcement for FT02 is lower than for FT01. This ratio would further decrease if deflection
in SLS increases through creep of concrete. The comparison of the reinforcement layout of both
beams indicates that design for flexural compression failure while maintaining deflection limits is
cost-intensive with non-prestressed reinforcement. The obvious solution for this case would be to apply
low-level prestressing, staggered over the height of the beam to arrive at the same strain in ULS in all
layers. Thus, strain reserves are preserved to account for necessary increase of reinforcement strain
between SLS and ULS loading (see also recommendations in [81]). Meanwhile, eccentric pretensioning
increases precamber and thus reduces sag in SLS.

The discussion which failure mode is more ductile, flexural tension or flexural compression
failure, and thus favourable for design of CFRP reinforced structures is ongoing and not pursued
in detail here. The authors are convinced that maintaining a sufficient strain and deflection reserve
combined with pronounced cracking during load increase between SLS and ULS (as seen for the
beams in this study) might serve as adequate announcement of failure. This can be interpreted as
a ductile structural behaviour despite the brittleness of failure of CFRP and high-strength concrete
in material tests. It could be an acceptable substitute for yielding of main steel reinforcement, which
may lead to a similar deflection, large crack widths and eventually a ductile post-peak load behaviour
for conventional reinforced beams with flexural failure. In this context, high-level prestressing of
principal CFRP reinforcement for beams is not recommended, as it prevents pronounced cracking
prior to failure of main reinforcement.

6. Conclusions

In this study, three large-scale I-beams with mixed CFRP and textile reinforcement were tested to
failure. Evaluation of results, accompanying numerical analysis and theoretical discussion led to the
following conclusions:
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e  Production of beams with CFRP and textile reinforcement is feasible with methods available
in precast production plants.

e Impregnated textile CFRP grids are well suited as shear reinforcement for I-beams with large
effective depth, creating a dense crack pattern and bridging shear cracks efficiently. Through their
short anchorage length, straight yarn ends were suitable to anchor shear reinforcement in tension
and compression chord.

e  Compatibility of CFRP bars and CFRP textiles is given when strain limits of different reinforcement
types are considered in design. Premature rupture and premature spalling of concrete needs to
be prevented.

e  Calculation of ultimate load at bending failure with variation of linear strain distribution and
with geometrical and physical non-linear FE-calculation delivers accurate results.

e  Prediction of deflection with existing hand-calculation methods derived for steel- or FRP reinforced
concrete is feasible if realistic tensile strength is assumed, accounting for eigen stress caused
e.g., by concrete shrinkage. FE-calculations are suitable for SLS, as well.

e  Shear failure of compressive struts of specimen FT02 can be explained through further reduction
of compressive strength by dense textile reinforcement in the web compared to the reduction
factor v; from [64] assumed in design.

e  Beam FT03 with 500 mm planar splice of the main reinforcement in mid-span failed prematurely
at about 53% of the identical beam FT01 without splice. Splitting of concrete cover in the plane of
pre-formed stirrup reinforcement was identified as failure mechanism. Pre-formed open glass
FRP grids were inadequate for an effective lateral confinement of the splice.

Future research should focus on detailing specifications for mixed CFRP bar/textile reinforcement.
Studies on staggered prestressing might increase utilization ratio of CFRP reinforcement. Shear design
models accounting for contribution of distributed textile shear reinforcement and concrete are to
be developed in the future. Additional experimental studies on beams with large effective depth
dimensioned for shear failure are required for this purpose.
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