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Abstract: We propose a method for effectively utilizing weakly annotated image data in an object
detection tasks of breast ultrasound images. Given the problem setting where a small, strongly
annotated dataset and a large, weakly annotated dataset with no bounding box information are
available, training an object detection model becomes a non-trivial problem. We suggest a controlled
weight for handling the effect of weakly annotated images in a two stage object detection model.
We also present a subsequent active learning scheme for safely assigning weakly annotated images
a strong annotation using the trained model. Experimental results showed a 24% point increase in
correct localization (CorLoc) measure, which is the ratio of correctly localized and classified images,
by assigning the properly controlled weight. Performing active learning after a model is trained
showed an additional increase in CorLoc. We tested the proposed method on the Stanford Dog
datasets to assure that it can be applied to general cases, where strong annotations are insufficient to
obtain resembling results. The presented method showed that higher performance is achievable with
lesser annotation effort.

Keywords: active learning; breast ultrasound; convolutional neural networks; mass classification;
object detection; weakly supervised learning

1. Introduction

Breast cancer is the second leading cause of death for women all over the world, while their
cause still remains unknown [1]. Like most cancer, early detection plays an important role in reducing
the death rate [2]. While digital mammography is the most commonly used technique for detecting
breast cancer, its limitations are clear when observing dense breasts, where lesions can be hidden by
tissues having similar attenuation [3]. Ultrasound imaging is a complementary method for digital
mammography, due to its sensitivity, cost-effectiveness, and safety. However, analyzing ultrasound
images is not a straight forward task due to the presence of noise and, thus, requires a skilled
radiologist. Computer Aided Diagnosis (CAD) could reduce the dependency on the radiologist and
also be beneficial for detecting breast cancer [4].

Breast ultrasound (BUS) images follow the characteristics of a typical ultrasound image, which is
generally low in resolution and containing noise. Resolution can be enhanced using higher frequency
waves, which will on the other hand limit the penetration depth [5]. While the usual process of
diagnosing a BUS image will accompany clinical palpation when palpable, CAD would only have the
BUS image available [6]. Additionally, BUS images are not taken at a fixed angle during diagnosis,
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unless special superimposing among all aspect angles will be performed later [7]. The loss of palpation
information and the diversity of image aspects makes it challenging for a CAD to improve.

Conventional methods for BUS image classification that does not use a neural network framework
are based on preprocessing and feature extraction of BUS images following region detection or
segmentation with those features. Selected features after region detection are classified with different
methods [1]. Most of these works focus on feature extraction of the image when the aim is to classify an
image to benign or malignant. Other works that aim to localize the lesion use rule based approaches,
such as the deformable parts model [8].

Recent deep learning based frameworks conduct both classification and region detection as
annotated data became more available. Semantic segmentation is performed with BUS images in [9]
by replacing the last three fully connected layers of AlexNet to fully convolutional networks that
perform pixel-wise classification. The work utilizes mask labels that have labels for every pixel in the
image as ground truth for all of the images. Mask annotations require more labor from a clinician
and, therefore, are harder to obtain. Shin et al. [10] proposed a method for object localization and
classification using a Faster-RCNN model. While using bounding box annotations as ground truth for
the localization task, it makes use of weakly supervised data only comprised of image level label to
aid the classification model.

We present a method for sequentially localizing and classifying BUS images based on the
Faster-RCNN model presented in [11]. We train a convolutional neural network (CNN) for bounding
box regression and mass classification. A fully connected network (FCN) that classifies bounding
boxes as either benign, malignant, or background is trained concurrently with the earlier network.
The ground truth information are bounding box coordinates and classification labels for each mass.
However, BUS data consisting of only the classification labels for each image are more accessible while
bounding box annotations require additional expert effort. As BUS image classification still remains a
difficult problem, a large dataset size will be beneficial to enhance the performance.

Weakly supervised learning is a technique for machine learning with noisy, sparse annotations.
A customized alteration, depending on the degree of the annotations, is needed in order to use data
with different levels of supervision. Methods for utilizing image level annotations for segmentation
are proposed in [12]. An initial segmentation model is trained using a few strongly annotated
images. Images with no mask annotations are given a pseudo mask ground truth generated by
the initially trained model and the second model is trained to perform both segmentation and image
level classification with these pseudo annotations. Generative adversarial networks (GANs) are tuned
to perform semantic segmentation while using both image level annotations and generate mask
annotations. Shin et al. [10] uses both bounding box annotations and image level labels to localize and
classify objects using multiple-instance learning (MIL). Images without bounding box annotations are
given a bounding box chosen from a bag of bounding boxes presented during the localization stage.
Various methods for choosing an object among the candidates are tested.

Active learning is a mechanism for expanding the given dataset by labeling unlabeled data with
the train model. User intervention for labeling is encouraged during the whole training process. Active
learning can be applied to different types of datasets and fields where data is scarce. Mask prediction
for lung CT images generated by unsupervised segmentation is used as ground truth annotation for
training a supervised segmentation network [13]. The segmentation network is trained multiple times
while using the mask prediction from the previous model as the ground truth, progressively improving
after each training session.

We propose an appropriate method for controlling the influence of weakly labeled data in
a Faster-RCNN based object detection model. The presented method shows increase in correct
localization (CorLoc) measures, which is preferred over mean average precision (mAP) in medical
imaging, and fraction of lesions detected, which measures the localization performance. The presented
method assumes a relatively small strongly annotated dataset insufficient for achieving high
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classification capability and a larger dataset with weakly labeled images, which is a typical setting for
medical imaging where making strong annotations are costly.

The main contributions of this work are, first, designing a reasonable method of controlling
the effect of weakly labeled data in an end-to-end object detection model and, second, designing an
acceptable approach for actively assigning annotations for weakly labeled data, supplementing the
insufficient annotations for object detection. The strongly annotated data, Dstrong, contain a single
bounding box coordinate and the box classification label per image, and the weakly labeled data,
Dweak, only contain an image level label per image. An actively annotated dataset, Dactive, is newly
constructed after a training session and will be concatenated to Dstrong in the next training session.
Individual data streams are maintained during training for the strongly annotated dataset and the
weakly labeled dataset. Dataflow in the network is shown in Figure 1. The loss for Dstrong is calculated
in the same manner, as it is proposed in [11], where loss for the region proposal network (RPN)
and the RCNN-top layer is propagated seperately. Images in the Dweak dataset can contribute to
the classification loss in RCNN-top only when the RPN has proposed a correct region. The loss for
Dweak will have less influence until this condition is believed to be satisfied. After the first training
session is finished, Dactive dataset is crafted from Dweak by giving a prediction that is likely to contain
a mass a single ground truth annotation. Images in Dactive will be concatenated to Dstrong, reducing
the sparsity issue that the task originally conveyed. The experiments show that using Dweak images in
a conservative manner helps the classifier to be detect more lesions. Training with Dactive shows an
additional increase in the overall performance. We believe that the proposed method can be adopted
to general cases where strong annotations are insufficient to train the model classifier and weak labels
are more available.

2. Materials and Methods

2.1. Datasets

The proposed data are evaluated on the Seoul National University Bundang Hospital Breast
Ultrasound (SNUBH BUS) dataset for BUS images and further tested on the Stanford Dog dataset for
general images. While the SNUBH BUS dataset has both Dstrong and Dweak images, the Stanford Dog
dataset only contains Dstrong images. Thus, the Stanford Dog data are manually divided into Dstrong

and Dweak, where only image labels are used in images selected as Dweak.
The SNUBH dataset collected from the Seoul National University Bundang Hospital is obtained

from different ultrasound systems described in [10], including Philips (ATL HDI 5000, iU22),
SuperSonic Imagine (Aixplorer), and Samsung Medison (RS80A). The dataset contains a total of
5624 images from 2578 patients. The Dstrong subset is comprised of 1200 images, 600 of which are
benign and the other 600 of which are malignant. We use 400 images from each class as a training set,
and 200 as the test set. Dweak subset is comprised of 4224 images, 3291 of which are benign and the
remaining 933 malignant. All of the image labels are proven with biopsy results, also meaning that the
data are the cases where biopsy was needed to diagnose the patient, making classification with BUS
images an even more difficult task.

The Stanford Dog dataset is a collection of color images of 120 breeds of dogs with a total of
20,580 images, all including class labels and bounding box coordinates. In order to mimic the situation
in BUS images, we select two similar looking middle size breeds to classify, the Bloodhound and the
English foxhound and then converted them to grayscale images. The number of images in each class is
187 and 157, respectively. Each dataset is subdivided into 20 Dstrong training set, 60 test set, and the
remaining 107 and 77 images from Blackhound and English Foxhound, respectively, to Dweak dataset.
This setting enforces a situation where there are limited amount of strong annotations. The Stanford
Dog dataset is tested to demonstrate the validness of the presented method on general images. Only a
limited amount of strongly annotated images are available for training and the task is not straight
forward, since the images are grayscale images, having room for improvement. The dataset is available
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online (http://vision.stanford.edu/aditya86/ImageNetDogs/). A summary of the number of images
for both datasets is provided in Table 1.

Table 1. Cardinality of SNUBH and Stanford Dog Dataset.

Dataset SNUBH Stanford Dog

Role Supervision Mal. Ben. Total Blk. Eng. Total

Train
Strong 400 400 800 20 20 40

Weak 933 3291 4224 107 77 184

Test Strong 200 200 400 60 60 120

Total 5424 354

Mal., Ben., Blk., Eng., denote malignant, benign, Blackhound, English Foxhound respectively.

2.2. Training Procedure Using Dstrong Subset

The Faster-RCNN model is used for object detection tasks, which is detecting lesions in BUS
images. Faster-RCNN is a two stage object detector, where a RPN is trained to specifically perform
region proposals on feature maps. Region of interest (RoI) obtained from the RPN is then fed to the
RCNN-top layer for classification and additional bounding box regression. Bounding box information
is only given by images in Dstrong subset. This information is used for bounding box regression in both
the RPN and RCNN-top, and for foreground background classification in the RPN. The overall dataflow
is shown in Figure 1. The loss is comprised of four terms, LRPN

reg , LRPN
cls , LRCNN−top

reg , LRCNN−top
cls . LRPN

reg

and LRCNN−top
reg , which are regression losses for the RPN and the RCNN-top, respectively, are obtained

by calculating the smooth l1 loss between the ground truth box and the predicted box coordinates.
LRPN

cls and LRCNN−top
cls , which are classification losses for the RPN and the RCNN-top, respectively,

are obtained by calculating the crossentropy loss between the ground truth label and the predicted
label. Corresponding ground truth label and coordinates are assigned when the intersection over
union (IoU) between the boxes are over 0.5. Details of calculating the four terms remain same as the
method that was proposed in [11].

Figure 1. Illustration of the dataflow in the presented model. All of the four losses are used
when training with Dstrong images, while only the classification loss in RCNN-top is calculated
for Dweak images. Refer to [11] and Section 2.3 for detailed methods for choosing target RoIs and
calculating losses.

http://vision.stanford.edu/aditya86/ImageNetDogs/
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2.3. Training Procedure Using Dweak Subset

Without bounding box annotations, bounding box regression or foreground background
classification can be performed. Thus, images in the Dweak dataset can only aid the classification
procedure in the RCNN-top section. We must have a strategy for giving labels to RoIs proposed by the
RPN in order to use Dweak images. Although there is no complete way for figuring out the labels of
each RoIs, it is known that given an image label, there is at least one mass that should be labeled as
the image label. We are able to infer the most probable RoI that should be labeled by rewriting the
model with random variables. Let Xroi be indicator random variables that map all RoIs to their ground
truth (background, benign, malignant) and G be the set of all RoIs in an image. Set G is obtained as
an output of the RPN. RoIs in G are considered to contain distinct objects after the non-maximum
suppression (NMS) post-processing. NMS eliminates RoIs that overlap with an IoU over 0.5. The RoI
with the higher foreground score is kept among the two RoIs. The relationship of the values is defined
as malignant > benign > background.

Y = max
i∈G

(Xroi1 , Xroi2 , Xroi3 , . . .)

Thus, Y represents the label of an image, since a single malignant lesion would make an image
label malignant, and a single benign lesion would make the image label benign if there are no other
malignant lesions. Subsequently, the most probable mass to be labeled given the image label can be
written, as follows,

argmax
i∈G

p(Xroii = labelY = label) ≡ argmax
i∈G

p(Xroii = label).

Because Y is a max of all RoI labels, conditioning the probability with Y = label gives no
information if the probability in question is that of X having the same label. Thus, it is optimal to
choose the RoI with the highest probability of containing the labeled object. Let X̂ denote the mapping
between the proposed RoI and the predicted label by the RCNN-top layer. Since X̂ is trained directly
by the cross entropy loss with X when using the Dstrong dataset, X̂ can be used as an alternative of X if
suitably trained. Therefore, we label the RoI with the highest image label score after running through
RCNN-top, to be the train target in the RCNN-top section and then calculate the loss for a single Dweak
image, as follows,

LRCNN−top
cls = crossentropy(max

i∈G
p(X̂i), p(label)).

However, X̂ would not be able to replace X in the early stages of training. Hence, we introduce
a controlled weight for LRCNN−top

cls , so-called α. We increase α from a 0.01 as the training progresses

and the manner of this increase can vary. The weight α for LRCNN−top
cls was selected among the

following candidates:
α = 1

α = 1− 0.99 (0.9step/2000)

α = 0.01 + 0.99 (step/totalsteps)

α = 0.01 + 0.99 (step/totalsteps)5 (1)

α = 0.01 + 0.99 (step/totalsteps)16 (2)

α = 0.01 + 0.99 (step/totalsteps)32. (3)

Changes of α following the training steps are visualized in Figure 2. The usage of LRCNN−top
cls is

considered to be more conservative as the equation number increases. The Dweak and Dstrong dataset is
concurrently used and the calculated loss from each image is summed, as follows,
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L f inal = Lstrong + α Lweak,

Lstrong = LRPN
cls + LRPN

reg + LRCNN−top
cls + LRCNN−top

reg ,

Lweak = LRCNN−top
cls .
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Figure 2. Illustration for the tendancy of alpha when the step size is 160000. The black plot shows a
log-like increase, namely inverse exponential, in α, which converges to 1 quickly. The blue plot is a
linear increase of α. (1), (2), (3) are the conservative increase of α during the training phase, namely
polynomial increase, which relates to the orange plot, red plot, and green plot, respectively.

2.4. Dactive Construction with Dweak Test Results

Dactive is a dataset that we create with the Dweak dataset by adding annotations that are generated
from the initial model after a training is finished. Dactive dataset can aid the Dstrong dataset, since images
in Dstrong are assumed to be insufficient in this problem setting. Predicted bounding boxes and
predictions are not reliable in itself, which requires the cautious selection of images to include. Verifying
whether a predicted bounding box contains an object or not is the main issue. The double prediction
problem can be a benefit for solving this problem. Double prediction is the case when two different
predictions are made for a single object, as seen in Figure 3. Objects in double predicted boxes are more
likely to contain an object than other predicted boxes, since it was predicted to contain a lesion twice.
We can generate a strong annotation by selecting the correct labeled box of the two predicted boxes.
The image level label is used to pick the correct bounding box among the two uncertain predictions.

All of the images in Dweak are tested through the trained model, generating multiple bounding
boxes with labels for each image. We iterate through the boxes in an image to check whether there
is a double prediction based on the PASCAL VOC criteria, which defines boxes to be overlapping
when their IoU is higher than 0.5. If multiple double prediction pairs exist for an image, we choose
the pair with the higher IoU. Once a pair is selected for an image, we annotate the image with the
bounding box that hold the original image label. Newly annotated images will contain a bias towards
benign, since Dweak is biased. Thus, we only choose malignant images to add to the Dactive dataset to
compensate this bias, and also due to the medical imaging setting where a failure to detect a malignant
lesion is critical. The newly generated Dactive dataset is used in the same manner as the Dstrong dataset,
since they can now produce the same type of losses.
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Figure 3. Example of a double prediction case in Breast ultrasound (BUS) images. The bounding box in
blue represents the ground truth for a benign mass. Predicted boxes are colored in orange and cyan for
malignant and benign predictions, respectively.

2.5. Faster-RCNN Hyperparameters and Model Details

We use the PASCAL VOC pre-trained VGG-16 [14] as the backbone for generating feature maps,
only fine-tuning the final layers higher than conv3_1, which is the method used by the original
Faster-RCNN [11]. The RPN’s regression and classification network was modified to use 3 × 3
convolution instead of 1 × 1 for better detection of objects. We reduced the size of the fully connected
layer in the RCNN-top to 2048 to prevent overfitting. The Dstrong dataset was augmented by horizontal
flipping, which increases the number of images, and, by random brightness, contrast adjustments
given to images, which preserves the number of images. Steps are used to check the training progress,
since epochs cannot be calculated when using two datasets with different sizes. One step corresponds
to using a single batch from each datasets. Th Adam optimizer was used for optimization, with a
configuration of batch size 1 for each dataset. Negative sampling for background RoI was performed
when training Dweak images, since the choosing a RoI with the image label for Dweak images makes the
distribution of RoIs unbalanced. The least scoring box was labeled as background for the RCNN-top to
calculate. Class weights were also given for Dweak losses, since the dataset has a bias towards benign.
All of the details and code of the model will be available online (https://github.com/YeolJ00/faster-
rcnn-pytorch) for research purposes.

3. Results

3.1. Evaluation Specifications

In this study, a model generates multiple bounding boxes for an image. Each detection is
considered to be a true positive (TP) if the classified label of the detection matches the target GT class,
and the IoU between the predicted bounding box and the target GT is higher than 0.5. Otherwise,
it is regarded as a false positive (FP). We evaluate the performance of the model with the test images
in SNUBH and Stanford Dog dataset through some measures such as correct localization (CorLoc),
and fraction of lesion detected.

CorLoc is defined as the ratio of correctly classified and localized images. A correctly classified
image is an image that contains a TP detection in its predicted boxes. Although mean average
precision is widely used for general deep learning models, CorLoc is more applicable the BUS case,
since detecting a positive mass is critical in medical imaging. Additionally, only a single mass in an
image is labeled as GT, while there could be other possible unlabeled masses, thus FP detections might
actually contain masses. The fraction of lesion detected is the measure for localization performance,
which is obtained by the ratio of images that have a bounding box that overlaps with its GT box.

https://github.com/YeolJ00/faster-rcnn-pytorch
https://github.com/YeolJ00/faster-rcnn-pytorch
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3.2. Experiments for Controlling the Effect of Weakly Annotated Images in SNUBH Dataset

Table 2 presents the quantitative result of the experiments. The experiments are conducted on a
total of 160,000 training steps, and all of the hyperparameters except α are equally applied. It is found
that a model does not perform well when α is a constant value or increased with an inverse exponential
function. We believe that the value was too high in the early stages of training. Lweak was not penalized
enough before RPN was trained enough to provide valid RoI proposals, which gives an incorrect
loss for the classifier. Based on this idea, we compared more conservative functions for increasing α.
We can see that all of the subsequent methods demonstrate an improvement both in CorLoc and the
fraction of lesion detected. The fraction of lesion detected is the fraction of ground truth lesions that
were given a bounding box. Performance tends to increase as α is maintained low during most of
the training phase, and the model exhibited the best result when α followed (2). 24% point CorLoc
increase and a 20% point fraction of lesion detected increase was shown as compared to the model
without controlled weight. A slight loss of performance was shown when α follows (3). We believe this
is due to a drastically increasing α for the case when the total step is 160,000, making the loss increase
faster than the optimization step. Additionally, weakly annotated data was fully used only for a small
number of steps in (3).

Table 2. Results showing variants of controled weight α with the SNUBH BUS dataset.

α Control Schedule CorLoc [%] Fraction of
Lesion Detected [%]

constant 41.75 56.00

inverse exponential 49.75 69.25

linear 60.25 70.50

polynomial (1) 58.75 67.00

proposed:
polynomial (2) 65.75 76.00

polynomial (3) 63.00 74.50

Correct localization (CorLoc) and fraction on lesion detected according to the manner of how α is increase.
CorLoc measures both classification and localization performance while fraction of lesion detected only
measures the localization performance. Detailed equations are presented in Section 2.3.

Qualitative results for controlling α are shown in Figure 4. The proposed schedule for α shows
both solid localization of objects and classification of bounding box proposals. Figure 4 also shows a
false positive detection for the proposed method, yet the false positive detection has a relatively low
score of being malignant when compared to the method following (3).

3.3. Experiments for Active Learning on SNUBH Dataset

Quantitative results for active learning experiment is shown in Table 3. Dactive constructed from
the model trained with the proposed α weight (2) consists of 238 malignant images. Active learning
aims to extend the Dstrong dataset, which is the primary dataset that trains the model. Performing
active learning gives a 2.75% increase in CorLoc measure and a 3.75% increase in the fraction of lesion
detected measure. Both classification and localization performance has increased.

Table 3. Results showing the effect of active learning in SNUBH dataset.

Active Learing CorLoc [%] Fraction of
Lesion Detected [%]

before 65.75 76.00
after 68.50 79.75

CorLoc and Fraction of lesion detected before and after active learning is presented.
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Figure 4. Qualitative results for controlling α. Bounding boxes colored red/blue are ground truth
boxes for malignant/benign masses. Bounding boxes colored orange/cyan are predictions for
malignant/benign masses. Two cases are presented for each method.

Figure 5 presents the qualitative results. Some masses that were difficult to detect or classify
were given the correct predictions after training with Dactive. Both localization and classification
performance are enhanced.

Figure 5. Qualitative results for controlling α. Bounding boxes colored red/blue are ground truth
boxes for malignant/benign masses. Bounding boxes colored orange/cyan are predictions for
malignant/benign masses. Boxes on the left are the results before active learning, and the right
side shows the same predictions made for the images after active learning.

3.4. Experiments on Comparable Object Detectors

The proposed model was compared with other object detectors in [10,11]. A vanilla
Faster-RCNN model was trained with Dstrong images while using the specifications introduced
in [10]. The Faster-RCNN based model in [11] is a model that uses weakly annotated images
jointly with strong, bounding box annotations. Thus, we were able to reconstruct the model
to train with the SNUBH dataset. Implementations of the models are provided online (https:
//github.com/YeolJ00/faster-rcnn-pytorch). Table 4 shows the results.

https://github.com/YeolJ00/faster-rcnn-pytorch
https://github.com/YeolJ00/faster-rcnn-pytorch
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Table 4. Results for various object detectors.

Detectors CorLoc [%] Fraction of
Objects Detected [%]

Vanilla Faster-RCNN [10] 42.50 57.50

Weakly supervised
Faster-RCNN [11] 33.75 59.00

proposed 68.50 79.75

CorLoc, Fraction of objects detected is shown for different object detectors.

3.5. Experiments on Stanford Dog dataset

Experiments for controlled weight and active learning was performed with the Stanford
Dog dataset.

The results for controlling α and active learning are summarized in Tables 5 and 6 respectively.
Little increase in CorLoc was shown for the proposed α control method. We believe that the reason
behind the negligible performance increase for the proposed α control method is due to the big
bounding box proportion in the images. This enables the RPN to propose correct bounding boxes at
an earlier stage of the training, which means that the loss is less likely to be lead to a local minimum.
Acitve learning added 23 images to the strong annotated dataset, 10 Blackhound boxes, and 13 English
Foxhound boxes. We included images from both classes, since this is not a medical imaging task where
a detecting a certain class is preferred. Performing active learning on the trained model shows a slight
decrease in CorLoc measures, which is a measure that ignores FP predcitions. However, the widely
used measure of performance for object detection tasks is mAP, which increased by 17.46% point after
active learning. The increase in strong annotations has reduced false positive predictions, significantly
increasing the precision of the model. Model performance does not vary much due to the generally
high performance. The prediction result samples can be viewed in Figure 6.

Table 5. Results showing variants of controled weight α with the Stanford Dog dataset.

α Increase Method CorLoc [%] Fraction of
Objects Detected [%]

constant 83.33 86.67

inverse exponential 85.83 87.50

linear 83.33 87.50

polynomial (1) 79.17 84.17

proposed:
polynomial (2) 87.50 89.17

polynomial (3) 81.67 87.50

CorLoc and fraction on objects detected according to the manner of how α is increase. Detailed equations
remain same as the test with SNUBH BUS dataset.

Table 6. Results showing the effect of active learning in the Stanford Dog dataset.

Active
Learing CorLoc [%] Fraction of Lesion Detected [%] mAP [%]

before 87.50 89.17 36.84
after 84.17 87.50 54.30

lCorLoc, fraction of lesion detected, and mean average precision (mAP) before and after active learning
is presented.
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Figure 6. Prediction results from the Stanford Dog images. Image on the right and left are predictions
for a Blackhound image and a English Foxhound image, respectively.

4. Conclusions and Discussion

We propose an applicable mechanism for utilizing weakly annotated images for object detection
models in a setting where bounding box information is insufficient for achieving high classification
performance. The proposed method enables a successful increase of the size of strong annotations by
safely assigning bounding box predictions as ground truth. The method is applied to the primary task
of detecting masses in BUS and tested on the Stanford Dog dataset to verify generality. A comparison
with different variants of the method supports the reasoning behind the manner of controlling the
influence of weakly annotated images. We notice that maintaining the loss from weakly annotated
images at a low level until the RPN proposes bounding boxes containing objects guides the model
to have a higher classification capability. Additionally, we set specific configurations for the active
learning scheme, which can be a risky work, since there is no way to confirm the correct assigning of
GT bounding boxes. The results show that it can enhance classification performance if it was an issue.

For our future work, we plan to extend the proposed method to autonomously detect whether if
the RPN is proposing bounding boxes containing objects and control the weight, which was originally
increased following a fixed schedule. This will increase the generality of the method, since the point of
RPN convergence may vary depending on the size and detection difficulty of a dataset. We believe that
the proposed method can be applied to typical cases of medical imaging tasks where strong annotations
are costly and weakly labeled data are relatively easy to obtain from the diagnosis procedure.
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Abbreviations

The following abbreviations are used in this manuscript:

SNUBH Seoul National University Bundang Hospital
BUS Breast Ultrasound
GANs Generative Adversarial Networks
CNN Convolutional Neural Networks
FCN Fully Connected Networks
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RPN Region Proposal Network
RoI Region of Interest
CorLoc Correct Localization
NMS Non maximum suppression
mAP mean average precision
TP True Positive
FP False Positive
GT Ground Truth
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