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Featured Application: The paper shows that the additional layers of historical changes of
software metrics from previous software releases contributes to a better prediction of future
software maintainability.

Abstract: Software maintenance is one of the key stages in the software lifecycle and it includes a
variety of activities that consume the significant portion of the costs of a software project. Previous
research suggest that future software maintainability can be predicted, based on various source
code aspects, but most of the research focuses on the prediction based on the present state of the
code and ignores its history. While taking the history into account in software maintainability
prediction seems intuitive, the research empirically testing this has not been done, and is the main
goal of this paper. This paper empirically evaluates the contribution of historical measurements of
the Chidamber & Kemerer (C&K) software metrics to software maintainability prediction models.
The main contribution of the paper is the building of the prediction models with classification and
regression trees and random forest learners in iterations by adding historical measurement data
extracted from previous releases gradually. The maintainability prediction models were built based on
software metric measurements obtained from real-world open-source software projects. The analysis
of the results show that an additional amount of historical metric measurements contributes to the
maintainability prediction. Additionally, the study evaluates the contribution of individual C&K
software metrics on the performance of maintainability prediction models.

Keywords: machine learning; software maintainability; maintainability index; maintainability
prediction; software metrics; history of software releases

1. Introduction

Modern societies are highly dependent on complex, large-scale, software-intensive systems
that operate increasingly within an environment of continuous availability, which is challenging to
maintain and evolves in response to the inevitable changes in stakeholder goals and requirements of the
systems [1]. Such software products undergo constant change to adapt to a changing environment [2].
Therefore, software evolution is an important aspect in the field of software development that has to be
addressed properly [3]. Among other aspects of software quality, software evolution is addressed in the
process of quality assurance, which represents the set of activities carried out to ensure that the system
has sufficient quality [4]. Consequently, one of the essential objectives of software engineering is to
develop techniques and tools for high-quality software solutions that are stable and maintainable [5].
Software maintainability is one of the most important aspects when evaluating the quality of a software
product [6] and is one of key stages in the software development lifecycle [7].
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Usually, software maintenance includes activities related to modifications of a software product,
such as corrections, improvements or adoptions of the software to changes in the environment,
requirements, and functional specifications [8]. As such, software maintenance is an expensive activity
that consumes a major portion of the cost of the total project [9]. According to studies, it has been
observed that, for the entire life cycle of the software product, only 30—40% is consumed in development
and about 60-70% is consumed in the maintenance of the product in terms of resources, time, money,
and effort [10,11]. The efficiency of the maintenance phase depends largely on factors related to
documentation and programming quality, system requirements, personnel resources, and process
management [12]. Considering all these factors, the maintainability of a software product is, in general,
defined as the ease with which a software system or component can be modified to change or add
capabilities, correct faults or defects, improve performance or other attributes, or adapt to a changed
environment [8]. In short, there is a belief that high-quality software is easy to maintain, so minimum
time and effort is needed to fix the faults [7,13].

The software maintainability estimation is an important aspect of the project planning which
involves the determination of a number of factors, including duration, staff, size, cost, and effort to
guarantee the control of the maintenance process and reduce the risks and the inefficiencies related
to the maintenance work [13-15]. The key challenge with software maintainability measurements is
that maintainability cannot be measured directly [14]. For example, the ISO/IEC 25010 standard [16]
specifies software maintainability as one of eight high-level quality characteristics of the software
quality. The maintainability of a software product, as defined by the ISO/IEC 25010 quality model,
consists of five further sub-categories, namely, modularity, reusability, analysability, modifiability, and
testability. A variety of software quality aspects involved in the software maintainability assessment
process make the process difficult to measure accurately in its natural environment. Since it is difficult
to measure maintainability directly, researchers and practitioners often use various product metrics as
their indicators [17]. The approach is based on observing the effect of different code-level software
metrics on maintainability by collecting maintainability data using indirect schemas, such as fault data
during system testing, development effort, and maintenance data through subjective evaluation of
software [18]. Besides code-level maintainability measurements, researchers and practitioners use a
variety of alternate approaches, e.g., effort, duration, and costs [15].

In the paper, we aim to demonstrate the performance of maintainability prediction models built
on different amounts of historic measurements of software metrics. The goal was not to optimise the
prediction models, but to research if additional historic software metric measurement data contribute to
the its performance. Initerations of the experiment, we built software maintainability prediction models,
whereby each iteration added a layer of software metrics measurements of precedingly released versions
of a software project. In the study, we aimed to verify the performance of software maintainability
prediction models improved by version-to-version changes in software metric measurements. To
achieve our research goals, we followed an example of other similar studies in the field of software
quality management, e.g., the study conducted by Kaur and Mishra [2]. Instead of relying on single
release measurements of a software product, our approach considers a history data of software metric
changes through time. As in the work of Reddy and Ojha [19], the maintainability of the software
projects used in the study was assessed by the maintainability index. Given the above assumptions,
we have raised the following research questions:

RQ1: How do additional layers of software metric measurement data contribute to the performance
of future software maintainability prediction?

RQ2: Which software metrics from the C&K metric set have a strong impact on the performance
of future software maintainability prediction?

To answer the research questions, we experimented on open-source Java-based software projects
with publicly available release history. Based on the related work, we assessed the internal quality of
the software projects with the C&K metric set. Since the historic software metrics data measured on
previous releases of software provide additional information to machine learning or statistical models,
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it is intuitive to assume that this additional information will contribute to more successful prediction
models. To verify this assumption, software metric measurements extracted from preceding releases of
software components were added to the maintainability prediction model gradually to verify whether
they improved the prediction.

The contributions of this paper are the following:

e  Application of machine learning techniques to future software maintainability prediction.

e Investigation of the impact of historic software metrics measurement from previous releases on
the future software maintainability prediction.

e Investigation of the impact of individual C&K software metric changes between historic software
releases on the future software maintainability prediction.

The remainder of this paper is structured as follows. First, in Section 2, we start with an overview
of the basic concepts regarding maintainability prediction models and software evolution analysis.
Section 3 introduces a brief literature overview of related works. Next, we outline the data collection
and preparation process in Section 4. Additionally, in Section 4 we describe the design of the experiment.
The results of the research are displayed in Section 5. The discussion, including the threads to the
validity of our research, is presented in Section 6. Section 7 concludes the paper and shows the direction
for future work.

2. Software Metrics and the Maintainability

The relationship between software design metrics and their maintainability has been proposed
and validated by many researchers [6,9]. Based on the empirical study by Malhotra and Chug, it has
been established that the quality of the software design, as well as code, is very important to enhance
software maintainability [9]. On the code-level, software metrics play the most significant role in
building predictive models of software maintainability [14]. Although researchers have proposed
different software metric sets, care should be taken in their selection. Namely, the performance of the
software maintainability prediction depends on choosing the right software metric or set of them.

Software size has, typically, been considered as a key attribute of several software products,
including object-oriented classes [20], usually measured by counting the number of lines of code
(LOC). Besides the measure of size, early structural measurements included complexity measures
by McCabe [21] and Halstead [22]. With the shift towards the object-oriented paradigm, additional
attributes of the internal quality of software systems came to the fore.

Due to object-oriented paradigms, specific concepts like classes, objects, inheritance, and
encapsulation [23], practitioners started giving importance to the design rather than code aspects of
projects, such as coupling, cohesion, polymorphism, and inheritance [9]. In line with the object-oriented
paradigm, researchers Chidamber and Kemerer [24] presented the theoretical work to define a set of six
software metrics (known as the C&K metric set) that can be used for assessment of software internal
quality: DIT, WMC, NOC, CBO, RFC, and LCOM. Table 1 provides a list of C&K software metrics with
their detailed descriptions. Because all software metric measurement tools do not provide C&K metric
measurements out-of-the-box, Table 1 additionally provides its counterparts as measured by the tool
JHawk, which was used in this study. The proposed set of metrics was later revised by Kitchenham [25]
using the metric-evaluation framework and criticised in some aspects. Based on the C&K metric
set and the findings of Kitchenham’s work, Li [26] proposed an enhanced set of alternative metrics,
presented in the following paragraph. Despite critics [25,27,28] for several reasons, e.g., the software
metric selection controversy and language binding, the set of measures proposed by Chidamber and
Kemerer is probably the most popular predefined set of measures [9,29].
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Table 1. The Chidamber & Kemerer (C&K) software metrics and their alternatives in JHawk.

C & K Software Metrics JHAWK Counterparts
Metric Description Metric Description

The number of classes to which A measure represents the number of all
CBO . CBO

a class is coupled. classes coupled to a class.

Level for a class within its class A measure represents the number of
DIT . DIT . .

hierarchy. classes that a class inherits from.

A measure of the correlation between the

The average percentage of methods and the local instance variables

methods in a class using each

LCOM . LCOM of a class. The measure follows the
data filed in the class subtracted . . .
from 100% definition of the LCOM metric revised by
’ Henderson-Sellers [30].
NOC The number of immediate NSUB (Subclasses) The numl?er of .all. the c_lasses that have
subclasses of a class. this class in their inheritance tree.
A summary of the complexity of a class in
terms of method calls. The value is
Count of methods implemented calculated as a sum of the number of
REC within a class plus the number REC methods in the class (excluding inherited
of methods accessible to an methods) and the number of distinct
object class due to inheritance. method calls made by the methods in the
class, whereby each method call is
counted only once.
A summary of the complexity of methods
in a class that is calculated from the
. . number of logical branch points (e.g.,
WMC Count of methods implemented =~ TCC (Total Cyclomatic conditional statement if, switch, for,

within a class. Complexity) while and catch) in the method, whereby

method itself is counted as one logical
branch point.

In their study, Li and Henry [31] revised the software metrics suite proposed by C&K in the
context of maintainability assessment of software systems. Based on the findings of the study, they
proposed a metrics set of 10 object-oriented metrics that are suitable for maintainability assessment;
five of the metrics came from the C&K metrics set, and the additional five metrics they proposed
by themselves, namely MPC, DAC, NOM, SIZE1, and SIZE2. The proposed metric set preserved all
metrics from the C&K metric set except the CBO metric. Besides the C&K metric set, the L&H metric
set is the most commonly used one in empirical validations [9].

Several approaches use polynomial functions to aggregate multiple measurements into one single
number [32]. One of the first approaches suggested and validated was the maintainability index
introduced by Oman [33]. One of the compound metrics defined in the early 1990 s which aimed to
have achieved that goal was the maintainability index which represents the relative ease of maintaining
the software code [19]. The value of the maintainability index is computed from the composition of
values, including measures of effort and complexity, i.e., McCabe’s cyclomatic complexity [34]. This
maintainability index has evolved into numerous variants, as regards the metrics and weights used in
a formula.

Predicting Software Maintainability

In general, software maintainability depends on various aspects of software modification, including
correction, improvement, efficiency, and prevention [14]. The inability to measure maintainability
directly and holistically remains the open challenge of software maintainability measurement.
Additionally, the lack of a uniform definition of maintainability throughout different quality models
leaves room for a variety of measurement approaches. Several prediction models have been proposed
by researchers that measure software maintainability through indirect measures, such as change,
maintainability index, and change proneness [14]. The indirect maintainability measures combined with
a variety of software metrics that capture the quality of software’s internal quality, represent efficient
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input for either statistical or machine learning algorithms to make useful prediction models. To establish
a relationship between software design metrics as the independent variable and maintainability as
the dependent variable, various techniques have been practised in the last two and half decades [9],
including statistical algorithms, machine learning algorithms, nature-inspired techniques, expert
judgment, and hybrid techniques [6,19].

In 1993, researchers Li and Henry [31] proposed a prediction model that estimated the
maintainability of the software system based on the change metric, which was introduced as a
measure of maintenance effort. Paper shows that more frequent changes, reflected in higher values of
change metric, indicate lower maintainability of the software. Based on a change metric and a set of
L&K metrics, the maintainability prediction model was built with the use of a multivariant regression
analysis model. Based on Li and Henry’s metric suite Aggarwal [35], and later Dubey [36], proposed
additional models based on artificial neural networks. In a similar work, Jha et al. [37] explored the
use of a deep learning model in the maintainability prediction based on a measurement of 28 software
metrics and dependent variable of number count of added, deleted, and modified lines of code in a
class. The results of the experiment confirmed the efficiency of the proposed deep learning model for
software maintainability prediction.

The research of Oman and Hagemeister [38] proposed the maintainability index, a single-valued,
composite metric calculated from software size and complexity metrics [14]. The study conducted
by Coleman and Ash [39] demonstrated the usability of maintainability index-based maintainability
analysis in software-related decision-making. The initially proposed maintainability index model
underwent an evolution, and was fine-tuned over time. As more data became available from varying
industrial sources, a greater degree of confidence developed in the fit of certain metrics. As a result, the
original single, four and five-metrics models gave way to three and four-metric maintainability index
models [40]. The four-metric maintainability index model, compared to the three-metric maintainability
index model, includes an additional metric qualifying the quality of the comments in the code. In
case comments in the code do not contribute to the maintainability significantly, for example, due to
the self-descriptiveness of the code, the three-metric maintainability index model is preferred [40].
While the metric has been used frequently in the past by practitioners and academics, no study has
shown empirically that the metric can be applied to assess the maintainability of object-oriented
code [34]. Although the maintainability index was criticised heavily for this reason [41,42], according
to the systematic literature review performed by Alsolai and Roper [14], the proposed alternatives
did not reach general acceptance. The maintainability index formula used in the study is depicted in
Equation (1).

The software maintainability prediction model used in work conducted by Elish et al. [43], and
Malhotra and Khanna [44] is based on the change proneness of the class. The change proneness is
defined as the likelihood that a change would occur in a class after the release of the software [45,46].
A value of change proneness is a Boolean attribute, which means it allocates a state “true” in case the
class is likely to change, and state “false” in case a class is unlikely to change in the future. According
to the definition of the change proneness, any insertions, deletions, or modifications of program code
between two investigated software product versions is considered a change. To allocate a “false” value,
the observed class does not undergo any change during the evolution of the software product. On
change, the proneness-based maintainability model takes the change process as a dependent variable,
whereas measures of the C&K metric suite are taken as independent variables.

3. Software History as an Indicator

The research of the software evolution through the time perspective has been the subject of many
studies. The most relevant for this study will be presented below.

In their study, Gezici et al. [47] conducted multiple case studies to explore the characteristics
of mobile applications through their evolution. In the study, a total of 105 releases of 6 mobile
applications were analysed in detail. The characteristics of software evolution were observed through
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internal quality, external quality, and relations between these two. The evolution of internal quality
attributes throughout releases of studied software was explored through three laws, namely Lehman’s
Increasing Complexity, Continuous Growth, and Decreasing Quality. In the study, the external quality
was analysed by adopting DeLone and McLean’s model [48] of information system success, and
measuring community-based metrics collected from the repositories GitHub, SourceForge.net, and
SimilarPlay store. Based on the collected data corresponding success, an index was derived for each
mobile application.

In a similar work, Frantz et al. [49] addressed the challenge of choosing the most appropriate
integration framework on the market. In the article, researches review the newest stable versions
of four open-sources integration frameworks by analysing how they have evolved regarding their
adaptive maintainability over the last five years. In the research, change of maintainability was
calculated exclusively between the newest stable version of the software product and the release
published five years ago. Intermediate releases were not subjected to the study. The maintainability
was assessed holistically through 25 software metrics, divided into four groups that cover a wide range
of quality attributes of a software product, namely size, coupling, complexity, and inheritance. The
maintainability of a software product was assessed as a positive or negative change in individual
observed software metrics.

Kaur and Mishra [2] investigated cognitive complexity as a quantifier of the version to version
change-proneness of Java files. The study aimed to test if cognitive complexity is analogous, or even
superior, for change-proneness prediction in comparison to some of the other similar previously
introduced complexity and change-process prediction measures. As part of the research, an empirical
experiment was conducted with multiple successively released versions of two Java-based software
projects. The cognitive complexity of Java files has been calculated as consistent with the cognitive
weights of its basic control structures.

In their study, Liu et al. [50] introduced the historical sequence of metrics (HVMS), a structure of
joined metrics that highlights the sequential information of file’s changes across versions. The HVMS
was used for building the defect prediction model. The HVMS is defined for a particular source file
in an observed software product and can be of any length. Consequently, on the level of a specific
software project, a specific HVMS is defined for each source file in the project. The aim of the study was
to extend the ability of current code metrics and process metrics-based prediction models, that describe
the software module’s change over the project evolution incompletely. The HVSM highlights the
historical trend that files change in a version sequence. The study shows achieved better performances
of defect prediction models.

Farago et al. [51] studied how some of the version control history-based metrics affect the
maintainability of the source code. The main motivation of the researches was to investigate the effect
of the development process on the maintainability of the program code. Namely, the authors of the
study observed changes in cumulative code churn, the number of modifications, ownership, and age
throughout studied successive versions of the software. For the study, four Java-based open-source
software systems were included in the survey, namely Ant, JEdit, Log4], and Xerces. For each software
product, 2-5 successive releases were analysed.

In their study, Pati et al. [3] applied machine learning strategies for temporal analysis of software
clone evaluation using software metrics. The focus of the research was to investigate how cloned
code fragments, which are, according to the previous studies, considered as a bad smell, affect
software quality and maintainability. The authors proposed the modelling approach to the evolution
of clones in the software applications. Additionally, they also proposed the model for the prediction of
cloned components in subsequent versions of the software. The experiments were conducted on the
open-sourced project ArgoUML, for which 19 sequential versions were obtained.

Furthermore, Javed and Alenzi [5], in their empirical study, researched the evolution of two
Java-based open-source software products in the context of defectiveness of the observed software. In
the study, the authors obtained four releases of Ant and six releases of jEdit software. For each release
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of the software product, 19 software metrics were calculated, assessing four dimensions of the internal
software quality of the studies released, namely coupling, cohesion, inheritance, and product size.
The study confirmed the correlation between good design of software and fewer number of detected
defects. Additionally, the study outlined the varying of the number of defects over the studied releases,
whereby the study detected the decrease of defects over time.

In their study, Chawla and Chhabra [52] proposed a quantitative framework for integrated
software quality measurement in multi-version systems. The proposed framework aims to establish
the measurement framework for ascertaining the relative progression of observed software quality
attributes with each successive release. Additionally, the proposed approach can be used to validate
the trend analyses of software metrics. In the study, the researchers compared trends of change
density, defect density, and vulnerability density with the measured high-level software quality
attributes proposed by the QMOOD quality model over the evolution of the studied software
product. The experiment was based on four random successive releases of the seventh version of
the open-sourced Tomcat server, whereby measured software quality attributes include reusability,
flexibility, understandability, functionality, extendibility, and effectiveness.

In their study, Kaur et al. [53] studied the relationship between code smells and maintainability
problems, the change-proneness of software modules in particular. Among others, the researchers
aimed to discover which machine learning techniques predict change-prone modules in mobile
application software the most accurately, and which predictors of change-proneness are better, code
smells or static code metrics. For the study, the change-proneness of a Java-based mobile application
named MOVAC were studied throughout four releases of the software.

Several of these studies addressed the assessment of changes in different quality attributes over
time. Our focus of research in this paper is directed exclusively toward the maintainability of software
products, whereby studying the maintainability change over time is not our primary objective. Rather,
we observe how different amounts of historic software metric measurements extracted from previous
releases of a software project contribute to the prediction performance of the software maintainability.
A summary of related works is shown in Table 2.

Table 2. A summary of related works.

. No. of . Observed
Author of the Study Year  No. of Projects Versions Measured Metrics Attribute
Gezici et al. [47] 2019 6 Ir'mb%le 105 versions in C&K, LOC, No. Classes Success index
applications total
4 integration 2 versions for . . .
Frantz et al. [49] 2019 frameworks each project (5 25 soffcware metr1cg (softwgre peruct, namely size, Change in )
. coupling, complexity, and inheritance) observed metrics
projects years apart)
. . . C&K metric suite, McCabe’s Cyclomatic
. 2 java-based 8 versions in . Change-proneness
Kaur and Mishra [2] 2019 roiects total Complexity, of Java classes
pro] Cumulative Halstead’s effort
20 software metrics (including the common
used LOC in addition to the other 19 metrics
suggested by Chidamber&Kemerer,
Liu et al. [50] 2018 9 java projects 34 versions in Hen({lerson—Sellers, Bansiy and Davis, Tang et al., HVSM
total Martin, and
McCabe),
4 process metrics
(ADD, DEL, CADD, CDEL)
4 open-sourced 14 versionsin  Attributes of probabilistic software quality model Relative
Farago et al. [51] 2015 . maintainability
projects total ColumbusQM .
indexes
Pati et al. [3] 2017 1 ’Zval'ft’ased 19 version WMC, NSC, NORM, NOE, Number of code
anetal o e op VErsIOns - NSE, NOM, NSM, NOC, NOL NOP, MLOC clones
application
. 2 open-sourced 10 versionsin 19 software metrics covering coupling, cohesion, Number of
Javed and Alenzi [3] 2016 projects total inheritance, and product size. detected defects
Chawla and Chhabra 1 open-sourced 4 randomly some software metrics (such as CBO, DIT, WMC, Attributes of the
2016 web server . QMOOD quality
[52] . chosen versions NOC, etc.)
project model
. 18 software metrics (size, complexity, g
Kaur et al. [53] 2016 ! m_obl_le 4 versions encapsulation, inheritance, cohesion, coupling, Change-proneness
application of a class

abstraction) + code smells
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4. Predicting the Change of Software Maintainability with the Historical Software Metrics

Many of the studies listed in an overview of related works examine different aspects of software
quality through a time perspective. To predict potential risks that stem from the insufficient software
quality accurately, temporal perspective gives a more holistic view on the state of software quality of a
software product. Namely, the dynamics of software quality changes in the past set a solid foundation
for the prediction of the software maintainability trends in the future. The latter can indicate the
progression of software quality attributes’ erosion related to long-term software product sustainability,
which, from the technical viewpoint, refers to the longevity of information, system, and infrastructure,
and their adequate evolution within changing environmental conditions, which covers inter alia,
system maintenance, obsolescence, and data integrity [1]. The motivation behind this research is to
investigate how additional data on quality attribute measurements obtained from previous releases
influence the predictive ability of software maintainability prediction models.

To answer our research questions about the ability to predict the maintainability change in the
future from the historical changes of software metrics, we performed the experiment, where we
analysed multiple widely used open-source projects. The following sections describe the whole
methodology of the experiment, from the data collection, data preparation, application of prediction
machine learning methods, and the analysis of the results.

4.1. Empirical Data Collection

To support our empirical research, first, we generated a dataset based on publicly available
Java-based open-source software components. To study the maintainability prediction model based
on software metric measurement history of studied software products, multiple releases of software
products needed to be obtained and analysed. To get the multiple versions (source codes and build
sources) of popular open-source projects, the Maven Repository [54] was chosen as the source of the
projects. The Maven Repository is the de-facto standard remote repository that holds built artefacts
and dependencies of varying types. According to the statistics obtained from the official web page, the
repository held 16.3 million software components by February 2020. Besides binaries, the majority
of software artefacts in the repository are equipped with corresponding source code, and had to be
obtained to get all of the needed software metrics. A key advantage of the Maven Repository over other
similar software project repositories is in its clear and well-defined structure, which is a prerequisite
for automated processing of the analysed software components. Consequently, all project sources
required in the study were obtained and processed automatically without any manual processing.
Figure 1 presents the process of obtaining the software projects with all corresponding data from the
Maven Repository.

Maven List of 40

. i projects
only final repository
releases
source code

bmar es
Software project M :

_________ @ @._.ﬁ._.

; previous release pfeVIOUS release prewous release current release
R-18

19 releses

Figure 1. The process of obtaining the software projects from the Maven Repository.
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The list of software components used in our research is based on the official list of the widely used
projects of the Maven Repository. To obtain the widely used projects of the Maven repository, we used
the official list of popular projects [55], obtained in November 2019. With the use of the list of popular
projects, we avoided the dilemma which projects were suitable to choose out of the many published in
the Repository. Project selection was based on basic attributes, e.g., the number of downloads, number
of lines of code, can be a very subjective task. Previous research shows no statistical variation in the
software quality of popular open-sourced projects [56]. From the list, we extracted software projects
that had at least 19 releases, excluding all alpha, beta, and pre-release versions, which were, due to
their incompleteness, not included in our research. When removing all projects from the list that did
not include a sufficient number of releases, we continued our analysis with 40 software projects. This
number of projects included in the study was compromised between the length of a chain of consecutive
releases, and the amount of collected data required for the machine learning-based analysis. The
larger number of projects used in the study means shorter chains of consecutive releases, which would
result in fewer iterations of the experiment in our study. For research purposes, the final project data
contained only projects with at least 19 final releases available in the Maven Repository, which was also
one of the inclusion criteria for the analysed projects. When determining the scale of releases included
in the study, we followed the example of other similar studies, e.g., the study of Pati et al. [3]. For each
release of software projects from the list, we obtained the source code, which was the foundation for
further analysis. Only Java source files were considered in the obtained source code.

The analysis of projects by size reveals the diversity of projects included in the study. The gathered
project source codes varied in size and scope. The size of the project is assessed by the NLOC (Number
of Lines of Code) metric. NLOC is defined by the JHawk tool as any non-blank line in a code file that is
not a comment [57]. The smallest project in the dataset contained 382 NLOC written in 8 classes. On
the other hand, the largest project in the dataset contained 266,456 lines of code written in 4397 classes.
On average, the gathered projects contained 35,601 lines of code in 494 classes. The statistics based on
the size of the projects in the dataset are depicted in Table 3, and the distribution of the projects by
lines of code is depicted in Figure 2. Dataset characteristics regarding the size of the projects can be
found in detail in Appendix A.

Table 3. Descriptive statistics about the size of analysed projects.

NLOC No. Classes
Average 494 35,601
Median 322.5 23,163
Standard Deviation 753 54,006
Minimum 8 382
Maximum 4397 266,456
Size of the projects [NLOC] Distribution of the projects by NLOC
300,000 12
250,000 10
200,000 8
150,000 6
100,000 4
L Lo bl doe 0, WH [] -
o 1ok 1% a0 a5k s0c sk aoc dsk sok  sske
(a) (b)

Figure 2. (a) The sizes of the projects in NLOC, where project IDs from Appendix A are on the x-axis.
(b) The distribution of projects by size.
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The maximum number of releases obtained in the dataset used in the study was 50, which was
restricted by querying the repository. On average, the dataset contains projects with a history of a total
of 38.88 releases. The statistics, based on the number of versions and periods between releases of the
projects in the dataset, are depicted in Table 4. On average, 83.45 days passed between individual
releases of software components included in the dataset. The shortest period between releases of
the projects was 19.2 days and the longest 259.9 days. The distribution of the projects by the period
between releases is depicted in Figure 3. Dataset characteristics regarding the number of releases and
periods between releases of the projects can be found in detail in Appendix B.

Table 4. Statistics based on project version and release periods.

No. of Versions Days between Releases
Average 38.88 83.45
Median 39.00 78.09
Standard Deviation 8.84 45.66
Minimum 19.00 19.22
Maximum 50.00 259.89
14
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Days between relaeses

Figure 3. The distribution of periods between releases of all projects in the experiment.
4.2. Software Metric Measurements Used

After preparing the dataset of projects, the internal quality was assessed of individual releases
of studied software components in the dataset. Similar to the work of Gezici et al. [47], the internal
quality assessment of the projects in our study was based on the C&K set. According to the findings of
the systematic literature review conducted by Jabangwe et al. [58], 79% of primary studies covered in
the study rely on the C&K metric set when assessing the internal quality of software components. For
the task, the JHawk software [59], static code analysis and metric measurement tool were applied to
measure software metrics and maintainability of the source files. The JHawk tool was chosen because it
provided all the necessary software metric measurements. At the same time, it is a tool used commonly
in related research [2,34]. The JHawk tool in version 6.1.4 was applied for the study.

In the study, the analysed releases of the projects were scanned through for Java classes. For
each class found during the scan process, all class level software metrics provided by the tool were
measured. Further, the C&K software metrics (or their equivalents) and the maintainability index of
the classes were extracted. To avoid manual work during the process, the automation was achieved by
the application of the console version of the tool.

Since the JHawk tool does not provide all the software metrics from the C&K metric suite
out-of-the-box, some of the metrics in the suite had to be replaced by the equivalents provided by
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JHawk. Instruction for the software metric alternatives can be found in the documentation published
on the homepage [60] and the official documentation [57] of the tool. The software metric NOC was
replaced by the software metric Subclasses (NSUB), where the only difference between both software
metrics is in the name. According to the JHawk’s documentation, the WMC metric can be substituted
by software metric number of methods (No. of Methods), which counts the total number of methods
in a class, or total cyclomatic complexity (TCC), which represents the sum of complexity of methods in
a class. Following the tool guidance, software metric WMC was substituted by TCC, since it expresses
the complexity of a class more accurately.

Similarly, the JHawk tools offers two versions of the maintainability index. The first version denoted
with MI (maintainability index) follows the four-metric calculation formula, which considers the
appropriateness of program code comments. The second version, denoted as MINC (maintainability
index no comments), follows the three-metric calculation formula, which ignores the quality of
comments in a program code. Based on the studies found in the literature, the maintainability
index used in our study was based on the three-metric formula (MINC). Modern approaches in
software engineering advocate the self-expressiveness of the program code, and push the consistency
of commenting in the background [61]. Whereas we have included current software in the dataset,
it is assumed that the software coding follows the above guidelines. The characteristics of the
maintainability were quantified through the following equation:

MINC = 171 - 5.2In(aveVol) — 0.23aveV(g) — 16.2 In(aveLOC) 1)

where aveVol, aveV(g), and aveLOC are the average Halstead’s volume metric, the extended cyclomatic
complexity per module, and the average number of lines of code. Since the primary aim of the
maintainability index metric is to determine how easy it will be to maintain a particular body of
code [62], the metrics are calculated at the class level, following the example of related research [63].

4.3. Data Pre-Processing

To use software metric measurements extracted from the dataset in the software maintainability
prediction models, the software metrics must be pre-processed additionally. As our research question is
about the impact of historical changes to the changes in maintainability, instead of direct measurements
of the software metrics, the changes in software metrics from version to version were used. Using the
absolute software metrics and maintainability measurements would limit the analysis only on projects
with similar values. Thus, we used the changes of these measurements, which broadens the validity
and applicability of the analysis to the projects with similar changes. Also, as we are researching the
changes in maintainability, again, only the changes, not the absolute values of the maintainability
index, were used in the analysis. More specifically, in the software maintainability change prediction,
we only analysed which changes in internal quality software metrics are the best predictor of changes
in maintainability. Hence, the changes in software metrics values and maintainability index between
consecutive releases were calculated, which is depicted in Figure 4.

The changes of MINC served to create a new dichotomic nominal feature, which represented the
direction of MINC change: (1) In the case where the maintainability index of a class has increased
compared to the same class in the previous release, the label was HIGHER, and (2) In the case of a
decrease of the maintainability index, the label was LOWER. This new feature served as the outcome
(dependent) variable in further analysis. All the classes where the MINC had not changed from the
previous version were removed from the subsequent analysis, as they did not provide the answer to
our research question on the change in direction of the maintainability of the software.
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Dependent vars. AN-1
ACBO,, = CBO,- CBO
Dependent vars. AN-2 ADITy . = DIT,- DITy
ALCOM,,., = LCOM,- LCOM,
ANSUB,, ; = NSUB,- NSUB,
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ATCC,,; = TCC,- TCC,
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Figure 4. The process of calculation of changes in software metric measurement values.

4.4. Methodology of Data Analysis

To analyse the prepared datasets and test the impact of historic software metric changes on
software maintainability change, we employed the Orange Data Mining tool [64] version 3.23, and
open-source data visualisation, machine learning, and data mining toolkit. The whole stage of data
analysis consists of part of the data pre-processing, the feature importance calculation, and the building
of maintainability change prediction models, as is depicted in Figure 5.

Based on the initial setup of the experiment, we calculated classification quality metrics and
feature importance scores. To test the prediction of the experimental model, the obtained results of the
test were compared to the result of a similar study performed by Jabangwe et al. [58]. The comparison
of results ensures the compliance of results returned by the research work with the previous studies of
other authors.

As described in the previous sections, the first stage of the experiment was the data collection,
preprocessing and filtering. Next, to test the impact of the past software versions, the experiment was
performed 10 times, where the number of prediction variables changed, from the most recent changes
only, to also the distant changes in software metrics. In the first iteration of the experiment, denoted as
N-1, it was tested how accurately can the change in MINC in the future, R-0 version, be predicted with
the use of the changes software metrics values extracted from the releases R-2 to R-1. The next iteration,
N-2, added additional software metric changes from R-3 to R-2 to the set of prediction variables. This
process was repeated until the last one, N-18, where the changes from the R-18 version to R-17 were
included in the prediction variable set. The process of sequential inclusion of the additional version
(and their software metric changes) is shown in Figure 6, and the details of individual iterations of the
experiment are described in Table 5.

Table 5. Details about iterations of the experiment.

Iteration Label A of Previous Releases Releases Considered
1 N-1 AR-1 2
2 N-2 AR-1 and AR-2 3
3 N-4 AR-(1-4) 5
4 N-6 AR-(1-6) 7
5 N-8 AR-(1-8) 9
6 N-10 AR-(1-10) 11
7 N-12 AR-(1-12) 13
8 N-14 AR-(1-14) 15
9 N-16 AR-(1-16) 17
10 N-18 AR-(1-18) 19
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Figure 6. The iterations of the experiment.
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Within ten iterations, the experiment included measurement data of up to 18 releases of the
studied software components. The iterations of the experiment stopped after 18 consecutive releases
included in the prediction model, as increasing the number of used consecutive releases would reduce
the number of software projects in the dataset suitable for the experiment significantly.

4.5. Maintainability Change Prediction

To test the possibility whether the changes in maintainability in future, not yet released, of the
version can be predicted from past changes in software metrics, we employed the machine learning
classification approach, where all of the JHawk provided C&K software metrics were used as the
prediction (independent) variables, and the class of the change (HIGHER/LOWER) was used as
the outcome (dependent) variable. In each N iteration of the experiment, 10-fold cross-validated
classification was performed with the use of the classification and regression trees (CART) [65] and
random forest [66] classification algorithms.

The software maintainability change prediction is a binary decision classification problem, which
has four possible outcomes: (1) true positive (TP) for correctly classified as MINC increase, (2) false
positive (FP) for incorrectly classified as MINC increase, (3) true negative (TN) for correctly classified
MINC decrease, and (4) false negative (FN) for incorrectly classified MINC decrease. Based on the
statistical analysis of the classification outcomes, several prediction model performance indicators can
be applied. In our study, we used the two most used classification performance metrics, classification
accuracy and F-score in the domain of software quality [67].

The CART decision tree was used with the limitation of the maximal three depth of value 100,
minimum numbers of instances in leaves with value 2, and prohibition of splitting subsets smaller than
5. In the experiment, the CART classification was completed when the majority reached a threshold of
95%. On the other hand, the random forest classifier was applied with 5000 trees and the limitation of
splitting the subsets no smaller than 5.

4.6. Feature Importance Calculation

The prediction variables of the classification models were ranked to answer the research question
about the most important software metrics and versions. With this, the importance of prediction
features was calculated, in their ability to contribute to the prediction of the maintainability change.
The aim of the ranking is two-fold. Firstly, the ranking can be determined in which software metrics
contribute to the success of the prediction model the best. Secondly, it can be determined what amount
of historic measurement data contributes significantly to the success of the prediction model.

The same 10 iterations of expanding set of prediction variables, described in the previous section,
were used in the process of feature importance calculation. In each iteration, the features (software
metrics in various historical versions) were ranked according to various ranking methods, and
according to their contribution to the success of the two classification models. The ranking was done
with the following ranking methods: information gain, information gain ratio, gini decrease, ANOVA,
x2, ReliefF, and FCBF [68]. Also, the inclusion of ranking with two classification models was used: Beta
coefficient of individual features in logistic regression, and the feature importance in random forest.
The ranking methods used in the experiment are described in detail in Table 6.

The feature importance ranks grouped by software metric, which reveals how much each software
metric contributes to the success of the prediction model. The results of both parts of the experiments,
the maintainability change prediction with classification and the feature rankings, are presented in the
next section of the paper.
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Table 6. The ranking methods used in the experiment.

Ranking Method Description

Information Gain The expected amount of information (reduction of entropy).

A ratio of the information gain and the attribute’s intrinsic information, which

Inf; tion Gain Rati . . - . .
frormation Lam BAUO 1o uces the bias towards multivalued features that occurs in information gain.

Gini Decrease The inequality among values of a frequency distribution.

ANOVA The difference between the average values of the feature in different classes.

2 Dep'eerence between the feature and the class as measured by the chi-square
statistic.

ReliefF The ability of an attribute to distinguish between classes on similar data instances.

FCBE An entropy-based measure, which also identifies redundancy due to pairwise
correlations between features.

Logistic Regression The logistic regression classification algorithm.

Random Forest Predict using an ensemble of CART decision trees.

5. The Results of the Experiment

The main goal of the study was to evaluate the contribution of this information to the performance
of software maintainability prediction models. The latter was achieved by increasingly adding changes
in the C&K software metrics measurements of historic releases to the maintainability prediction
model. The prediction model is based on the maintainability index which was measured by the MINC
software metric.

5.1. Impact of Historical Changes in Software Metric Measurements—RQ1

As described previously, the performance of the software maintainability prediction model was
observed through the series of iterations. In each of them, an additional layer of changes in the C&K
software metrics of historic releases were added to the software maintainability prediction models. To
evaluate the performance of the model in each iteration of the experiment formally, the models were
evaluated by two prediction model performance indicators, classification accuracy and F-score, for
both CART classification decision trees and random forest for classification.

Our goal was not to optimise the classification model to have better predictability ability. For
this reason, we limited the scope of the experiment only to software metrics for which the literature
showed that they should be the most impactful in maintainability prediction. Also, we wanted to test
if the changes in older (not only the newest) releases had an impact on MINC change prediction. Of
course, if the goal of our experiment was to build the best model in predicting the future MINC change,
all the available metrics would be used, along with several other measurements. Readers should keep
in mind that using only software metric changes from the past has limited ability in the prediction, but
does provide the answers to our research question.

Table 7 summarises the results of both model performance indicators used in the study, namely
overall classification accuracy and F-score. According to the data collected in the experiment, the
software maintainability prediction model reaches the value 0.570 of classification accuracy for both
CART and Random Forest models in the first iteration of the experiment. In that iteration of the
experiment, the prediction model is based only on metric changes between R-2 and R-1 releases of the
studied software. The F-score indicator of the prediction model in its first iteration reaches the value
0.436 for both, CART and random forest. The values of both classification performance metrics show
that the quality of the future MINC change prediction is limited. Again, this should be taken with
consideration of our research question and the limitation of the experiment in using only these metrics,
while other software and non-software related metrics could (and probably do) play an important role
in predicting the maintainability change.
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Table 7. Classification accuracy (CA) and F-score of the software maintainability change prediction.
Higher values are better.

CART Random Forest
CA A CA F-Score A F-Score CA A CA F-Score A F-Score

N-1 0.570 - 0.436 - 0.570 - 0.436 -
N-2 0.567 —-0.003 0.458 0.022 0.573 0.003 0.468 0.032
N-4 0.573 0.006 0.502 0.044 0.579 0.006 0.511 0.043
N-7 0.572 —0.001 0.510 0.008 0.573 —0.006 0.517 0.006
N-8 0.572 0.000 0.512 0.002 0.575 0.002 0.527 0.010
N-10 0.572 0.000 0.510 -0.002 0.580 0.005 0.538 0.011
N-12  0.579 0.007 0.527 0.017 0.582 0.002 0.546 0.008
N-14  0.576 —-0.003 0.524 —-0.003 0.580 —0.002 0.545 —-0.001
N-16  0.575 —-0.001 0.528 0.004 0.581 0.001 0.551 0.006
N-18 0.578 0.003 0.531 0.003 0.580 —0.001 0.553 0.002

In the last iteration of the experiment, when values of changes in the software metrics for all
releases of the software projects considered in the study are added to the prediction models, the
classification accuracy reached value 0.578 in the case of the CART prediction model, and value 0.580 in
the case of the Random Forest-based prediction model. The F-score reached the value 0.531 in the case
when CART was applied, and value 0.553 in the case of random forest. The analysis of the collected
data shows that both generated prediction models came to more or less similar results in the final
iteration of building the prediction models. Despite that, the random forest-based prediction model
showed slightly better results in the final iteration. In general, the results indicate that the software
maintainability prediction models showed better performance for both used classification algorithms
when the model was enriched by historic measurement data extracted from prior releases.

The analysis of the results shows that classification accuracy gains between the first and the final
iteration of the prediction model used in the study were 0.008 in the case of CART, and 0.01 in the
case of Random Forest being applied as the learner. Between the initial and the final iteration of the
prediction model, the F-score performance indicator gained 0.095 percentage points (pp) in the case
of CART and 0.117 pp in the case of random forest. From the viewpoint of the F-score classification
metric, the data of the analysis shows that not every layer of historical measurement data added to
the prediction model contributes to the performance gain of the model. The analysis of collected data
shows that performance indicators of prediction models do not necessarily improve in every iteration
of adding additional historic measurement data. This holds for both learners applied in the experiment.
The charts of improvement of software maintainability prediction by the gradual addition of historic
measurement data to the prediction models are depicted in Figure 7.

Despite occasional declines in the prediction model performance, overall, the software
maintainability prediction model gained in performance when enriched by data from the previous
releases, as is shown with logarithmic trends in Figure 7. The accuracy trend for CART shows that
the accuracy metric improved 0.001 in each iteration (this explains 60.92% of the variation of the
metrics through the iterations, as is shown here with R? = 0.6092), while the accuracy for random
forest improved 0.0011 in each iteration (R? = 0.7111). Despite slight improvements in the accuracy,
more drastic improvements can be seen in the F-score metric. An upwards linear trend is evident for
CART, where F-score improved 0.0091 in each iteration (R? = 0.9270), and also in random forest, where
it improved by 0.0115 when adding historical software metric changes (R? = 0.9693), both explaining
more than 90% of the variance. The high variance explained with the logarithmic trend, especially for
the F-score metric, is in line with assumptions that there is a slow decline in the usefulness of historical
changes further in the past.
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Figure 7. Classification accuracy (a) and F-score (b) metrics of prediction of the change in MINC with
the addition of historical changes for both classifiers. Dotted lines present logarithmic trends.

5.2. Impact of Software Metrics—RQ?2

The basic analysis of changes in metrics was done first. Here, all the metric changes in all
previous releases were grouped by software metrics. Table 8 shows the descriptive statistic values
of changes in software metrics grouped by the change of MINC. Even though the changes are small,
the sample size of classes analysed in the experiment was sufficient that the statistical test could
be applied for comparison of two independent groups. As the data of software metric changes are
not normally distributed (Shapiro-Wilk returned p <0.001 for every metric in both groups/MINC
changes), a non-parametric Mann-Whitney U test was used to compare the software metric changes.
The groups of classes compared were two: The classes where MINC rose (Up) and the classes where
MINC fell (Down).

The results of the Mann-Whitney U test showed that there are statistically significant differences
between the two groups of classes in all changes in software metric (p <0.001 for all of six software
metric changes). The small changes in means show that, in most cases, the software metric was not
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changed at all. This shows that data have high kurtosis, with values of metric changes concentrated
around 0 (no change). The latter is primarily a consequence of the fact that only a part of the classes
that are subject of modification (e.g., bug fix or modified functionality) is changed in a single release.
This imbalance in independent values could provide a challenge in using it in the prediction model, as
will be demonstrated in the following sections.

Table 8. Descriptive statistic values of changes of software metrics grouped by the change of MINC.

Software MINC

Metric Change ~ Change N Mean A Mean Std. Dew. Min Max  Kurtosis Mann-Whitney U
CBO Down 12,5802 0.0543 0.0098 1.5246 -316.0 55.0 15,223 U = 20407429629
Up 94,248 0.0641 ’ 1.0294 -71.0 55.0 1253 p <0.001
DIT Down 125,802 0.0009 0.0004 0.0484 -2.0 2.0 649 U = 20734381440
Up 94,248 0.0005 e 0.0448 -2.0 2.0 781 p<0.001
Down 125,802 0.0004 0.0937 -3.0 14.0 13,305 U = 20737788696
LCOM Up 94,248 0.0006 0.0003 0.0753 -3.0 14.0 13,801 P <0.001
Down 125,802 0.0075 0.5134 -54.0 27.0 3723 U = 20706213294
NSUB Up 94248 00062 U0 0377 540 20 o p <0.001
REC Down 125,802 0.0789 0.0146 2.0564 -78.0 214.0 2560 U = 20280445506
Up 94,248 0.0935 ’ 1.7824 -78.0 214.0 3570 p <0.001
TCC Down 125,802 0.1807 0.0135 3.1915 -155.0 245.0 1097 U = 20142977868
Up 94,248 0.1942 ) 2.8661 -85.0 245.0 1237 <0.001

Next, the ranking of features analysis was performed to assess the impact of individual software
metrics to the prediction of MINC change. Table 9 depicts the results of the assessment of how particular
software metrics used in the experiment contribute to the software maintainability prediction model
throughout the iterations of adding historic measurement data. The software metrics were ranked by
the strength of contribution, with 1 indicating the strongest and 6 indicating the weakest contribution
of the software metrics to the prediction model.

Table 9. Ranks of software metrics in the software metric importance calculations—smaller ranks
indicate more important features.
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For the analysis, there are attached reference values of the software metrics’ contribution to the
model in row N-0 of Table 9. Reference values in N-0 contain measurements of C&K software metrics
and measurement of the MINC metric all in the same version, and not software metric versions from
the past and MINC from the future. In this layer, the C&K measurement values and values of MINC
metric are directly dependent, namely, the values of the MINC metric are calculated based on the
software metric measurements. That is the main reason why the measurements of layer N-0 were
excluded from the experimental data, and serves only as a reference in comparison of the results of
the experiment.
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In each iteration, the impact (importance) of every software metric was evaluated with nine
ranking methods, as was shown in Table 6. Every ranking method resulted in important factors for
every software metric change between multiple consecutive software releases. This means that every
iteration had multiple features from the same metric, with each feature for its version change. In this
analysis, the multiple importance factors for every metric in each iteration were averaged, resulting
in the average importance factor for every software metric in one iteration. The average importance
factors of metrics were ranked and the ranks are presented in Table 9.

According to the reference ranking presented in row N-0 of the Table 9, the metrics that contributed
to the software maintainability prediction model the most were the software metrics TCC and RFC. On
the other hand, software metrics with the weakest impact on the prediction model were the software
metrics NSUB and DIT. The data analysis showed that, when the software maintainability prediction
model is built based exclusively on change values in software metric measurements of the release N-1,
the results of the metric ranking deviated greatly from the reference N-0 ranks. Namely, the software
metrics with the strongest contribution to the prediction model were the metrics NSUB and CBO,
the software metrics with the weakest contribution to the prediction model, on the other hand, were
the metrics DIT and RFC. From the presented data, it can be observed that, adding software metrics
measurement data iteratively to the prediction model, the ranks of contribution to the prediction
model eventually converged toward the reference ranks for the software metric with the strongest and
software metric with the weakest impact on the software maintainability prediction model.

A non-parametric Friedman’s ANOVA test was used to test if the differences between ranks
were statistically significant. This test was used as the ranks are ordinal, not scale type values,
and a Shapiro-Wilk’s test showed that these ranks do not conform to the normal distribution (p <
0.001). The results of Friedman’s ANOVA showed that there were statistically significant differences
between importance ranks of software metrics change in the impacts in contributing to the prediction
of future MINC change (x?(5)=17.66, p=0.003). Consequently, post-hoc analysis was used with a
Durbin-Conover test with Holm-Bonferroni correction. The results of post-hoc tests are in Table 10.

Table 10. Post-hoc pairwise comparison of importance ranks of software metric changes in contribution
in predicting future MINC change.

Comparisons Statistic p
CBO - DIT 3.525 <0.001
CBO - LCOM 1.833 0.073
CBO - NSUB 2.961 0.005
CBO - RFC 1.410 0.165
CBO - TCC 0.423 0.674
DIT - LCOM 1.692 0.098
DIT - NSUB 0.564 0.576
DIT - RFC 2.115 0.040
DIT - TCC 3.948 <0.001
LCOM - NSUB 1.128 0.265
LCOM - RFC 0.423 0.674
LCOM - TCC 2.256 0.029
NSUB - RFC 1.551 0.128
NSUB - TCC 3.384 0.001
RFC - TCC 1.833 0.073

There are six pairwise comparisons between importance ranks of software metrics change, which
are statistically significant: CBO had a higher impact than DIT (median ranks 2 vs. 5), CBO had a
higher impact than NSUB (median ranks 2 vs. 6), RFC had a higher impact than DIT (median ranks 3
vs. 5), TCC had a higher impact than DIT (median ranks 1 vs 5), TCC had a higher impact than LCOM
(median ranks 1 vs. 4) and TCC had a higher impact than NSUB (median ranks 1 vs. 6).
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5.3. Use Case on One Software Repository

Previous sections showed how historical changes of various software metrics can have an impact
on predicting the future change of maintainability MINC metrics in general. With this, a MINC change
predicting machine learning model was built, which was shown to have a somewhat limited ability in
predicting the changes. Naturally, there is a limited general knowledge of MINC changes one model
can incorporate. In other words, predicting the change of MINC for every project based on the patterns
of 40 projects could have limited success for various reasons. First, every project is somewhat unique,
be it in project software code structure, coding style, style of committing the changes to the Repository
and other development-related issues. Second, the development team specifics are different for every
project. The team communication, the responsibility allocation, bug and issue tackling, remote or
onsite working, the team size, the team structure and the personal dynamics in the team, could have a
great impact on the maintainability of the code. All of this could not be extracted from the software
metrics measurements and, thus, limited incorporation of these specifics in the prediction model.
Also, including 40 projects in our analysis could still not be enough to have a representative sample
of projects in general. Also, the top projects in accordance to the number of downloads on Maven
are probably not representative to the vast body of projects in the industry, which are not developed
in the same manner and with similar team structures as the top ones on Maven. Third, the pattern
extraction capabilities of the used classification models are limited only by the available data. If other
meta-information about the code style and the team structure could be incorporated, the models could
be far better in their prediction ability. Also, as the patterns are very complex, more data are needed to
extract them, and not to confuse them with anomalies meant to be ignored.

With these assumptions in mind, the hypothesis is that focusing on one project specifically can
produce greater results than trying the extract the general patterns with one model. Analysing the
project independently can force the model building process to extract some of the patterns specific
to that code base and that development team, rather than trying to find general patterns of multiple
projects. This section aims to show the advantages in analysing the projects independently with the
previously described analysis, to gather the maintainability changes for that particular project.

For this use case, the httpcore project was chosen for the demonstration. The chosen component
is among studied projects for which performance gain of the maintainability prediction models is
relatively high. The reason why some of the projects in the dataset do not shows the same level of
performance gain will be the subject of future research. In this analysis, 35 releases with 225 distinct
classes, with a total combined 10,439 lines of code of this project, were included in the analysis, where
the mean days between the releases was 107.74 days. To determine the direction of maintainability,
change in the future, only the codes with MINC change were selected, out of which 36 had MINC
lowering and 33 had MINC raising. The descriptive statistics about C&K software metrics and MINC
about included source codes are in Table 11.

Table 11. Descriptive statistics about C&K software metrics and MINC of the httpcore project source
code files used in the analysis.

CBO DIT LCOM NSUB RFC TCC MINC

Average 11.06 1.41 0.24 0.30 11.81 24.04 117.20
Median 11.00 1.00 0.11 0.00 10.00 20.00 118.45
St. Dev. 7.77 0.52 0.31 0.63 7.52 18.18 11.40
Min 1.0 1.0 0.0 0.0 1.0 1.0 91.92
Max 44.0 3.0 1.0 3.0 32.0 82.0 142.44

The project httpcore is part of the broader project developed under the Apache Foundation
responsible for creating and maintaining a toolset of low-level Java components focused on the HTTP
and associated protocols. The project aims to provide a set of low-level HTTP transport components
that can be used to build custom client and server-side HTTP services with a minimal footprint [69].



Appl. Sci. 2020, 10, 4624 21 of 30

The project, which is hosted on GitHub, has in total 31 code contributors, and six of them with the
contribution of more than 1000 lines of code.

A MINC change prediction model can be built with only the historical data of this project, so
no general patterns about the codebase development were extracted, but only project specifics were
considered. Again, random forest, with 5000 classification trees, is trained in steps where more
historical changes (more changes between versions) are considered. The data are split with 10-fold
cross-validation in each step, and the results are averaged across folds.

Figure 8 shows that the prediction of MINC change of the model built only on this project is
better than the prediction ability of the general model. The best model (N-15) produced CART and
Random Forest models with accuracies 0.78 and 0.87 with F-score of 0.74 and 0.86 respectively, versus
the general models (from the previous Section), with accuracies of 0.58 both times and F-scores of
0.53 and 0.55 for CART and random forest. Again, this is logical, as only project-specific patterns are
extracted and not the general ones.

CART Random Forest
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Figure 8. Classification accuracy (a) and F-score (b) metrics of prediction of the change in MINC with
the addition of historical changes for both classifiers for project httpcore. Dotted lines present the
performance of the best general model.
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The classification metrics’ accuracy and average F-score of this project-specific model are far better
in later steps than the classification metrics of the general models. This supports the hypothesis that
focusing on one project can produce better results than trying to extract the general knowledge. There
is a small drop of classification performance after N-15, which could be attributed to too wide data
(too many features and too few instances), which could be mitigated with feature selection or data
over-sampling. The bad classification performance of earlier steps (from N-1 to N-5) only supports our
hypothesis that including more historical changes from the past improves the future MINC change
prediction significantly.

Of course, the good performance using this approach on other projects individually would not be
guaranteed. The information needed for future MINC change prediction is not always reflected in
source code, and, consequently, software metrics, as in this project. Naturally, these project-specific
models are over-fitted to this project, and would perform worse on any other project than the general
model. With this approach, the MINC change prediction model must be built individually for
every project. This could not be usable and doable for every software project development process
(small teams with limited hardware capabilities and machine learning knowledge), but can still be
incorporated as a static analysis done overnight on a dedicated system, similar to overnight testing of
committed changes. The analysis for this experiment was done on a computer with Intel i7-4790 CPU
@ 3.6 GHz with four cores, 24 GB of RAM memory.

6. Discussion

The results of the study indicate that software maintainability models enriched by historic
measurement data achieve better results in predicting future maintainability change compared to the
model built with measurement of one release of a software project. The results of the experiment
show that the software maintainability prediction models enriched by historic measurements perform
better for both performance indicators used in the study, the classification accuracy and F-score. In
general, the prediction model performance gain was slightly more distinct in the case of the F-score
performance indicator. This is a relevant fact, since F-score is a more balanced metric, where the
performance of predicting (classifying) every class is more important than just general accuracy, even
when some classes are ignored [70]. The results of the study show that the prediction model based
on the measurements obtained from a single release of a software project is, from the perspective
of F-score performance indicator, quite weak. In the experiment, both performance indicators were
improving throughout iterations after the model was enhanced by additional historical releases of the
studied software project.

An important domain of software maintainability research represents studies of links between
software metrics and the maintainability of software projects. The systematic literature review
conducted by Jabangwe et al. [58] implied a strong link between the complexity metrics and the
maintainability. On the other hand, the measures of inheritance aspects of software design manifest a
weaker link to the maintainability. Among the software metrics used in our study, TCC metrics had the
strongest contribution to the accuracy of the prediction model, which was used as an equivalent of the
WMC software metric of the C&K set. On the other hand, the weakest contribution to the prediction
model performance was, on average, measured by the DIT and NSUB software metrics, an equivalent
of the NOC metric in C&K. An interesting observation is that the profile of contributions of software
metrics in our study is getting closer to the contribution profile of metrics observed by Jabangwe et
al. in the last iterations of the experiment when the series of history measurement data was added to
the prediction model. In our study, the contribution of measures based on a single software release in
the first iteration deviates strongly from the observations of the studies of other authors. Eventually,
after adding extra layers of historic software metric measurements, the contribution of the metrics
approached the results of the mentioned research.

The profile of software metrics’ contribution to the prediction models shows that the maintainability
index, applied in the same way as in this research, can be, despite some criticisms regarding computation
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and applicability to the object-oriented paradigm [34,71], used as an efficient predictor of the future
software maintainability change. Namely, the strong link between complexity measures and the
maintainability, and the weak link between software inheritance and the maintainability, indicates the
eligibility of the maintainability index formula.

According to the results of the study, the largest contribution to the performance of the prediction
model was by the measurement data collected from releases closer to the latest release of a software
project, namely, newer versions in the history of the software project’s releases. This is indicated
by the logarithmic trend in the performance growth revealed by the analysis of the collected data
in the experiment. The analysis of the data did show that additional layers of measurement data
added in individual iterations of the experiment contributed to the prediction ability of the prediction
model. On average, by any layer of the additional historic measurement data, the model was getting
more successful.

6.1. Threats to Validity

The empirical study presented in the paper has several threats to internal and external validity
for the selected systems to which the study was applied. Consequently, these threats may restrict the
generality, and may limit the interpretation of the results of this paper. We identified systematically
and addressed carefully potential threats to the validity of our study by taking steps to minimise or
mitigate them.

6.1.1. Internal Validity

Steps were taken to ensure that internal validity included the correctness and completeness of
the source codes and metric measurements of the software components used in the study. All the
selected software components were obtained from the official Maven Repositories. The correctness of
statistical analysis also depends on the correctness of the artefact metadata published in the Maven
Repository. Software metrics measurements were performed automatically for all releases of a software
component using the JHawk static code analysis tool, which reduces the possibility for the emergence
of human-induced mistakes. Furthermore, the study relied on getting a history of software metric
measurements of a set of prior versions of software components studied in the research. Therefore,
prior versions of software components were, in the first stage, sorted into the correct temporal order
automatically according to the timestamps obtained from the Maven Repositories, and later validated
manually by one of the researchers. During manual validation of release tags, we checked manually
that only final releases of versions were included in the study.

6.1.2. Construct Validity

The maintainability index, one of the most used measures for assessing software quality of a
software system, was employed to guarantee the structural validity of the assessment of software
maintainability of this study. Despite being often criticised because of its lack of compliance with the
object-oriented paradigm, it has often been employed in many studies. The C&K metric set, employed
to assess software quality characteristics of studied software components, is one of the most used
metrics set in the literature. An additional threat to validity could stem from the amount of data used
by the machine learning algorithms. The larger amount of data added in the prediction models in the
final iterations of the experiment could affect the performance of the model. We tried to reduce the
threads by the relatively large amount of software projects included in the research.

Our research is based on previous works that advocate internal quality measured by software
metrics as a sufficient indicator of the software maintainability. Besides the assessment of internal
quality of software products, alternative approaches to the maintainability assessment can be also
found in the literature.
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6.1.3. External validity

The first external threat to validity is that all software components included in the study are
open-source software systems. Consequently, they may not be representative of all closed-source
software from the industrial domain. Open source software is developed in development environments
that could have different expectations regard coding conventions and quality standards. To reduce
concern regard non-professional software projects, our research is based on the list of the highly-accepted
software components. Software components used in the study are among the leaders in their field,
provided by in IT world recognized software vendors and developed mainly by professional software
developers sponsored by these vendors or communities.

The second external threat to validity is that all software components are implemented based on
Java technology stack. Other programming languages, e.g., C++, Smalltalk, and Python, used in the
development of modern software solutions, may have features that differ from those in Java. Despite
these differences, all modern mainstream programming languages in their foundation follow the same
principles, resulting in the minimal impact of programming language on software maintainability.

The third external thread to validity is that the software components used in the study may not
be representative of other every-day real-life software projects. The experiment was conducted on
real-life software components that are incorporated into many production-ready software solutions
daily, but are already well maintained and audited by several experienced developers. This may not
be the case for every software project in the industry, and thus the conclusions of our study should be
taken with precaution.

7. Conclusions

The study explores the impact of historical software version changes in predicting the future
maintainability of the software. The novelty of our study is, unlike related works in the research
field, a detailed analysis and assessment of the metric measurement contribution to maintainability
prediction performance on a version-to-version basis, which to our best knowledge has not been
evaluated previously.

In the experiment, 40 real-life open-sourced Java-based software components published in the
Maven Repository were included, for which the history of 19 successive releases was available. The
internal quality of collected software projects was assessed using the C&K metric set, and the software
maintainability of the software projects was assessed by the maintainability index. With these data,
the software maintainability prediction models were built and assessed through two performance
indicators, classification accuracy and F-score. The outcome of the experiment was analysed with
statistical tests to get the answer to our research question if historical changes in software have an
impact on the future software maintainability. The key finding of the study was:

e In the context of RQ1, our results showed that despite an occasional smaller decline in the
performance of the software maintainability change prediction model during the experiment, in
general, the prediction models gained on the performance by every layer of newly added software
metrics measurement data

e  With regard to RQ2, it can be observed that, adding software metrics measurement data iteratively
to the prediction model, the ranks of contribution to the prediction model eventually converged
toward the reference ranks of the software metrics according to the observations of related research.

The results of the data analysis show that the gain of software maintainability prediction
performance was the greatest when the prediction model was enriched by software metric measurements
of versions closer to the latest release. Moreover, from the newest release, more distant versions of
a software project contributed less to the performance of the maintainability prediction model. The
main contribution of the paper is to show the prediction model’s performance through the iterations
of the experiment grows with the logarithmic trend. Therefore, the measurement data of the nearby
versions of the observed release of a software project remain relevant for the building of maintainability
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prediction models. Additionally, the paper evaluates the contribution of the growth of the prediction
model’s performance through the iterations. How many versions will be considered in the assessment
depends on a compromise between the gain in prediction performance and measurement data to
be collected.

Additionally, we tested the validity of our approach and its compliance with existing research
by conducting a feature importance calculation and ranking. It was shown that, when adding more
historical releases to the analysis, the importance of software metrics in predicting the maintainability
change resembled the importance of software metrics in calculating the maintainability in the same
version. As we are dealing in predicting the future trend of maintainability change, for which the
software metrics are not yet known (as with existing research), this is also an important finding.

First, the results obtained in the study could have an impact on software maintainability assessment
in software development environments, where a smooth evolution of software products is one of the
key risks that have to be managed. Enhanced software maintainability prediction models shift the
focus of the maintainability assessment of the latest release of a software component. Instead, the
dynamics of software maintainability change in a software product is assessed through a temporal
perspective. Without intervention, the patterns of change in the maintainability from the past are
likely to continue in the future. The excessive degradation of the maintainability from version to
version, for example, indicates future risks. Software maintainability assessment through the temporal
viewpoint addresses additional aspects of software quality risk management, e. g., management of
software design decay and erosion. The introduction of the historic measurement-enhanced software
maintainability prediction models would, consequently, result in better risk management related to
the poor internal quality of software products. Second, the results can be useful for researchers in the
field of software engineering. Based on approaches of the automated capture of a broader range of
measurements of software products, more precise maintainability prediction models can be developed
and proposed to practitioners.

As part of the future work, we would like to investigate the abilities of machine learning techniques
for the domain of software maintainability prediction. The introduction of the state-of-the-art
approaches of machine learning into the research area of software engineering, and the enormous
amount of data that can be extracted from real-world software projects available in publicly accessible
software repositories, allows investigation of factors with a significant effect on the maintainability and
longevity of software products. Based on these approaches, we would like to investigate links between
deviations from good engineering practices (e.g., code smells) and management of the maintainability
through the complete life cycle of software products. Despite active research in past years, the influence
of bad practices on the maintainability remains an open research area.
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Appendix A
Table A1. Details about open source systems.
First Release Latest Release A

No. Software Component No. of rel. Release Date No. Classes LOC Release Date No. Classes LOC No. Classes LOC

1 org.slf4j:slf4j-api 37 2 December 2009 24 1055 10 August 2019 35 1853 11 798

2 org.scala-lang:scala-library 25 27 February 2015 29 924 18 September 2019 33 1011 4 87

3 com.google.guava:guava 23 9 December 2015 1569 68,475 28 August 2019 1619 74,447 50 5972

4 org.mockito:mockito-core 50 6 February 2017 490 12,070 1 October 2019 540 13687 50 1617

5 ch.qos.logback:logback-classic 45 17 July 2009 121 5606 31 March 2017 170 7142 49 1536

6 org.slf4j:slf4j-log4j12 37 2 December 2009 6 293 10 August 2019 8 382 2 89

7 com.fasterxml.jackson.core:jackson-databind 43 11 November 2017 534 48,895 26 September 2019 620 59,569 86 10,674

8 com.google.code.gson:gson 29 10 August 2008 101 4565 4 April 2019 164 7500 63 2935

9 org.apache.httpcomponents:httpclient 35 11 August 2009 225 10,439 5 September 2019 459 24,975 234 14,536
10 org.springframework:spring-context 48 25 January 2017 694 27,080 30 September 2019 662 28,585 =32 1505
11 org.slf4j:slf4j-simple 37 2 December 2009 5 179 10 August 2019 9 477 4 298
12 org.testng:testng 45 27 January 2011 326 23,315 17 August 2019 521 30,711 195 7396
13 org.springframework:spring-test 50 21 December 2016 314 11,971 30 September 2019 338 16,219 24 4248
14 joda-time:joda-time 32 30 October 2007 222 24,784 20 September 2019 247 27,648 25 2864
15 org.assertj:assertj-core 47 26 March 2013 258 9455 4 August 2019 635 29,774 377 20,319
16 org.slf4j:;jcl-over-slf4j 37 2 December 2009 9 655 10 August 2019 9 629 0 -26
17 com.fasterxml.jackson.core:;jackson-core 39 8 December 2015 85 15,817 26 September 2019 116 25,953 31 10136
18 com.fasterxml jackson.core:;jackson-annotations 39 8 December 2015 19 351 27 September 2019 26 607 7 256
19 org.springframework:spring-core 48 25 January 2017 486 30,464 30 September 2019 604 40,612 118 10,148
20 org.apache.maven:maven-plugin-api 36 7 May 2006 8 208 27 August 2019 27 2175 19 1967
21 org.projectlombok:lombok 39 8 March 2011 197 11,639 30 October 2018 601 33,986 404 22,347
22 com.h2database:h2 50 8 February 2011 465 74,059 13 March 2019 851 127,207 386 53,148
23 org.springframework:spring-beans 48 25 January 2017 393 21,701 30 September 2019 345 22,870 -48 1169
24 org.springframework:spring-web 48 25 January 2017 502 23,905 30 September 2019 733 36,618 231 12,713
25 org.easymock:easymock 19 1 February 2006 56 2309 30 November 2018 372 23,456 316 21,147
26 mysql:mysql-connector-java 42 8 May 2015 261 58,323 7 June 2019 917 155,734 656 97,411
27 org.codehaus.groovy:groovy-all 30 19 December 2014 1770 12,7939 7 August 2019 2071 179,490 301 51,551
28 org jetbrains.kotlin:kotlin-stdlib 48 4 September 2018 38 1497 22 August 2019 38 1532 0 35
29 org.springframework:spring-webmvc 48 25 January 2017 483 25,688 30 September 2019 433 25,383 -50 -305
30 org.apache.logging.log4j:log4j-api 24 12 July 2014 69 4755 7 August 2019 160 11,638 91 6883
31 com.squareup.okhttp3:okhttp 41 13 January 2016 170 11,832 29 September 2019 194 14,444 24 2612
32 org.codehaus jackson:;jackson-mapper-asl 50 26 June 2010 285 14,917 15 July 2013 476 30,223 191 15,306
33 org.apache.httpcomponents:httpcore 30 24 February 2009 158 7109 1 September 2019 250 12,437 92 5328
34 org.hibernate:hibernate-core 43 14 March 2017 3697 22,5448 30 September 2019 4397 266,456 700 41,008
35 org.codehaus.plexus:plexus-utils 50 18 June 2008 97 15,154 10 July 2019 103 18,086 6 2932
36 org.apache.maven:maven-core 36 7 May 2006 59 5649 27 July 2019 398 25,397 339 19,748
37 org.springframework:spring-jdbc 48 25 January 2017 291 13,391 30 September 2019 259 13,115 =32 =276
38 org.apache.logging.log4j:log4j-slf4j-impl 24 12 July 2014 1 557 7 August 2019 10 597 -1 40
39 org.powermock:powermock-module-junit4 27 13 October 2010 9 444 21 April 2019 22 1051 13 607
40 org.eclipse jetty:jetty-server 42 6 June 2017 187 19,826 26 September 2019 307 30,347 120 10,521

26 of 30
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Appendix B

Table A2. Statistical data on periods between releases of the projects.

27 of 30

Periods Between Releases in Days

Software Component No. of rel.
Average Median Std. devn Minimum Maximum
org.slf4j:slf4j-api 37 97.78 41.5 143.96 0 704
org.scala-lang:scala-library 25 150.10 103 162.46 8 777
com.google.guava:guava 23 83.16 74 73.15 13 323
org.mockito:mockito-core 50 19.22 10 21.80 0 84
ch.qos.logback:logback-classic 45 65.47 34 85.12 0 355
org.slf4j:slf4j-log4j12 37 97.78 415 143.96 0 704
com.fasterxml.jackson.core:jackson-databind 43 88.77 53 90.79 4 490
com.google.code.gson:gson 29 144.86 89 161.84 0 591
org.apache httpcomponents:httpclient 35 107.74 915 77.36 0 334
org.springframework:spring-context 48 43.13 42 18.70 1 86
org.slf4j:slf4j-simple 37 97.78 41.5 143.96 0 704
org.testng:testng 45 70.52 40.5 98.99 0 494
org.springframework:spring-test 50 42.04 42 19.36 0 86
joda-time:joda-time 32 139.58 73 144.59 0 614
org.assertj:assertj-core 47 76.24 80 57.10 0 226
org.slf4j;jcl-over-slf4j 37 97.78 41.5 143.96 0 704
com.fasterxml jackson.core:;jackson-core 39 53.77 43 36.02 0 151
com.fasterxml jackson.core;jackson-annotations 39 53.77 43 35.98 0 151
org.springframework:spring-core 48 43.13 42 18.70 1 86
org.apache.maven:maven-plugin-api 36 152.24 126 127.49 0 510
org.projectlombok:lombok 36 79.20 67 53.24 7 201
com.h2database:h2 50 59.78 44 63.11 3 340
org.springframework:spring-beans 48 43.13 42 18.70 1 86
org.springframework:spring-web 48 43.13 42 18.70 1 86
org.easymock:easymock 19 259.89 219.5 221.83 2 737
mysql:mysql-connector-java 42 66.93 58.5 70.11 0 338
org.codehaus.groovy:groovy-all 30 77.04 57 61.83 4 260
org jetbrains.kotlin:kotlin-stdlib 48 23.62 16 17.73 2 78
org.springframework:spring-webmvc 48 43.13 42 18.70 1 86
org.apache.logging.log4j:log4j-api 24 80.00 63 54.50 11 197
com.squareup.okhttp3:okhttp 34 49.28 36 42.00 0 138
org.codehaus jackson:jackson-mapper-asl 50 41.87 34 31.71 5 166
org.apache.httpcomponents:httpcore 30 131.93 116 102.26 0 510
org.hibernate:hibernate-core 43 51.10 37 4491 6 204
org.codehaus.plexus:plexus-utils 46 89.29 25 126.25 0 504
org.apache.maven:maven-core 36 152.24 126 127.49 0 510
org.springframework:spring-jdbc 48 43.13 42 18.70 1 86
org.apache.logging.log4j:log4j-slf4j-impl 24 80.00 63 54.50 11 197
org.powermock:powermock-module-junit4 27 119.15 100.5 69.07 19 270
org.eclipse jetty:jetty-server 42 79.14 54 88.69 0 384
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