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Abstract: As photoplethysmographic (PPG) signals are comprised of numerous pieces of important 
physiological information, they have been widely employed to measure many physiological 
parameters. However, only a high-quality PPG signal can provide a reliable physiological 
assessment. Unfortunately, PPG signals are easily corrupted by motion artifacts and baseline drift 
during recording. Although several rule-based algorithms have been developed for evaluating the 
quality of PPG signals, few artificial intelligence-based algorithms have been presented. Thus, this 
study aims to classify the quality of PPG signals by using two two-dimensional deep convolution 
neural networks (DCNN) when the PPG pulse is used to measure cardiac stroke volume (SV) by 
impedance cardiography. An image derived from a PPG pulse and its differential pulse is used as 
the input to the two DCNN models. To quantify the quality of individual PPG pulses, the error 
percentage of the beat-to-beat SV measured by our device and medis® CS 2000 synchronously is 
used to determine whether the pulse quality is high, middle, or low. Fourteen subjects were 
recruited, and a total of 3135 PPG pulses (1342 high quality, 73 middle quality, and 1720 low quality) 
were obtained. We used a traditional DCNN, VGG-19, and a residual DCNN, ResNet-50, to 
determine the quality levels of the PPG pulses. Their results were all better than the previous rule-
based methods. The accuracies of VGG-19 and ResNet-50 were 0.895 and 0.925, respectively. Thus, 
the proposed DCNN may be applied for the classification of PPG quality and be helpful for 
improving the SV measurement in impedance cardiography. 

Keywords: photoplethysmography (PPG); deep convolution neural network (DCNN); signal 
quality index (SQI); impedance cardiography (ICG); stroke volume (SV) 

 

1. Introduction 

The photoplethysmographic (PPG) signal has been widely used to measure many physiological 
parameters, such as pulse rate [1], blood oxygen saturation [2], blood pressure [3], respiration rate 
[4], and left ventricular ejection time (LVET) [5]. The noninvasive techniques for 
photoplethysmography include two optical types, transmission and reflection [6], as shown in Figure 
1. A light-emitting diode (LED) is often used to generate low-intensity infrared light on the skin, and 
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a portion of the light will be absorbed mainly by both arterial and venous blood. For the reflection 
PPG, the nonabsorbed light will be reflected and detected by a photo diode. The LED and photo 
diode are placed on the same side, as shown in Figure 1a. For the transmission PPG, the nonabsorbed 
light will be transmitted and detected by a photo diode. The LED and photo diode are placed on the 
opposite side, as shown in Figure 1b. In either the reflection or the transmission method, the PPG 
signal represents the changes in blood volume (Figure 1), although it cannot be used to quantify the 
amount of blood. 

 
(a)  

(b) 

Figure 1. Schematic illustration of the photoplethysmography. The LED illuminates the skin and the 
nonabsorbed light will be detected by the photo diode. (a) For the reflected method, the LED and 
photo diode are on the same side. (b) For the transmitted method, the LED and photo diode are on 
the opposite side. 

The PPG signal measured by the reflection method is more easily corrupted by the motion noise 
than the transmission method. Currently, the wearable device with the PPG sensor usually uses the 
reflection method to perform the physiological measurement. When the users wear these devices to 
do the exercise, PPG signals are very vulnerable to motion artifacts. The common solution is to 
improve device mechanisms to reduce the motion effect on the recoded PPG signal and to raise the 
measured accuracy. However, the higher the quality of the PPG signal, the better the accuracy of the 
measured parameters extracted from such a PPG signal. Therefore, how to classify the quality of PPG 
signals is an important issue for the development of wearable devices. 

PPG is a noninvasive optical measurement method in which the change of blood volume 
interconnects the physiological responses to circulatory events in peripheral blood vessels. Thus, its 
waveform bears regular morphological characteristics [7,8]. As shown in Figure 2, there are a lot of 
physiological characteristics in a PPG pulse, including the main peak, dicrotic notch, pulse width, 
and amplitude, and so on. As a result, many researchers have used those significant characteristics 
(i.e., the rule-based methods) to determine the quality of each PPG pulse. In addition, the signal 
quality index (SQI) represents the corrupted degree of the PPG pulse. Liu et al. have employed fuzzy 
rules to determine the SQI of PPG pulses [9], and Fischer et al. have applied the characteristics of PPG 
waveform and the decision tree to classify its SQI [10]. Li et al. have used the Bayesian hypothesis 
testing method to analyze the SQI [11]. In these studies, they all needed to adjust the thresholds of 
the rule-base method to get the best results. Recently, Liu et al. used a fuzzy neural network to 
evaluate the SQI [12]. Although they used the artificial intelligence method to gauge the quality of 
the minorly corrupted PPG pulse, the rule-base method was also used to delete the majorly corrupted 
PPG pulses. 
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Figure 2. The characteristics of a PPG pulse chiefly include the main peak, dicrotic notch, pulse width, 
and pulse amplitude. 

The traditional approach for the SQI assessment is to extract the features from the PPG signal. It 
is well known that the morphological approach is sensitive to signal noise and has many limitations 
on the performance robustness of the classification model [8]. Currently, deep learning techniques 
have been used to process feature extraction tasks by convolution computation [13]. As the 
physiological signals, such as electrocardiograms (ECGs), electroencephalograms, and PPGs, belong 
to one-dimensional signals, several studies have used a one-dimensional deep convolution neural 
network (1D DCNN) to classify the different arrhythmic types and the signal quality [14–17]. Some 
studies have transferred the 1D signal to a two-dimensional (2D) signal by short time frequency 
transform [18], wavelet transform [19], and power spectral density [20]. Then, the 2D DCNN 
employed these images as the input to do the classifications. However, in these studies, a segment 
signal of about 2 to 5 s was transferred to an image. Thus, the methods only were suitable for 
processing consistent, continuous signals. 

When the heart is in the systolic phase, an amount of blood, which is called the stroke volume 
(SV), is pumped into systematic circulation. In this period, the volume of the thoracic cavity will 
change. Thus, impedance cardiography (ICG) was proposed by Kubicek et al., which is a noninvasive 
measurement technique to measure cardiac hemodynamic parameters [21]. In the SV calculation with 
ICG technology, LVET is one of the most important parameters, which is measured by the ICG signal. 
As the signal-to-noise ratio of the ICG signal is very low, the accuracy of LVET is not high enough. 
Liu et al. used a reflective PPG sensor placed on the neck to measure the LVET [5]. The LVETs 
measured by the PPG pulses were more accurate than those by the ICG pulses. Therefore, the 
accuracy of SV measured by their proposed technique was higher than the traditional ICG technique. 

According to previous mentions, the higher the SQI of the PPG signal, the more accurate the 
physiological parameters measured by the PPG signal. Unlike previous rule-based methods, our 
proposed approach does not require any predetermined features in the PPG signal. In this study, we 
used the raw morphology of PPG pulses to determine their quality levels. Thus, the aim of this study 
is to develop a novel SQI approach to access the quality of PPG pulses for improvement of SV 
measurement with a 2D DCNN. The PPG pulse and its differential pulse were segmented from the 
continuous PPG signal, and then they were merged into an image. Both the 2D deep residual neural 
network (DRNN) and 2D DCNN were used to determine the quality level of each PPG pulse. 
Fourteen healthy adult males participated in this experiment. The beat-to-beat SVs were measured 
by our ICG device [5] and medis® CS2000 for about three minutes, simultaneously. We utilized the 
error percentage of measured SVs to define the levels of SQI for each PPG pulse. The error percentage 
represents the accuracy of the SV measurements. The results showed that the 2D DRNN could assess 
the levels of SQI for the PPG pulses more easily than the rule-base method and the general DCNN. 
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2. Impedance Cardiography 

In 1966, Kubicek et al. proposed an ICG, a noninvasive technique, to assess the continuous SV 
[16]. Equation (1) governs the ICG method, 𝑆𝑉 𝑟 𝐿𝑉𝐸𝑇 dZ d𝑡⁄ , (1) 

where rb is the blood resistivity that is assumed to be a constant value of 150 ohm × cm, L is the 
distance (cm) between two recording electrodes on the neck and chest, Z0 is the base impedance (ohm) 
between the recording electrodes indicating initial thoracic cavity, and dZ⁄dt(max) is the absolute 
value (ohm/sec) of the maximum change of the ICG impedance signal. According to Equation (1), the 
SV has an absolute linear relationship with the LVET and dZ⁄dt(max). Figure 3 shows the 
synchronous ECG, ICG, and PPG signals, and the differential ICG (DICG) and differential PPG 
(DPPG) signals. In this figure, the PPG signal seems to be corrupted by fewer motion artifacts than 
the ICG signal [5]. The LVET is defined in the DPPG signal as the time interval between the first zero 
crossing point and the minimum point. The LVETs of heartbeats measured by high-quality PPG 
pulses would become more accurate. 

 
Figure 3. Typical signal registration in the study. From the first row to the fifth row are the 
electrocardiogram (ECG), impedance cardiography (ICG), photoplethysmography (PPG), differential 
ICG (DICG), and differential PPG (DPPG), respectively. The left ventricular ejection time (LVET) is 
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defined as the time interval between the first zero crossing point (short arrow) and the minimum 
point (long arrow) in the DPPG signal. 

3. Method 

The overall procedure of the proposed SQI classification model for PPG pulses is shown in 
Figure 4. The original ICG and PPG signals are measured by our ICG device [5]. The input PPG and 
DPPG signals are segmented as the pulses by the zero-crossing points of the DPPG signal. Both the 
PPG and DPPG signals during one heart cycle are merged and transformed into images. These images 
are then used as the input to the 2D DCNN to perform the classification of the three SQI levels (high, 
middle, and low), which are defined by the error percentage of the measured SV as compared with 
the reference. 

 
Figure 4. Overall procedure for signal quality index (SQI) classification of PPG pulses. 

3.1. Data Acquisition 

Our ICG device was described in a previous study [5] in which analog ICG and PPG signals 
were all digitalized with a sampling frequency of 500 Hz. The PPG sensors were placed on the neck 
of the subject. The ICG and PPG signals were filtered to remove the baseline drift and the high-
frequency noise using a second-order Butterworth bandpass filter in which the lower and upper 
cutoff frequencies were 0.2 and 10 Hz, respectively. Then, the DPPG and DICG signals were gotten 
from the PPG and ICG signals by the first-order discrete derivative, which passed a zero-phase 
forward and reverse second-order Butterworth lowpass filter. Its cutoff frequency was 10 Hz. The 
first zero crossing point for the DPPG signal during one heart cycle was used to segment the pulse. 
As the heart rates of the included subjects were not lower than 60 beats/minute, an image consisted 
of two pulses, PPG and DPPG, whose length (size) was set to 500 points. If the length of a pulse was 
less than 500 points, it was padded to become 500-points long with zero points. Figure 5 shows 
different 150 × 150 images obtained from the segmented PPG (blue line) and DPPG (orange line) 
signals with three different SQI levels. In Figure 5a, because the morphologies of the two PPG pulses 
within the systolic phase are perfect (i.e., the morphologies have a clear, distinct dicrotic notch and 
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starting ejection point), their SQIs are high. The two PPG pulses in Figure 5b belong to the middle 
SQI ones, due to good morphology at the starting ejection point. However, their dicrotic notches are 
not distinct in the PPG signals. Therefore, the values of their differential signals at the dicrotic notch 
zone may not be larger than zero. As shown in Figure 5c, the two PPG pulses own low SQIs since 
their amplitudes or baselines have been greatly distorted due to severe motion artifacts. 

  
(a) 

  
(b) 

  

(c) 

Figure 5. PPG (blue line) and DPPG (orange line) pulses with different quality levels. (a) High quality, 
(b) middle quality, (c) low quality. 
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3.2. Network Architectures 

Since the number of samples was not large and there were not many differences in the 
characteristics of patterns, 2D DCNNs were chosen to perform the classification task in the study. We 
built two 2D DCNNs based on the trained DRNN architecture with a 50-layer network (ResNet-50) [22] 
and the trained DCNN architecture with a 19-layer network (VGG-19) [23]. In the output layer, we 
replaced the 1000 fully-connected with softmax activation by a 1 fully-connected with sigmoid 
activation. The VGG-19 and ResNet-50 are the base models in this study that were pretrained for object 
detection tasks on the ImageNet dataset [24]. The architectures of the two 2D DCNNs are shown in 
Figure 6, with detailed descriptions shown in Tables 1 and 2, respectively. In Table 1, the filters in the 
VGG-19 all are of 3 × 3 size. The downsampling is performed directly by the maximum pooling layers 
that have a stride of 2, and batch normalization is performed right after each convolution and before 
ReLU activation. Two fully connected layers have sizes of 1024. For the ResNet-50, the main theme is 
to skip blocks of convolutional layers by using shortcut connections, as shown in Figure 6. The dot lines 
indicate that the dimensions of input and output are different. Thus, the 1 × 1 convolution with a stride 
of 2 is used to perform the projection shortcut. The solid lines represent that the dimensions of input 
and output are the same. Then, the identity shortcut is used. In Table 2, the filters in ResNet-50 follow 
two design rules. First, when the feature sizes of input and output are the same, the layers have the 
same number of filters. Second, when the feature map size is halved, the number of filters is doubled. 
The downsampling is performed directly by convolutional layers that have a stride of 2, and batch 
normalization is performed right after each convolution and before ReLU activation. The network ends 
with a global average pooling layer with a 7 × 7 filter. 

 
Figure 6. The architectures of the ResNet-50 and VGG-19. 

Table 1. Fundamental information about the VGG-19 layers and associated parameters of the network 
architecture. 

Type 
Filter 
Size  

Channel 
number Input Size 

Conv1 
3 × 3 64 150 × 150 × 3 
3 × 3 64 150 × 150 × 64 

Max pool 3 × 3 - 150 × 150 × 64 

Conv2 3 × 3 128 75 × 75 × 64 
3 × 3 128 75 × 75 × 128 

Max pool 3 × 3 - 75 × 75 × 128 

Conv3 

3 × 3 256 37 × 37 × 128 
3 × 3 256 37 × 37 × 256 
3 × 3 256 37 × 37 × 256 
3 × 3 256 37 × 37 × 256 
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Max pool 3 × 3 - 37 × 37 × 256 

Conv4 

3 × 3 512 18 × 18 × 256 
3 × 3 512 18 × 18 × 512 
3 × 3 512 18 × 18 × 512 
3 × 3 512 18 × 18 × 512 

Max pool 3 × 3 - 18 × 18 × 512 

Conv5 

3 × 3 512 9 × 9 × 512 
3 × 3 
3 × 3 

512 
512 

9 × 9 × 512 
9 × 9 × 512 

3 × 3 512 9 × 9 × 512 
Max pool 3 × 3 - 9 × 9 × 512 

Flattn - 1 4 × 4 × 512 
Fc - 1 8192 

Out - 1 1024 

Table 2. Fundamental information about the ResNet-50 layers and associated parameters of the 
network architecture. 

Type Filter Size Channel 
number 

Input Size Times 

Conv1 7 × 7 64 156 × 156 × 3 1 
Max pool 3 × 3 - 77 × 77 × 64 1 

Conv2  
1 × 1 64 38 × 38 × 64 

3 3 × 3 64 38 × 38 × 64 
1 × 1 256 38 × 38 × 256 

Conv3 
1 × 1 128 19 × 19 × 128 

4 3 × 3 128 19 × 19 × 128 
1 × 1 512 19 × 19 × 512 

Conv4 
1 × 1 256 10 × 10 × 256 

6 3 × 3 256 10 × 10 × 256 
1 × 1 1024 10 × 10 × 1024 

Conv5 
1 × 1 512 5 × 5 × 512 

3 3 × 3 512 5 × 5 × 512 
1 × 1 2048 5 × 5 × 2048 

Avg pool 7 × 7 - 5 × 5 × 2048 1 
Flattn - 1 5 × 5 × 2048 1 
Out - 1 51200 1 

3.3. Experimental Protocol 

This study recruited fourteen healthy male subjects without cardiovascular disease or injured 
limbs. Their ages were between 22 and 29 years (22.7 ± 2.1 years, mean ± standard deviation), weight 
between 46 and 78 Kg (61.8 ± 8.8 Kg), height between 165 and 188 cm (173.1 ± 6.1 cm), and heart rates 
between 65 and 78 beats/minute (70.5 ± 3.4 beats/minute). A commercial medical device (medis® 
CS2000, medis, Germany) with the ICG technology was utilized to measure the beat-to-beat SV that 
was considered as the reference value in the study. This experiment was approved by the Research 
Ethics Committee of China Medical University and Hospital (No. CMUH107-REC3-061), Taichung, 
Taiwan. 

The measurement duration for each subject lasted for three minutes. During the measurement, 
four electrodes of medis® CS2000 were placed on the left side of the body. The other four electrodes of 
our designed ICG device were put at the right side of the body, and the PPG sensor was placed on the 
neck. The details of the measurement for the placement of those ICG electrodes were described in our 
previous study [12]. We recorded the beats of medis® CS2000 and our ICG device synchronously. The 
data statistics are described as mean ± standard deviation (SD). 
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3.4. Statistical Analysis 

In this study, PPG pulses are considered as high-quality when their error percentages of the SV 
measured by our ICG device and the medis® CS2000 device are less than 18%. There were 1342 high-
quality pulses. PPG pulses are considered as middle-quality when their error percentages are 
between 18% and 20%. There were 73 middle-quality pulses. PPG pulses are considered as low-
quality when their error percentages are larger than 20%. There were 1720 low-quality pulses. Table 
3 shows the three levels of SQI for all subjects. According to our proposed method, a PPG pulse is 
considered true-positive (TP) when its quality level is correctly identified, false-positive (FP) when 
its quality level is incorrectly identified, true-negative (TN) when its quality level is correctly rejected, 
and false-negative (FN) when its quality level is incorrectly rejected. Here, the performance of the 
proposed method was evaluated using accuracy, (TP + TN)/(TP + FP + FN + TN), precision, TP/(TP + 
FP), sensitivity, TP/(TP + FN), and specificity, TN/(FN + TN). 

Table 3. Quality information of PPG pulses for fourteen subjects. 

Subjects Number of Pulses High SQI Middle SQI  Low SQI 
1 213 97 7 109 
2 231 160 7 64 
3 198 52 6 140 
4 235 132 8 95 
5 303 160 7 136 
6 234 79 6 149 
7 235 81 6 148 
8 193 112 3 78 
9 209 8 1 200 

10 249 105 6 138 
11 261 79 7 175 
12 159 32 4 123 
13 205 93 2 110 
14 210 152 3 55 
All 3135 1342 73 1720 

4. Results 

4.1. Training Outcomes of Deep Convolution Neural Networks 

The proposed VGG-19 and ResNet-50 were trained by 1200 PPG pulses that were divided into 
two categories, high-quality (d = 1) and low-quality (d = 0). The high-quality samples included 400 
pulses randomly chosen from the 1342 samples, and the low-quality samples comprised 800 pulses 
randomly chosen from the 1720 samples. We did not use the pulses belonging to middle-quality to 
train the networks in this study because the sample number of this level was too few, only 73 pulses. 
In order to balance the sample numbers for the two levels, the high-quality samples were extended 
to 800 using the 400 samples. Figure 7a shows the training results for the VGG-19 model. The training 
and validation accuracies are 0.88 and 0.90 after training 105 times to avoid the model overfitting the 
data, respectively. The training and validation loss errors are 0.28 and 0.29, respectively. Figure 7b 
shows the training results for the ResNet-50 model. The training and validation accuracies are 0.94 
and 0.96, and loss errors are 0.15 and 0.16 after training 130 times. 
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(a) (b) 

Figure 7. Accuracy and loss profiles of training and validation in the two models. (a) VGG-19 model; 
(b) ResNet-50 model. 

4.2. Testing Outcomes of Deep Convolution Neural Networks 

The testing samples included 1935 PPG pulses and did not overlap the training samples. The 
high-quality, middle-quality, and low-quality samples comprised 942, 73, and 920 PPG pulses, 
respectively. When the output value of the 2D DCNN was between 0.8 and 1.0, between 0.5 and 0.8, 
or between 0 and 0.5, the PPG pulse was classified as a high-quality, middle-quality, or low-quality, 
respectively. Table 4 shows the performance of the VGG-19 and ResNet-50 models in the 
classification of the high- and low-quality levels. The average accuracy (0.895) of the VGG-19 model 
is lower than that (0.925) of the ResNet-50 model. However, the sensitivity (0.970) and specificity 
(0.970) of the VGG-19 model are higher than those (0.915 and 920) of the ResNet-50 model, 
respectively. For all the testing data, the statistic error of SV is pretty high and found to be 33.5 ± 76.8 
mL. Table 5 shows the statistic errors of SV for the three groups (high-quality, middle-quality, and 
low-quality), as classified by the VGG-19 and ResNet-50 models. With either of the two models, the 
high-quality group obviously resulted in the least SV errors. Additionally, the SV errors using the 
ResNet-50 model were lower than those using the VGG-19 model for the three groups with different 
quality levels. 

Table 4. The testing results for the VGG-19 and ResNet-50 models. TP, TN, FP, and FN denote the 
true positive, true negative, false positive and false negative pulses, respectively. 

Model TP 
(N) 

TN 
(N) 

FP 
(N) 

FN 
(N) 

Accuracy 
(%) 

Precision 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

VGG-19 High vs. 
(Middle + Low) 897 780 213 45 0.87 0.81 0.95 0.95 

VGG-19 (High + 
Middle) vs. Low 1006 774 146 9 0.92 0.87 0.99 0.99 
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ResNet-50 High 
vs. (Middle + 

Low) 
860 910 83 82 0.91 0.91 0.91 0.92 

ResNet-50 (High + 
Middle) vs. Low 933 886 34 82 0.94 0.96 0.92 0.92 

Table 5. The statistic errors of SV in the three groups as classified by the VGG-19 and ResNet-50 
models. 

 SV error (mL) 
Group VGG-19 ResNet-50 

High-quality group (N = 942) 4.5 ± 14.7 2.6 ± 14.2 
Middle-quality group (N = 73) 25.4 ± 42.3 19.9 ± 35.1 
Low-quality group (N = 920) 64.6 ± 102.1 57.67 ± 95.4 

Figure 8 shows the results of SQI classification with the ResNet-50 model for the PPG (blue line) 
and DPPG (orange line) signals moderately corrupted by the baseline drift. The SQI level of each 
pulse was determined according to the error percentage between the reference SV by medis® CS2000 
and the measured SV by our ICG device. An error percentage of below 18%, between 18% and 20%, 
or above 20% represents a high-quality, middle-quality, or low-quality PPG pulse, respectively. The 
first and third rows, and the second and fourth rows of the data correspond to the two SVs, and the 
two LVETs measured by medis® CS 2000 and our ICG device, respectively. The fifth row of the data 
denotes the error percentage of the SV. The red line represents the output value of the ResNet-50 
model. If the output value is larger than 0.8, between 0.5 and 0.8, and less than 0.5, then the PPG pulse 
will be classified as a high-, middle- and low-quality one, respectively. The cross and circle symbols 
denote the first zero-crossing point and minimum-value point of the DPPG pulse, respectively. For 
the seventh PPG pulse in the figure, it belongs to one of the PPG pulses with high quality because it 
has a sharp valley in the starting ejection zone and a clear dicrotic notch. Thus, its corresponding SV 
error percentage is found to be relatively low, 0.02, and the output value of the ResNet-50 model for 
this pulse is 1.0. In addition, the second and third pulses both belong to low SQI ones, although they 
have clear dicrotic notches and flat shape in the starting ejection zones. Since their LVET errors are 
80 and 97 ms, their corresponding SV error percentages are found to be 0.49 and 0.42, respectively. 
Thus, two output values of the ResNet-50 model for these two pulses are both 0. For the fifth pulse, 
it belongs to a middle SQI one because it does not have a sharp valley in the starting ejection zone. 
Thus, its SV error percentage is 0.2, and the output value of the ResNet-50 model for this pulse is 0.6. 
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Figure 8. The results of SQI classification with the ResNet-50 model for the PPG (blue line) and DPPG 
(orange line) signals moderately corrupted by the baseline drift. The first and third rows of the data 
are the two SVs with medis® CS 2000 and our ICG device, respectively, while the second and fourth 
rows are the two LVETs with medis® CS 2000 and our ICG device, respectively. The fifth row denotes 
the error percentages of SV. The red line is the output value of the ResNet-50 model. The cross and 
circle symbols represent the first zero-crossing point and minimum-value point of the DPPG pulse, 
respectively. 

Figure 9 shows the results of SQI classification with the ResNet-50 model for the PPG (blue line) 
and DPPG (orange line) signals in the presence of serious baseline drift. When the baseline of the PPG 
pulses is heavily wandered, the proposed ResNet-50 can still successfully identify these pulses as low 
SQI ones. Thus, the output values of the ResNet-50 model for these pulses are all 0. 

 
Figure 9. The results of SQI classification with the ResNet-50 model for the PPG (blue line) and DPPG 
(orange line) signals corrupted by serious baseline drift. The first and third rows of the data are the 
two SVs with medis® CS 2000 and our ICG device, respectively, while the second and fourth rows are 
the two LVETs with medis® CS 2000 and our ICG device, respectively. The fifth row represents the 
error percentages of SV. The red line denotes the output value of the ResNet-50 model. The cross and 
circle symbols represent the first zero-crossing point and minimum-value point of the DPPG pulse, 
respectively. 

5. Discussion 

In a rule-based classification approach, only finite characteristics in time or frequency domains 
are extracted from a PPG pulse. Therefore, the performance of such a rule-based classification 
approach depends on the kind and number of characteristics. Since the number of the selected 
characteristics is always limited, all the information that exists in the PPG pulse is not fully utilized 
in the rule-based approaches [3,10,12]. Essentially, the main characteristics of a high-quality PPG 
pulse directly affect the measuring physiological parameter. In this study, LVET is defined as the 
time interval initiated at the opening of the aortic valve and terminated at the closing of the aortic 
valve. Thus, for the morphology of a PPG pulse, the starting ejection point is the first zero-crossing 
point of the DPPG pulse during systole. The ending ejection point is the time for the first minimum 
valley of the DPPG pulse during systole, which happens before the dicrotic notch. Thus, the clear foot 
and dicrotic notch are the main characteristics of the high-quality PPG pulse. In the 2D DCNN, the 
convolution layers can automatically classify the different feature patterns from the raw image. Thus, 
the performance of the 2D DCNN in this study is found to be better than that of our previous study 
using the rule-based method [12]. 



Appl. Sci. 2020, 10, 4612 13 of 16 

In the previous study [5], we found that a substantial error is usually present in the LVET 
measured by the PPG or ICG, as compared with the standard reference measured by 
phonocardiography. Although the SV has a linear relation with the LVET according to Equation (1), 
the SV measured by medis® CS2000 is calibrated through some parameters. In this study, both SV 
and LVET measured by medis® CS2000 are used as the references to compare with those measured 
by our ICG device. In the study, one of our findings is that the application of high-quality PPG pulses 
leads to relatively lower errors in the SV and LVET measurement, as shown in Figures 8 and 9. Thus, 
only the PPG pulse with high quality can be used to obtain a reliable LVET and, subsequently, yield 
an accurate SV. In Table 5, the SV is measured by high-quality PPG pulses in which the statistic errors 
of SV for the VGG-19 and ResNet-50 models are found to be relatively low (4.5 ± 14.7 and 2.6 ± 14.2 
mL), respectively. 

In previous studies [10,25,26], the quality level of a PPG pulse was defined by experts in a 
manual fashion. However, in the validation of their algorithms, a direct comparison of performance 
between two published algorithms is restricted due to the different cognitive abilities of such experts. 
In this study, we use three error percentage degrees, below 18%, between 18% and 20%, and above 
20%, to classify individual PPG pulse’s SQI (low, middle, or high). Based on the quantitative degrees 
of error percentage, the proposed algorithm can effectively differentiate the quality level of each PPG 
pulse. Additionally, the accuracy in the SV measurement with a high SQI PPG pulse classified by the 
algorithm is found to be higher than that with a low SQI PPG pulse. 

A classification approach using the DCNN does not need predetermined characteristics or 
features and makes full use of the information embedded in the PPG pulse by taking advantage of a 
deep learning process [27,28]. In our previous study, we proposed a rule-based method combined 
with a fuzzy neural network to determine the SQIs of PPG pulses [12]. In order to increase the 
tolerance of the rule-based method, a PPG pulse with an error percentage of SV less than 40% was 
considered to be of high quality. In the test data, the statistic error of PPG pulses classified to be of 
high quality was set 6.4 ± 12.8 mL. However, the accuracies for successfully determining high- and 
low-quality pulses achieved only 0.83 and 0.86, respectively. On the other hand, in the present work, 
we label a PPG pulse as high quality when its error percentage of SV is less than 20%. In the test data, 
the statistic error of pulses classified as high quality with the proposed ResNet-50 model is 2.6 ± 14.2 
mL. The accuracies for successfully classifying high- and low-quality PPG pulses are 0.91 and 0.94, 
respectively. Since the performance of the proposed 2D DCNN approach for the SQI classification 
seems to be better than the rule-base method, the DCNN method may be applied to increase the 
measurement accuracy of SV. 

Moreover, when the PPG signals are corrupted by serious baseline drift, these PPG pulses 
should be removed by some algorithms before classifying their SQIs using the rule-based method. In 
the study, the proposed 2D DCNN approaches (VGG-19 or ResNet-50) can make use of the 
morphologies of PPG and DPPG waveforms to determine their SQIs. The PPG and DPPG signals are 
first merged and transformed into an image, as shown in Figure 5, before we can use them to perform 
the classification task. As shown in Figure 5c, the image is constructed by the PPG and DPPG pulses 
in which the PPG pulse almost lacks the fundamental morphology of a traditional PPG waveform, 
but it can still be correctly classified as a low-quality one by the proposed ResNet-50 model (Figure 
9). This suggests that the proposed 2D DCNN approaches may be useful for quality classification of 
the PPG pulses, even for those seriously corrupted by motion artifacts and power line interference. 

It is assumed that in a continuous PPG signal, the morphology of a high-quality PPG pulse may 
be gradually changed to a low-quality PPG one. Hence, a middle-quality pulse can be considered as 
a transitional one between the high- and low-quality pulses. In the present work, we define the error 
percentage of the measured SV with middle-quality pulses to be between 18% and 20%. Therefore, 
both the ResNet-50 and VGG-19 models are trained only using high- and low-quality PPG pulses, 
excluding the middle-quality ones. The output layers of the VGG-19 and ResNet-50 models use the 
sigmoid function as the active function. Thus, the current VGG-19 or ResNet-50 model can be 
considered as a regression model for determining the morphologic change of the PPG pulse. We 
define the output ranges of high- and low-quality pulses as between 1.0 and 0.8 and between 0.5 and 
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0.0, respectively. Of course, some testing pulses may be classified as the middle-quality ones when 
their testing outputs are between 0.8 and 0.5. Therefore, in Table 4, we test the performance of the 
VGG-19 or ResNet-50 model with the high-quality class and the not-high-quality class, and with the 
not-low-quality class and the low-quality class. 

Although the ResNet-50 model is constructed by a trained DRNN architecture with a 50-layer 
network, its average accuracy (0.940) for classifying the high- plus middle-quality and the low-quality 
PPG pulses is higher than that (0.92) of the VGG-19 model with a 19-layer network. However, both 
sensitivity (0.915) and specificity (0.92) of the ResNet-50 model are lower than those (0.97, 0.97) of the 
VGG-19 model for classifying these two quality groups. It seems that due to few samples included in 
the study, no significant difference exists between the performances of the ResNet-50 and VGG-19 
models. 

There are some limitations to the present study. First, because the subjects recruited in this study 
all are healthy males, the pulses with the middle- or low-quality are all corrupted, mostly by the 
motion artifacts. In the study, we did not acquire the PPG pulses belonging to arrhythmic beats. Thus, 
gender and cardiovascular disease may somewhat affect the current results. Second, PPG pulse 
morphology would be varied with vascular compliance, which is closely associated with age and 
hypertension [29,30]. The ages of the included subjects are between 22 and 29 years, and their systolic 
and diastolic blood pressure are all in a normal range. Thus, subjects of different ages or with 
hypertension may have various pulse morphologies that may consequently influence the present 
outcome. Third, only 1-second episodes of PPG signals are employed in the current study. To make 
sure that each 1-second PPG signal contains at least one cardiac cycle data, the heart rates of the 
recruited participants must be higher than 60 beats/minute. 

6. Conclusions 

In order to quantify the level of SQI for each PPG pulse, the error percentage of measured SV for 
each beat was used to define the level of SQI for each PPG pulse. The morphologies of PPG and DPPG 
pulses were combined into an image, which was used to determine the quality level of each PPG 
pulse. The proposed VGG-19 and ResNet-50 models can be used to successfully determine the SQI 
of each PPG pulse. Thus, we did not need to explore the characteristics of the PPG pulse to determine 
the pulse SQI when using the 2D DRNN. Moreover, comparing with the results of our study, the 
performance of the 2D DRNN was better than that of a traditional rule-based method. Noticeably, 
the main limitation of the study is the small number of PPG pulses. If more PPG pulses are used in 
the training process of the 2D DRNN, better results can be expected. 
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