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Abstract: Air pollution in urban regions remains a crucial subject of study, given its implications on
health and environment, where much effort is often put into monitoring pollutants and producing
accurate trend estimates over time, employing expensive tools and sensors. In this work, we study
the problem of air quality estimation in the urban area of Milan (IT), proposing different machine
learning approaches that combine meteorological and transit-related features to produce affordable
estimates without introducing sensor measurements into the computation. We investigated different
configurations employing machine and deep learning models, namely a linear regressor, an Artificial
Neural Network using Bayesian regularization, a Random Forest regressor and a Long Short Term
Memory network. Our experiments show that affordable estimation results over the pollutants can be
achieved even with simpler linear models, therefore suggesting that reasonably accurate Air Quality
Index (AQI) measurements can be obtained without the need for expensive equipment.

Keywords: air quality; machine learning; linear models; Random Forest; LSTM

1. Introduction

Nowadays, air pollution represents a major environmental problem, increasingly worsening and
affecting more people every year. This is especially true in urban environments, where the majority of
the industries and traffic reside, releasing into the air alarmingly large quantities of pollutants and
particulate matter that become a severe health risk from exposure [1]. Recent estimates claim that
4.6 million people die each year from causes directly attributable to air pollution [2], with a total of
300,000 cases in Europe only. These figures appear surprisingly high when compared to other common
death causes such as car crashes, which is approximately three times lower [3]. The high incidence of
deaths caused by air pollution can be explained by the fact that more than 90% of the world population
lives in places where the air quality exceeds the guideline limits established by the World Health
Organization (WHO) [4].

Several studies [1,5,6] analysed the relation between air pollution and health issues, both on global
and local scale over long periods of time, demonstrating for instance augmented risks of respiratory
diseases, such as bronchitis and asthma, or even reduced life expectancy [7]. Furthermore, air pollution
is one of the major factors contributing to climate change, especially in terms of global warming.
Even considering the relatively brief period, average temperatures have already risen by 1.9°C since
1980 and data records from NASA report that 19 out of 20 warmest years have occurred between 2001
and the present day (https://climate.nasa.gov/). Besides the direct effects of greenhouse gases, several
subsequent issues are also involved. For instance, warmer periods could increase the ozone (O3) levels
by 1 to 10 ppb during the next years, where drier regions can drastically increase the risk of wildfires,
and consequently release significant source of carbon oxides and particulate matter [8].
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For these and other reasons, a steadily growing concern from authorities, media and citizens
has led to a broad consensus about the need of strong regulations in order to reduce the emissions
of major pollutants in the shortest possible time. Together with important international treaties
(e.g., Paris agreements (https:/ /unfccc.int/process-and-meetings/the-paris-agreement/the-paris-
agreement)), the European Union established a remarkable set of legislation aimed at setting strict
legal limits and target values for the concentrations of major air pollutants to be reached by the
Member States within the next decades (https:/ /eur-lex.europa.eu/legal-content/EN/ALL/?uri=
CELEX:32008L0050). Because of the high population density in the old country, the primary purpose
of this document is the safeguard of the human health by setting limits for Particulate Matter (PM10
and PM2.5), Sulphur Dioxide (SO;), Benzene (C4Hg), Carbon Monoxide (CO), Ozone (O3), Nitrogen
Oxides (NOx), Lead and other toxic heavy metals such as Arsenic and Cadmium. In order to comply to
these directives, each country requires a large amount of sensors to be positioned in key areas, mostly
depending on the distribution and density of infrastructures and buildings. These monitoring stations
can be divided into different groups according to the emission sources, namely: traffic, industrial
or background stations, or the region category. In detail, monitoring stations are categorised as:
(i) urban stations if positioned in central city districts, (ii) suburban stations when localised in the
surroundings, or (iii) rural stations in any other case. In most cases, the urban stations group is the
most significant indicator of the air quality for major cities and therefore requires a higher degree of
attention, translated in both equipment and maintenance costs: without including heavy calibration,
deployment and administration estimates, professional devices can reach prices over EUR 10.000 for a
single unit. Multiplying this value for the number of pollutants or atmospheric conditions and the
number of districts to be monitored in a large city, the yearly expenses can quickly become non-trivial.

At the same time, pollution levels in urban environments can typically be traced back to a
relatively small subset of factors, with the vast majority of the contribution deriving from vehicle
emissions and surrounding industries. Moreover, several studies [5,9] show a strong correlation
between weather condition and trends of various pollutants: ozone levels for instance are directly
influenced by warmer climates and solar radiation levels because of photo-chemical reactions induced
on other pollutants, while temperature inversion layers can trap colder polluted air on the surface.

Given the serious nature of this subject, many studies have been conducted over the years
in order to estimate trends of pollutants or provide air quality forecasts for future hours or days.
These include statistical approaches such as [10], where spatial correlations and seasonal patterns
were exploited to estimate long-term trends of particulate matter (PM, 5) using a hierarchical model,
based on Partial Least Squares regression. Other studies [11-13] investigated the applicability of recent
machine learning approaches based on neural networks to this domain. In [11] different combination
of Multi-Layer Perceptrons (MLP), periodic components and Self-Organising Maps are applied to
hourly values of NO, and meteorological features, showing that the best results can actually be
achieved by directly applying the MLP on the original data. Other solutions propose to merge features
from different domains and leverage the extreme adaptability of deep learning to extract relevant
knowledge and thus provide a finer estimate of air quality. As an example in a urban environment,
U-Air [12,14] exploits different kinds of big data thanks to a composite framework where temporal
and spatial information are processed by two different models to provide a robust 48-h forecast of
the Air Quality Index (AQI). In [13], a similar approach is adopted and improved with the addition
of an Attention Pooling layer that dynamically adapts to the most relevant monitoring station for a
fine-grained prediction.

Despite the accuracy of current state-of-the-art solutions, a major drawback of the listed systems
is the high reliance on real-time sensor data, which strongly limits their use to a small part of urban
and densely populated areas covered by monitoring stations. With reference to the systems and the
maintenance costs, expanding the encompassed areas can be a slow process, if feasible at all.

In this work we propose to combine meteorological and traffic-related features with recent
machine learning and deep learning models to obtain a robust estimate of both pollutants and AQIL.
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As a case study, we combine three years of sensor and vehicle logs from the city of Milan, from 2013
to 2016, training different kind of models to predict the monitored air pollutants, namely Nitrogen
Oxides (NO,, NOy), Carbon Monoxide (CO), Benzene (CgsHg), Ozone (O3), Black Carbon (BC) and
Particulate Matter (PMjg, PM;5). Expanding on previous work [15], we adopt a series of machine
and deep learning models to predict the evolving trends of the pollutants in time. The predictions are
first compared with a subset of the actual sensor logs recorded from high-end monitoring stations
as ground truth, then used to predict an Air Quality Index following European standards, assessing
the accuracy in identifying the correct category. Despite the undeniable loss in terms of performance
with solutions including the pollutants in the feature set, we show that accurate estimates can still be
obtained for most pollutants and therefore a fairly accurate AQI can be predicted even when relying
only on environmental information.
In summary, the contributions of this paper are as follows:

*  We study the problem of air quality estimation in urban areas with a focus on environmental
features, discussing the relations between meteorological measurements and vehicle transits with
air pollutants;

*  We test and propose a series of experiments conducted with different popular machine and deep
learning models, highlighting advantages and drawbacks of each solution;

*  We demonstrate the feasibility of this task, showing fairly robust estimations without introducing
past measurements of pollutants in our experiments.

The paper is organised as follows. Section 2 introduces: (i) the data sources used for the
experiments, describing the process of acquisition, preprocessing and analysis; (ii) the frameworks and
tools used to manipulate the data; and (iii) the evaluation measures and the experiment setup adopted.
Section 3 reports the results obtained from the adopted solutions discussing their performance. Lastly,
in Section 4 concludes with a summary of the study and delineates possible future works.

2. Materials and Methods

This section describes the different data sources selected for our case study and the set of
experiments conducted on the processed features. First, in Section 2 we discuss how we obtained the
different sets of sensor measurements and vehicle transits and briefly describe the available information.
In Section 2.2 we enumerate the different processing steps carried out to prepare the data for our
tests. In Section 2.3, we introduce our testing methodology, listing the models employed for training
and the motivation behind the choices. Lastly, in Section 2.4 we outline our testing environment,
enumerating the tools and frameworks adopted, and in Section 2.5 we provide a thorough description
of the different experiments and how they were implemented.

2.1. Data Sources and Acquisition

In this case study we used information collected in three years, from 2013 to 2016, limited to the
central areas of Milan. In particular, we collected three different data sources: (i) meteorological data
from different sensor types, such as temperature, humidity, pressure and wind speed, (ii) traffic data
derived from the passage of vehicles recorded from fixed video cameras in a belt surrounding the
city center, and (iii) the ground-truth pollutant trends, obtained from different monitoring stations
mounted in fixed crucial points.

Regarding meteorological data, we obtained the sensor logs of seven different weather stations,
mainly distributed around the borders of the city, as shown in Figure 1. The monitoring platforms
and their respective data are provided by Agenzia Regionale per la Protezione dell’Ambiente (ARPA)
Lombardia, the reference institution in the region for environmental protection. This and other kind
of datasets have recently become freely available for download on the regional Open Data portal
(https:/ /www.dati.lombardia.it/). Logs are provided with yearly subdivisions in standard CSV files,
where each one stores data corresponding to a single sensor, defined by three fields: the unique ID
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for the sensor, a timestamp of the measurement in local time and the corresponding value measured.
Any other additional information related to the sensors is in fact explained by a descriptor file first
indicating the unique ID, name and position of the specific platform, then enumerating the different
sensors of which it is equipped, specifying their unique ID, type, their measurement interval, their
unit of measure and the operator used to normalize the logs into a time series with regular intervals
between samples. From these descriptors it is possible to trace the sensors back to the respective
measured weather feature and thus group them in six different types, displayed in Table 1. Except for
the pressure category that only presents a single sensor, every other class of meteorological feature is
well represented by at least three time series, in the three-year period we analysed. In terms of data
format, every sensor class utilises a standard measurement unit and contains records with a regular
resolution of an hour, obtained by averaging the aggregation of the raw measurements. The only
exception is represented by the precipitations category, which instead provides logs aggregated with a
cumulative sum, indicating the total amount of millimeters of rain which fell every hour.
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Figure 1. Map displaying the distribution of weather (blue), pollutants (green) and transit (orange)
sensor stations around the city center of Milan.

Table 1. Weather sensors divided by feature type, with amount of unique sensors per group, unit of
measurements, time interval between samples and aggregation type used to unify the data formats.

Sensor Type Count Unit of Measure Resolution Aggregation
temperature 6 °C hourly mean
humidity 5 % hourly mean
wind speed 5 m/s hourly mean
wind direction 5 deg. hourly mean
precipitations 5 mm hourly sum
global radiation 3 W/m? hourly mean
pressure 1 hPa hourly mean
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A similar procedure concerned the measurements of the pollutants. Data were once again
provided by ARPA, freely available for download through the above-mentioned portal, and were
subdivided into file descriptors, containing name, location and equipped sensors of the monitoring
stations, together with individual CSV files containing yearly measurements of the individual sensors,
identified by a unique ID. The positioning of these cells is visible in Figure 1. In total, exploring the
three-year period considered for this work, we analysed 10 different pollutant categories, each one
measured by at least one sensor in the central area of Milan.

The count of unique measurements varies greatly with the severity and the intrinsic relevance of
the pollutant for the definition of an air quality index, which is typically identified by a combination of
NO;y, O3 and particulate matter, as described in Section 2.3. Specifically, nitrogen oxides (NO,, NOy)
are represented, respectively, by 8 and 7 unique sensors distributed around the city center, C66 and
CO by 4, O3 and particulate matter (PMg, PM;5) by 3, BC by 2. Lastly, SO, and N Hj3 are represented
by a single measurement only.

As for the meteorological data, logs for the pollutants provided by ARPA correspond to an
hourly aggregation by average, with the exception of particulate matter (PM;y and PM,5), where
measurements are stored with daily interval, representing a 24-h mean value. While this is sub-optimal
given the consistency of the remaining data, it does not represent a major issue and it is somewhat
expected since the vast majority of air quality indicators only make use of a daily average for
particulate matter.

The last feature type employed in this work is represented by recorded hourly transits in the
congestion charge surrounding the center of Milan. In this case, data is provided by Agenzia
Mobilita Ambiente e Territorio (AMAT) (https://www.amat-mi.it/) and encompasses the C Area,
corresponding to the urban region of Cerchia dei Bastioni. The area is accessible by a total of 42 gates,
displayed in Figure 1, each one monitored by fixed cameras continuously monitoring and recording
the plates of any vehicle entering the city center. The logs were cross-referenced with data from the
regional Department of Motor Vehicles, in order to obtain, for each plate, a list of characteristics of
the corresponding vehicle, including fuel type and potential category of European emission standard.
The complete dataset is subdivided into three main CSV files: the first containing information about the
monitoring gates, the second providing detailed information about vehicles and the last one providing
the transit records in the city center, during the three-year period. Altogether, these files contain
information about four main features: (i) the emission standard category, from Euro 0 to Euro 6; (ii) the
fuel type, namely petrol, diesel, electricity, gas or hybrid; (iii) the category of vehicle, public transport,
cargo or normal cars; and (iv) additional information such as whether the vehicle was authorized into
the area, or whether it is a service vehicle or if it belongs to residents.

2.2. Data Preprocessing and Analysis

As introduced in the previous section, the available data appears scattered in many different
physical files or presents different formats and configurations. In order to align the features into a
single common representation for model training, we carried on an extensive multi-step preprocessing
phase, combining (i) data aggregation (ii) data cleaning (iii) imputation and (iv) feature engineering.
Considering the first point, aggregation was necessary for two main reasons: first and foremost,
the collected data described above unfortunately presents a large number of randomly missing
values, without any distinguishable pattern in terms of time periods with the exception of the transits,
which include none of all the available features in four specific intervals, as described below. Second,
the amount of sensors and their distribution on the territory was extremely limited in terms of covered
surface, certainly not enough to conduct a proper spatial analysis. A bilinear interpolation of the
values over time is typically applied to simulate a continuous distribution of the features, such as in
U-Air [12], but this option was also discarded again because of the lack of data in many of the sensors
equipped by the monitoring stations, for both weather and pollutants, as shown in Table 2. Therefore,
in order to drastically reduce the amount of missing data while maintaining a coherent ground truth,
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we opted for a single time series for each sensor type, aggregating by timestamp and averaging when
more than one value was present over the same timestamp. This operation is justified by the fact
that, given the relative proximity of sensors, most records present extremely similar trends over time.
The results, in terms of data coverage, are reported again in Table 2.

Table 2. Total amount of missing values for weather and pollutant sensors. On the left, the count
represents the amount w.r.t. total feature values, on the right, the result after mean aggregation
among groups.

Feature Total Missing Percent. Missing (agg.) Percent.z (agg.)
BC 7623/52558  14.50% 974/26279 3.70%
CeHpg 12334/105116  11.73% 2/26279 0.01%
co 2558/105116 2.43% 2/26279 0.01%
NH; 3835/26279  14.59% 3835/26279 14.59%
NO; 9959/210232 4.74% 2/26279 0.01%
NOy 8675/183953 4.72% 17/26279 0.06%
O3 4426/78837 5.61% 2/26279 0.01%
SO, 1800/26279 6.85% 1800/26279 6.84%
PMjyg 131/3288 3.98% 0/1096 0.00%
PM;5 95/2192 4.33% 0/1096 0.00%
humidity 7329/131405 5.58% 0/26281 0.00%
pressure 171/26281 0.65% 171/26281 0.65%
radiation 26455/78843  33.55% 0/26281 0.00%
rain 42105/131405  32.04% 1/26281 0.01%
temp 7471/157686 4.74% 0/26281 0.00%
wind dir. 48433/131405  36.86% 6373/26281 24.25%
wind speed  35308/131405  26.87% 2/26281 0.01%

Table 3. Missing periods in the transits dataset with respective length.

From To Period Length
2014-02-06 00:00:00  2014-02-06 23:00:00 23h
2014-06-01 00:00:00  2014-06-01 23:00:00 23h
2014-08-04 00:00:00  2014-08-17 23:00:00 13d23h
2015-05-30 17:00:00  2015-05-30 23:00:00 6h
2015-10-24 07:00:00  2015-12-15 22:00:00 52d15h

A similar process was carried out on traffic-related features: first, data from vehicle details were
merged with transit records and subsequently aligned with the time resolution of the available sensors
by summing the passages occurred in the same hour. Then, since spatial information was discarded in
previous sets to reduce sparsity, transits from all the gates was summed up in order to obtain once
again a single time series for each of the vehicle-related features. Therefore, the final aggregated
dataset contains the sum of all the vehicle transits at any gate and during the same hour for every
traffic-related feature, from the emission standards (euro-0 to euro-6) to vehicle types and fuel types.

Concerning the data cleaning phase, every available meteorological and aerial feature was
checked for noticeable outliers. Because of the hourly aggregation of the original sensor logs and the
aforementioned spatial reduction, little to no effort was required to check and limit the values into a
reasonable range. Additionally, most of the feature sets already appear in predefined ranges, such as
the humidity provided in percentage, while others inherently describe out of the ordinary yet crucial
situations, such as the rainfall amount, which can only be checked for impossible values (e.g., negative
records). During this phase we also discarded those features that still contained a large amount of
missing data, namely wind direction which contained a single year of data out of three, and dropped
transit entries representing unknown values (euro_na, fuel_na, vehicle_na). The latter were substituted
with a single additional feature named fotal, representing the total amount of transits, regardless of
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the vehicle type. An analogous procedure was carried out on target variables. On the basis of the
former analysis, we decided to exclude from the study both sulphur dioxide (SO;) and ammonia
(NH3) measurements for three main reasons: first and foremost, both pollutants were represented
by a single ground-truth sensor each which contained a large portion of missing data, as shown in
Table 2. Second, the low correlation displayed by the two pollutants, visible in Figure A1, cannot
justify a possible imputation phase over their respective time series, especially with an high percentage
of data to be estimated. Third, our main objective is the estimation of an Air Quality Index where
both categories are not among the required pollutants for its computation, thus not essential for our
case study.

The aggregation procedure reduces the amount of missing information, nevertheless many
features still remain incomplete or even unchanged in the particular case of transits, where the
spanned missing intervals were the same across every record, as shown in Figure 2 and Table 3. While
this does not represent a problem in most cases, it is preferable to maintain a continuous time series,
especially for experiments with sequence-based models such as deep Recurrent Neural Networks.
For consistency, we therefore opted for a domain-based imputation phase, during which existing
features from the same domain (namely weather, pollutants and transits) are exploited to estimate
missing values in the others. This decision was once again motivated by the extreme trend similarities
among sensors of the same category, as reflected by the correlation matrices displayed in Appendix A.

)
SR A
~\ 24 S @ o © \&izb@é\ é}'\\"’
'&, N og o O N 9 A
59 S oo(;,éwofx)ovg)obo‘ > & Q& \\ee}\ oq\oe}\o ‘\®°~\c®,
\oé‘b\o%"v s R0 S S S S S S S e F T e e SR SESR A
Q< AACHEN M N F LS N

&
SR o

s(\
o &P

2013-01-01 |

2016-01-01 | ‘ |

Figure 2. Missing values in the aggregated hourly set over the three-year span, highlighted by the

white areas.

In our work, we adopted an hybrid approach: considering the time series representing
the evolution of a single feature and an empirically determined threshold of six hours, if a
continuous sequence of missing values remains below the threshold, we simply impute by polynomial
interpolation (with grade 2). Otherwise, we apply an iterative statistical imputation strategy, where
the features with the least amount of missing values are estimated first, using all the others as
input with a round-robin process. This allows for theoretically better results since at every step we
maximise the amount of ground-truth information provided to the model. In our case, we exploited
a linear regression approach with Bayesian Ridge regularisation. In the particular case of transits,
an iterative procedure could not be applied since every feature was missing in the same intervals.
Nevertheless, the same interpolation approach is employed for periods below the threshold, while for
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all the remaining ones we adopted a statistical approach for time series forecasting. Specifically, given
the extreme regularity and the multiple seasonalities of transits, we used a Trigonometric, Box-Cox
Transformation, ARMA Errors, Trend and Seasonal Components (TBATS) method to generate the
periodical components, then scaled the result by mean and variance of the surrounding context in
order to avoid large discontinuities between imputed and ground-truth values. This technique was
applied to every missing period except the last one, as the time range of 52 days was exceedingly long
for any forecast or estimation to be considered reliable. Instead, we opted for truncating the three-year
span into a shorter albeit continuous testing period for every feature, starting from 01/03/2013 until
24/10/2015. This in practice excludes the last part of the dataset, but guarantees a full and regular
time series.

Subsequently, we carried out the feature engineering phase. This operation is not strictly required,
especially for deep sequence-based models, but can be extremely beneficial for simpler linear models.
Specifically, we augmented the merged data set with (i) temporal features, (ii) lagged features and (iii)
aggregated information. In the first case, for each record we introduced specific information about the
month, day of the week and time of day, encoded using trigonometric functions in order to maintain
their inherent cyclical trend. In practice, we exploited the decomposition documented in Equation (1)
to generate the described pair of values, using the previously mentioned time intervals.

Psin = sIn(270 % f/Pf),  ¢peos = o827 % f/Pf),  ¢prp, = exp {Z}ﬂ(f Vi)z} mod Py (1)

In the formulas, f represents the selected feature (month, day of the week or hour of the day),
P represents the time period required for a complete cycle, in this case respectively 12, 7 and 24.
Additionally, we also employed a standard Radial Basis Function ¢,;, for each month i, shown again
in Equation (1). This allows the models to capture average trend information in the period highlighted
by the Gaussian function. As last time-related feature, we added a simple dummy variable set to 1
when the given day represented a public holiday and 0 otherwise.

Limited to PM;9 and PM; 5, we conducted an additional processing phase generating a parallel
dataset by further reducing every feature to a daily resolution by averaging over the 24-h window.
This is only required for particulate matter since, as reported in Table 2, it is the only category of target
variables with daily resolution. While upscaling the respective time series could be considered as a
viable option, the behaviour of particulate matter did not present strong correlations when compared
with other air pollutants. Therefore, an harmonization procedure with the remaining features would
have required different heavy assumptions on the daily trends of particulate matter that were simply
not possible given the available data.

In order to assess which features are potentially significant for an accurate estimate of pollutants,
we investigated the Pearson correlation coefficient [16] by means of a correlation matrix, a standard
measure to quantify linear correlation between pairs of variables. The coefficient can assume values in
the range [—1, —0—1}, with —1 indicating total negative correlation, 41 total positive correlation and 0 no
correlation at all. In Figure 3, correlation coefficients among target pollutants and feature variables are
reported. It can be observed that, despite the weak values, most pollutants present a positive trend
with the increase of transits. This is especially noticeable with particulate matter (PM;y and PM;5),
where the correlation is stronger. With reference to the aforementioned aggregation, we must point out
that the reported correlations with particulate matter refer to the dataset reduced to daily resolution,
while all the other measures refer to the average hourly records.

Confirming the statements reported in Section 1, meteorological features appear to be the most
correlated with the targets, in particular temperature, wind speed and radiation negatively influence
the trend of pollutants, while pressure and humidity present a weak positive correlation. In contrast
with the other dependent variables, the Ozone (O3) shows an opposite behaviour in most cases:
it appears for instance strongly correlated with temperature, radiation and wind speed, while also
noticeably correlated with humidity in a negative way. Another unexpected result is represented by
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the complete absence of linear correlation between rain and pollutants. Despite the weak coefficients,
we maintained the feature, as the influence of rainfall on air pollutants is seldom immediate and may
typically occur in the following hours or days, thus the apparent lack of linear correlation.

Likewise, we investigated the autocorrelation for each of the hourly pollutants, with the aim of
defining suitable time windows for the estimation procedure. This measure can be defined as the
correlation between a signal and its copy delayed over time, thus having the same range [—1, +1].
As observable in Figure 4, every pollutant presents a high autocorrelation in a 72-h window, with strong
spikes on the 24th and 48th mark. Therefore, limited to the target variables with hourly resolution, we
augmented the set with lagged features selecting two time windows of 24 and 48 h. While a longer
window could have been beneficial, these intervals should still allow for a thorough analysis over the
importance of lagged variables in the estimation, and at the same time avoiding a feature explosion in
the datasets. We note that this procedure is not required for recurrent models such as Long Short-Term
Memory (LSTM) [17], as the inherently sequential architecture allows for time windows of arbitrary
lengths, nevertheless we applied the same criteria by forcing the latter to assume the same values of
the two intervals chosen. We also point out that this analysis did not take into consideration particulate
matter because of the daily resolution of the signals. In this case, we opted for two simpler time
windows with a lag of one and two days respectively.
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Figure 3. Correlation matrix between target variables and selected features.
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Figure 4. Autocorrelation for the hourly pollutants considered in the case study, over a time window
of 72 h.
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2.3. Methodology

The main objective of this study is the estimation of an Air Quality Index (AQI) in an urban
environment, exploiting data related to vehicle transits and meteorological features. While the process
can be defined as a standard classification task using AQI levels as target categories, we opted
instead for the definition of a regression problem over pollutants in order to assess the validity of the
solution on each target variable. Moreover, the latter configuration can be reduced to a classification
problem by computing the AQI over the regression result. The AQI estimate is computed in two steps:
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(i) independent estimation of each pollutant (NO,, NOy, C¢Hg, CO, BC, O3 at hourly resolution, and
PMyg, PM; 5 at daily resolution), and (ii) computation of the AQI according to the official European
formula, by using the estimates of each pollutant. The approaches proposed for the aforementioned
steps were evaluated with different dataset configurations, considering weather and traffic features at:
(i) time ¢, (ii) from time t — 24 to time ¢, and (iii) from ¢ — 48 to time t.

Formally, we can define this multi-step prediction pipeline as follows: given a set of aggregated
features from two different domains, namely meteorological measurements ¢, and vehicle transit
counts ¢,, temporal features ¢;, and a machine learning model g with parameters 0, the objective is
to first provide an estimate !, 1 < i < n for each pollutant i and time step ¢ on the test set, such that
9= gi(Ph, oL, Pl .., PL7Y, P 16;), where w indicates a specific time window. Obtained the estimates
9%, Vi A t, the goal is to evaluate a single global measure of air quality over the same data for each time
step, named Air Quality Index (AQI), defined as k' = AQI(y}, v, ...,y},) where m < n is a subset of
the original pollutants and k € [0, K] is a single integer value indicating the gravity of the air pollution.
Specifically, we adopted a common European Air Quality Index (CAQI) which provides five different
levels of severity based on three pollutants, namely NO;, Oz and PMj, as detailed in Section 2.5.

Given the data described above, we trained the same set of regressors on every available feature
for each pollutant. Specifically, we selected for this work four models with different characteristics:
(i) a linear regressor with Bayesian Ridge Regularization, (ii) a Neural Network Using Bayesian
Regularization (BRNN) (iii) a Random Forest Regressor (RF) [18], an ensemble model using decision
trees as base estimators, and (iv) a Long-Short Term Memory (LSTM) model [19].

The first linear model can be seen as a standard Ordinary Least Squares (OLS) algorithm, with the
addition on a regularization process that minimizes the weight estimates, therefore reducing the
influence of strong outliers in most situations. In this particular case, the regularization uses a
probabilistic approach similar to ridge regression, where the weights are assumed to follow a normal
distribution around zero. Linear models represent the best compromise between performance and
efficiency, for this reason they are typically employed as robust baseline [20].

Together with the linear model, we included a simple Neural Network with Bayesian
Regularisation (BRNN) as second baseline. The motivation behind this model is twofold: first of all,
previous work [15] had already shown encouraging results using this architecture. Second, it provided
a good comparison between standard multi-layer perceptrons and recurrent neural networks.

The third approach selected, Random Forest, belongs to the category of ensemble models based
on bagging. The latter technique involves the separate training of n weaker models, in this case
standard decision trees, where the strong model is represented by the whole group and the regression
output is obtained by averaging the results of each individual estimator. Formally, given a training
set S, the bagging procedure generates n new sets S; such that |S;| < |S| by sampling the original
data. Subsequently, n individual models M; are trained on each S; and their results are aggregated by
averaging in regression tasks, or by majority voting in classification problems. Despite the high demand
in terms of computational resources and training time, Random Forests (and bagging in general)
typically provide robust solutions without suffering from overfitting like simpler regression trees,
thanks to the sampling procedure and ensemble learning. Because of their versatility and resilience to
outliers, RF models have already been successfully applied in many different regression tasks, from
calibration of air pollutant sensors [21] to air quality estimation in urban environments [22,23].

Lastly, we employed a Deep Recurrent Neural Network (RNN), specifically a LSTM model.
In general, RNNs inherently handle input sequences with varying length; however, the latter is
particularly suited for the task given the internal architecture. LSTM units are in fact able to capture
both long-term patterns and short-term variations thanks to a combined mechanism of input gates,
where the information content from new examples is merged with the internal state of the network,
and forget gates, where the decision of whether to keep or discard information from previous states is
taken. Given their high adaptability to sequential inputs, LSTM models have been successfully applied
to time series forecasting and estimation of air pollutants in different domains [17,24,25]. For our work,
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we made use of a LSTM network structured with three hidden layers with dimension 100, followed by
a simple linear layer with a single output, corresponding to a specific estimated pollutant.

2.4. Frameworks and Tools

In this section we enumerate and briefly describe tools and hardware used in order to conduct
the preprocessing and analysis steps addressed in Section 2.2 and the experiments described in the
following paragraphs of this manuscript. As data were provided in CSV format, every preliminary
phase from acquisition to aggregation and cleaning was carried out using a scientific Python 3.6
environment through a combination of pandas [26] and numpy [27] libraries, with the support of the
statsmodels package [28] for time series analysis and matplotlib for data visualization. For the data
imputation phase and the following experiments, we leveraged the popular scikit-learn library [29],
which offers rich functionalities in many different machine learning domains, from data preprocessing
to the metrics computation, and provides out-of-the-box robust implementations for many popular
models and algorithms. Specifically, together with the previously mentioned packages, we used
this library for data normalization, definition of the cross validation, other testing setups described
in the next section and implementation of the Bayesian Ridge linear regressor. As deep learning
counterpart, we employed the PyTorch framework [30], another extensive library providing a wide
variety of features. In particular, the latter was leveraged for the implementation and training of
the LSTM regressor. A detailed description of software libraries and respective versions is provided
in Table 4. In order to carry out the experiments with the BRNN model, we also leveraged an R
environment considering the lack of equivalent Python implementations. In this case, we maintained
the same processing pipeline using the libraries listed in the right section of Table 4 to reproduce
pandas and numpy functionalities, then we trained the model provided by the namesake package brnn.
Once trained, the results were stored and evaluated in the Python pipeline, in an identical manner to
the other solutions.

All the procedures and experiments described in this paper were performed on a Linux
workstation equipped with an Intel Core i9-7940X processor with a base frequency of 3.10GHz and a
total of 14 cores, 128GB of RAM and 4 x Nvidia GTX 1080Ti video cards, with CUDA 10.1 capabilities.

Table 4. List of Python (top) and R (bottom) libraries and respective versions installed on the machine.

Package Version
joblib 0.14.1
matplotlib 321
numpy 1.18.2
pandas 1.0.3
pip 20.0.2
python 3.7.6
pytorch 1.5.0
scikit-learn 0.23.1
statsmodels 0.11.1
Package Version
gdata 2.18.0
brnn 0.8
tidyverse 1.3.0
reshape?2 144
dataPreparation 043

2.5. Experiments

In summary, the main goal of this work is AQI classfication. We tackled this problem by first
defining a regression task on each individual pollutant, then merging the results using the index
thresholds and computing an overall performance on air quality estimation. Therefore, in the following
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paragraphs the discussion will first focus on regression results and then move to the classification
problem, analysing the estimates of the different models employed. The first regression task was
carried out with different evaluation runs performed on each pollutant independently, using the same
setup for each target variable with the only exception of particulate matter. In the latter configuration,
the training procedure remained the same described below, with the only change of dataset employed,
as stated in Section 2.2. For simplicity, in the following paragraphs we refer to the original set of time
series with hourly resolution as Hourly Set (HSet), while referring to the daily-averaged data as Daily
Set (DSet).

Despite the definition of a standard regression task, special care must be taken in the event of
time series data. First, features in the training and test subdivisions are inherently dependent on
time, threfore a random selection of a portion of samples cannot be considered a viable option as the
temporal dependency must be respected. This is also crucial for training the LSTM model or any
recurrent network in general, given their sequential nature.

Additionally, both meteorological trends, transit counts and consequently pollutant measurements
are bound to change in the longer period. Considering the available information spanning almost
three years, we had to take into account that even the same models may present extremely different
results, depending on the training intervals and the test windows selected.

In order to assess the performance of the aforementioned models,we identified 3 folds of equal
size over the three year interval, each one subsequently divided into training, validation and test sets.
We maintained a continuous timeline in the second subdivision as well, by keeping the first 70% as
training, 10% as validation and the remaining 20% as test data. The presence of a validation set is useful
to assess the number of iterations required to maximize the performance without overfitting, moreover
provides a clear separation between train and test data, avoiding any possible time dependency.
Every model was then fitted and evaluated independently and the final results were obtained by
averaging the scores over the three splits.

We trained the linear model using the default tolerance threshold ¢ = 1 x 10~#, the Random
Forest model using 100 base estimators with maximum depth set to 8 to further reduce overfitting
and the LSTM model using two layers of 100 hidden cells, using a dropout between hidden and linear
layer to improve the generalization, with a drop rate set to p = 0.5. For this last training configuration
we used an Adam optimizer with learning rate A = 1 x 103, iterating for 20 epochs with a batch size
of 32. Lastly, the BRNN was initialized using the parameters defined in previous work in order to
maintain a comparable setup.

In every testing scenario we employed a Mean Squared Error loss, then we computed on every
model two common regression metrics in order to better assess and compare the results. Specifically,
we computed the Root Mean Squared Error (RMSE), which better represents the actual error on the
test set and the Symmetric Mean Average Percentage Error (SMAPE), which is an error-based measure
expressed in percentage and therefore unbound from any value range. Formally these measures can
be expressed as in Equation (2).

RMSE = SMAPE = — Zyl Ul )

yil + |7

We precise that our current formulation for the sMAPE does not correspond to a percentage,
but we kept a simpler [0, 1] range, where 1 = 100% error rate, to improve readability. Completed and
evaluated the regression problem, the AQI estimation performance still needs to be investigated.
For this task, only a subset of the pollutants need to be taken into consideration, which typically
consist of Nitrogen Dioxide (NO;), Ozone (O3) and particulate matter, in most cases referring to PMy.
Regarding the AQI, the European Environment Agency (EEA) defined a common metric, named
Common Air Quality Index (CAQI), which is described by five different thresholds and computed on
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the pollutants listed above [31]. A subset of the complete table, including global indices and thresholds
for individual pollutants are reported in Table 5.

Table 5. Common Air Quality Index (CAQI) reference table. Indices of individual pollutants correspond
to hourly concentrations (ug/ m3), except for the 24-h index for PM;g. The common index is defined as
the worst quality among sub-components.

Quality Index NO, O3 PMjyo

Very low 0-25 0-50 0-60 0-15
Low 25-50  50-100  60-120  15-30
Medium 50-75  100-200 120-180  30-50
High 75-100 200-400 180-240 50-100
Very High ~ >100 >400 >240 >100

The CAQI can be computed with both hourly and daily concentrations. In order to compute the
global index, the maximum value among pollutant concentrations must be taken.

Since our data contained hourly concentrations for every pollutant except particulate matter,
we computed the hourly version using the daily mean of PM;, using the ad hoc index provided
by the CAQI. In order to evaluate the regression estimates through the AQI, we first computed the
ground-truth indices using the real pollutant trends in the test set, then applied the same transformation
to the estimated time series produced by the trained models. We defined the latter task as a standard
multi-class categorization problem, employing the Fl-score as metric for its robustness against
unbalanced classes.

3. Results

In this section, the results obtained from the aforementioned tasks are presented. The discussion
will first focus on regression results, analysing the advantages and drawbacks of the employed
techniques over each pollutant and time window, for both Hourly Set and Daily Set, subsequently the
AQI prediction estimates will be presented and assessed.

As summarized in Table 6, the results on the regression task over the pollutants with hourly
resolution is in line with expectations. The performance on the Hourly Set without lagged variables,
displayed on the columns marked with w = 0, highlights on average better results for simpler models:
in every case, the best values in terms of RMSE were achieved by the linear model or the Random
Forest regressor, with the only exception of NO, where the BRNN obtained a slightly smaller error.
The second configuration, indicated by w = 24, displays results obtained with lagged variables
over a 24-h period. In this case, the longer window allowed the models to reach better estimates in
most cases, with a relevant edge of RF in half of the considered pollutants. Here the exceptions are
represented by the benzene (C¢Hg), where the linear model outperformed the other solutions, and the
ozone (O3), where the LSTM surpassed the linear regressor by a small margin. These values might be
explained by the higher autocorrelation of these two pollutants on the 24-hour mark, visible in Table 4,
together with the strong periodic patterns of the ozone influenced by solar radiation that could favour
sequence-based solutions like LSTM.
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Table 6. Results of the adopted models on the Hourly Set. For each pollutant and model, RMSE
and sMAPE metrics are provided, in three different scenarios: no lag, 24-h, and 48-h windows.
Results highlighted in bold represent the best performing model w.r.t the pollutant and the window w.

w=0 w=24 w =148
RMSE sMAPE RMSE sMAPE RMSE sMAPE

LinBR  23.1846 0.1483 22.6198 0.1455 16.3636 0.1125
BRNN  18.3557 0.1383 23.8471 0.2385  27.4220 0.3130

Pollutant Model

NO; RF 15.0055 0.1090 14.3534 0.1029 14.5001 0.1030

LSTM  37.7267 0.5072  16.4886 0.1160 15.4383 0.1172

LinBR  68.6586 0.2058 64.1705 0.1801 62.0700 0.1670

NO BRNN  80.6203 0.2425 90.5791 0.3007  103.2989 0.3742

x RF 66.4126 0.1764  62.0596 0.1599 64.2854 0.1634

LSTM  99.4813 0.4536 78.0742 0.1912 58.8296 0.1598

LinBR 1.0836 0.2128 0.9825 0.1887 1.0204 0.1801

C.H BRNN 1.0489 0.2119 1.3753 0.2049 1.2660 0.2965

6776 RF 1.2422 0.2652 1.1053 0.2315 1.1259 0.2296

LSTM 1.0576 0.1990 1.0272 0.1947 0.9637 0.1768

LinBR 0.3930 0.1401 0.4427 0.2118 0.4341 0.1833

co BRNN 0.5162 0.1788 0.6543 0.2408 0.5529 0.2370

RF 0.4498 0.1524 0.4276 0.1435 0.4426 0.1464

LSTM 1.2382 0.2998 0.4647 0.1502 0.3413 0.1110

LinBR 2.0829 0.2406 2.0312 0.2221 2.0092 0.2007

BC BRNN 2.5971 0.2944 3.1198 0.2925 2.6993 0.3601

RF 2.1384 0.2325 1.8803 0.1951 1.8913 0.1951

LSTM 2.2806 0.2678 2.4090 0.2154 2.0605 0.2274

LinBR  15.7620 0.2934 14.7650 0.2411 17.9655 0.2534

o BRNN  31.3684 0.3989 18.1709 0.3494  22.2982 0.5929
3

RF 18.0772 0.3364 16.2145 0.3016 15.6594 0.2881
LSTM  23.0364 0.4558 14.4157 0.2402 14.3838 0.2264

Further increasing the time interval, as summarized in the last column (w = 48), does not seem
to introduce a relevant advantage over previous solutions, as the error rates computed on the new
estimates appear roughly the same. Again, the only exception is represented by the LSTM model,
that obtained better results for the majority of pollutants, but most importantly consistently reduced
its error with respect to the previous 24-h configuration. Not surprisingly, a deep recurrent neural
network can outperform standard machine learning techniques taking advantage of the sequential
structure of the data; however, we note that, even in this case, the results are only marginally better
than, for instance, the linear regressor. This could be very well caused by the strong limitation on the
time interval considered, nevertheless a longer window did not represent a viable comparison because
of the feature explosion caused by the introduction of lagged variable in the other configurations.

The results over the Daily Set are shown in Table 7. In this case, we carried out the same evaluation
procedure, running the models over the test set and computing the error metrics for each pollutant
and estimator, in three different time windows corresponding to lags of one and two days, which are
comparable with the 24 and 48-h shifts in the Hourly Set. Unfortunately, due to the lack of data and
lower resolution of the available signals, the results are far from optimal, when compared to the hourly
counterpart. However, the RMSE values presented are consistent with the data distribution, displayed
in Table 8, and both linear and Random Forest regressors display good performances in the setups
with window size w = 0 and w = 1. In a similar manner to the Hourly Set, further increasing the
interval explored did not translate into better estimates. In the specific case of LSTM, the small dataset
with daily resolution was not enough to take advantage of the time series structure and the resulting
performance are on par with simpler and faster models.
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Table 7. Results of the selected models on the Daily Set. The results are again presented with RMSE
and sMAPE on different time windows, corresponding to no lag, one-day lag and two-days lag.

w=0 w=1 w=2
Pollutant Model
RMSE sMAPE RMSE sMAPE RMSE sMAPE

LinBR  20.8109 0.2079 19.3394 0.1961 19.2768 0.1944

PM BRNN  18.0258 0.1656 20.0401 0.1786 19.4796 0.1720

10 RF 18.1356 0.1795  17.8104 0.1736  18.3169 0.1702

LSTM  20.2155 0.2031 20.6779  0.1945 20.7596 0.1976

LinBR  15.2088 0.2047 14.3527 0.1947 14.2678 0.1883

PM BRNN 14.8256 0.2102 14.2252  0.1976 14.6765 0.1867

25 RF 14.8692 0.1944 12.7866 0.1658 13.4144 0.1691

LSTM  16.1347 0.2219 14.5807 0.1962 15.6619 0.2107

Table 8. Descriptor values for target variables.

PM;yy PM, 5 NO; NO, CeHg CcO BC (02}
min 5.667 1.000 8.050 0.000 0.100 0.375 0.100 0.500
max 156.000 134500 203.971 1111.367 12.433 4.100 22554 206.250
mean 35.363 26.967 51.501 107.104 1.668 1.109 3.004 42.806
std 21.222 18.596 23.868 97.418 1.371 0.465 2.634 36.957

Given the regression estimates and their performances described in previous paragraphs,
we analysed the results on the AQI classification task. In Table 9 the Fl-scores resulted from the
AQI computation over ground-truth and predicted pollutants are summarised, where each subsection
refers to the same configuration of time intervals already applied on the previous tasks. In every
subsection, the first columns represent a pollutant p and each row represents a model m. Consequently,
each cell contains the Fl-score of the Air Quality sub-index (Table 5) obtained from the ground truth of
p and the estimates produced my m, on the same testing period of p. The last two columns of every
block summarise instead the global AQI, defined as CAQI = max(Ino,, Io,, Ipm,,), Where each Ii

represents a sub-index.

Table 9. Fl-scores obtained on the sub-indices of each pollutant, on the global indices CAQI and CAQI*
(without PMjy), using the same configurations with time windows equal to zero, one and two days.

w=0
model\pollutant  NO, O3 ‘ PMjg ‘ CAQI ‘ CAQI*
LinBR 0.6712 0.8672 0.4304 0.1352 0.6598
BRNN 0.6703 0.7533 0.4933 0.1275 0.6630
RF 0.7427 0.9272 0.4787 0.0889 0.7092
LSTM 0.6113 0.8908 0.4727 0.1789 0.5261
w=24
model\pollutant  NO, O3 PM;y CAQI CAQI*
LinBR 0.6418 09139 0.8351 0.8242 0.6598
BRNN 0.5991 0.8840 0.1100 0.1260 0.5971
RF 0.7312 09157 0.1117 0.1194 0.7092
LSTM 0.7291 09197 0.1213 0.2207 0.7011
w =48
model\pollutant  NO, O3 PM;y CAQI CAQI*
LinBR 0.7352  0.8902 0.5478 0.6256  0.6928
BRNN 0.6029 0.8485 0.5166 0.1806 0.5720
RF 0.7469 0.9207 0.5181 0.6130 0.7132
LSTM 0.7145 0.9234 0.5723 0.7882 0.6866
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The sub-indices are consistent with the performances described in the regression task: Ino,
reached on average affordable F1-score, with the Random Forest obtaining the best score around 0.75,
while O3 was best predicted by the LSTM with F1-Score of 0.92. Reflecting the inferior regression
performances on the previous analysis, worse performances were instead achieved on Ipy,, by every
model in most cases. A few exceptions comprise the models trained on the 48-h window, where the
F1-scores on average exceed the 0.5 threshold, and the linear model on the 24-h configuration. This is
again expected, as the lack of data negatively influenced the regression estimates, thus undermining
the classification results as well.

Observing the global AQI results, presented in the penultimate column, we can observe the
same result degradation caused by the bad PMj estimates generated by some estimators. For this
very reason, we introduced a last column identified with CAQI* that presents the same global CAQI
calculations, excluding the last pollutant, specifically CAQI* = max(Ino,, lo,). Despite its lack of
practical use, this external measure allows for better assessments of the information loss (or gain)
brought by the additional pollutant. From this last column it is possible to observe that, in the
vast majority of the combinations, a decent AQI estimation is possible, within limits. Moreoever,
the introduction of a lagged interval can be beneficial in some cases, especially for sequence-based
solutions such as LSTM. Nevertheless, as already verified within the regression problem, a window
size of 24 is sufficient to raise the estimates by a 0.2 margin in terms of F1-score. On the other hand,
standard machine learning models do not benefit as much from the introduction of lagged features,
since for instance the RF solution can perform equally well in all the three interval setups.

Both the linear model on w = 24 and the LSTM on w = 48 obtain very good CAQI estimates
around 0.8, thanks to better performances over the single pollutants, but most importantly thanks
to better estimations over PMjy. Comparing the global score to the adjusted AQI, we can see that
the absence of Ipyy,, drastically reduces the results. The confusion matrices derived by these two
solutions are reported in Figure 5 (linear and LSTM indicated by a and b respectively), together with
an ensemble solution (c): this last configuration was achieved by selecting the best regressors over
each pollutant. Specifically, we selected the RF regressor with 48-h configuration for Ino,, the LSTM
with -hour configuration for Ip, and lastly the linear model over 24-hour period as estimator for
Ippm,,- This last ensemble allowed us to achieve a total F1-score = 0.8388, surpassing the single-model
solutions achieved so far.

(a) (b) (o)
predicted predicted predicted

2| 14 0 0 0 0 8 8 0 0 5 11 0 0 0
= 5| 2954 113 0 0 = 0 112| 301 0 0 = 9| 311 93 0 0
2 0| 179| 448 0 0 2 0| 168| 421 0 0 2 0| 178| 411 0 0
®l o] 18] 414/3308) o | o 48 432/3237] o "| o 24 4083285 o

0 0 24, 97 0 0 0 24| 24 0 0 0] 24| 24 0

LinBR ( Fl-score=0.8242) LSTM ( Fl-score=0.7882) ensemble ( F1-score=0.8388)

Figure 5. CAQI Confusion matrices of the best models, specifically (a) the linear model (LinBR, w = 24),
(b) the LSTM model (LSTM, w = 48) and (c) an "ensemble" result, given by using the best predictors for
each pollutant: RF for NO, LSTM for O3, LinBR for PMyj.

In order to justify the extreme disparity between these higher scores and the extremely low
estimates achieved in some cases, we note that the AQI results are strongly influenced by factors:
(i) the air quality thresholds in Table 5 are not equally spaced, but the intervals between categories
become wider with the increase of the pollutant measurements; (ii) the computed AQI presents a
decreasing granularity and inherent class imbalance; in particular, the first levels are represented by a
small fraction of samples, while higher levels contain the majority of the data points. This is clearly
visible in the confusion matrices, where the AQI level 4 (Highrisk) contains more than 3000 instances.
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4. Conclusions

This work presents a simple yet effective approach to air quality estimation in urban areas from
local environmental an traffic information. We demonstrated that good estimates can be provided
for most pollutants by only exploiting meteorological features, such as temperature and humidity,
and urban-related features, such as vehicle transits, thanks to the strong correlations among them.
Moreover, we thoroughly tested different classes of machine learning models, specifically a linear
regressor and a Multi-Layer Perceptron with Bayesian regularization, a Random Forest regressor and
a Long-Short Term Memory network. We demonstrated that decent results can still be achieved by
simpler models, provided that a robust preprocessing and engineering phase is carried out on the
available data. In fact, the linear model achieved scores comparable to more complex solutions such as
RF and LSTM, especially when considering shorter window dimensions. For instance, the linear model
obtained an F-measure of 0.64, 0.91 and 0.83 over the individual AQI sub-indices, that amounted to
0.82 F1-score for the global AQI in the 24-h window configuration. Notably, the linear model surpassed
any other solution by a large margin when considering daily measurements of PM;g and PM;3s,
where training data was scarce. For these reasons, this solution can be considered a robust lightweight
option in the case of limited resources. Nevertheless, when the latter are available, deep recurrent
neural networks such as LSTM can provide a relevant edge in terms of estimation performance, as their
inherently sequential structure allow for the examination of longer time periods. This can lead to
equal or even better results than standard approaches, as demonstrated by the consistently lower
RMSE in most hourly pollutants over the 48-h windows. Despite the heavier computational demands,
LSTM does not require extensive preprocessing phases such as the introduction of lagged variables,
as the sequence length can be trivially modified. Therefore, LSTM-based solution can be considered a
valid and versatile option for many different use cases.

Compared to most part of the literature where time series of air pollutants are included in the
estimation for future forecasts, our approach provides results that are almost on par with other
works. However, it has the advantage of providing AQI estimates in a completely sensor-free scenario,
thus suggesting a an alternative methodology that can first of all reduce the costs for professional
equipment and its maintenance. Furthermore, this technique can be applied in any urban region,
after a prior calibration based on a small ground truth of sensor data.

Future works will involve satellite monitoring to expand the predictions on larger areas. For this
task, coarser but more comprehensive aerial information could be exploited, such as data related to
air pollutants provided by the Copernicus Sentinel-5P mission by Copernicus, a European project
in collaboration with ESA for atmosphere monitoring. The latter could allow a more fine-grained
estimation on larger areas, without the need for detailed on-ground measurements.
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Appendix A. Correlation Matrix Matrices among Features from the Same Domain
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Figure A1. Correlation among unique pollutant sensors.
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