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Featured Application: Synchronous gaze recording facilitates dual eye-tracking data processing
and permits real-time assessment of dyad-level (of group-level) constructs. The proposed dyad
gaze convergence index may help empirically investigate dyad convergence antecedents and
consequences during collaborative use of information technologies. Synchronous real-time gaze
convergence visual cues may improve collaboration and dyad performance.

Abstract: Gaze convergence of multiuser eye movements during simultaneous collaborative use
of a shared system interface has been proposed as an important albeit sparsely explored construct
in human-computer interaction literature. Here, we propose a novel index for measuring the gaze
convergence of user dyads and address its validity through two consecutive eye-tracking studies.
Eye-tracking data of user dyads were synchronously recorded while they simultaneously performed
tasks on shared system interfaces. Results indicate the validity of the proposed gaze convergence index
for measuring the gaze convergence of dyads. Moreover, as expected, our gaze convergence index
was positively associated with dyad task performance and negatively associated with dyad cognitive
load. These results suggest the utility of (theoretical or practical) applications such as synchronized
gaze convergence displays in diverse settings. Further research perspectives, particularly into the
construct’s nomological network, are warranted.

Keywords: gaze convergence; eye-tracking; synchronous dual-gaze recording; dual eye-tracking;
collaborative use; shared interface

1. Introduction

User gaze during interactions with information technologies (IT) has been the object of increasing
interest in management research. Multiple research works in the field of human computer interaction
(HCI) have investigated user’s eye movements during system use (e.g., Cyr et al. [1]; Belenky et al. [2] ).
In this regard, constructs related to IT user’s gaze have been related with different information system
(IS) -related constructs, including interest, attention, cognitive load, and confusion [3–6]. Nevertheless,
these studies have essentially focused on single-user settings. Consequently, even in the context
of collaborative use, IT user’s gaze indicators have been essentially recorded separately for each
participant [7,8]. Indeed, studies investigating simultaneous collaborative use of a shared interface are
scant in the extant literature. Thus, the true role of users’ gaze in this context of IT collaborative use is
not well understood.
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Investigating gaze during collaborative use of shared system interfaces is important for several
reasons. Firstly, gaze convergence of collectives of users, that is, the act of looking at the same location
on a system interface, has been suggested to be important for group learning (e.g., Belenky et al. [2])
and group work (e.g., Kwok et al. [9]). Secondly, although most systems are designed with a single user
in mind, they are frequently used in multiuser settings. Examples include individual productivity tools
such as diagramming application [10] and e-commerce platforms [11]. To illustrate further, a recent
study revealed that 53% of online household purchases are operated by multiple users shopping
online together [12]. These multiuser settings involve users gazing at each other or at visual objects
of interest in the system interface. Finally, during collaborative interactions, users may relate to IT
artefacts visualized in the system interface. Indeed, users will navigate a given interface according
to their own mental models, which can also be modified during navigation. Mental models are
mental elaborations of user’s understanding of knowledge and relationships between concepts or
systems [13]. It is thus desirable that collaborating users have similar mental models regarding the
system to facilitate collaboration. It has been suggested that mental model construction may be
induced by eye movements, through which individuals learn spatial structure of visual elements
(e.g., Eitel et al. [14]; Schnotz et al. [15]). Hence, collaboration during joint interactions with system
interface may be facilitated when user gazes are convergent.

We investigated the eye movements of dyads of users during their collaborative use of a
shared system interface. More precisely, we measured the extent to which the user dyads exhibited
gaze convergence by looking at the same locations on the screen during system use. Moreover,
we investigated the influence of gaze convergence on information system (IS) use-related constructs
including cognitive states and task performance, raising the following research questions (RQ).

RQ1: How can the degree of gaze convergence of a dyad collaborating simultaneously on a shared
system interface be measured?

RQ2: To what extent does gaze convergence relate to dyad cognitive states and dyad performance?
The present study sought to answer these questions methodologically and theoretically. Firstly,

we empirically illustrate feasibility of simultaneously and synchronously recording eye-tracking data
of user dyads, a technique still embryonic in the HCI literature. Secondly, we propose a novel index
for measuring gaze convergence (GC) of user dyads, a construct still scant in the literature. Finally,
we examine the role of gaze convergence in relationship with system use-related constructs, one of the
very few such initiatives in the literature.

In the remainder of this paper, we test the dyad GC index and examine its validity through two
consecutive studies. In the first study, we examine GC contruct validy. In the second study, we develop
and examine a model of GC to assess predictive validity of the proposed gaze convergence index.
As expected, the dyad GC index clearly distinguished between gaze convergence and gaze divergence,
and gaze convergence was found to be positively associated with dyad performance and negatively
associated with dyad cognitive load. Concluding discussions follow, including research perspectives.

2. Theoretical Development

2.1. Gaze Convergence

A literature review was conducted to assess interest in the GC construct. The keywords “gaze
convergence” or “shared gaze” or “scanpath comparison” were used. The search was performed
mainly through some of the most prominent databases, including Web of Science, ABI/INFORM, Wiley
Online Library, and ProQuest. We found no study investigating GC in the context of collaborative
system use. In past research, the concept of GC has been mainly investigated in terms of mutual
GC, often referring to people looking at each other (e.g., Thepsoonthorn et al. [16]). These works are
mostly focused on face-to-face communication between avatars (e.g., Wang et al. [17]), between robots
and humans (e.g., Thepsoonthorn et al. [18]), and between humans (e.g., Thepsoonthorn et al. [19];
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Thepsoonthorn et al. [16]). Clearly, HCI research on GC during collaborative system use is still
embryonic, and the question as to how to measure it remains unexplored.

In the present research, we examine two types of GC: system-oriented GC (SOGC) and mutual
GC (MGC). In this study, we define SOGC as the extent to which a dyad of users look around the same
locations on a shared system interface during collaborative system use. This definition considers that
the two users are exposed to the same system interface layout, through the same monitor or through
separate display devices with or without same dimensions. This kind of setting can be achieved via
single display groupware systems, which allow coworkers to collaborate using desktop computers
and mobile devices displaying the same system interface [20]. Meanwhile, MGC is defined in this
research as the extent to which a dyad of users look at each other while collaborating on a shared
system interface. This construct has a distinct content domain from the SOGC construct, since it focuses
on dyad gazes directed to locations completely out of the system interface and monitor.

2.2. Eye-Tracking Technology

The use of eye-tracking (or oculometry) is emerging and informs research in IS and HCI [21].
This trend is illustrated by the fact that for the past decade, eye-tracking has been the most used
neurophysiological tool in NeuroIS research [22]. Eye-tracking is a technique permitting measurement
of eye movement and gaze location, providing a researcher, at any point of time, with information about
what stimulus is being processed by a user [6]. To capture a user’s eye movements, eye-tracker systems
target physiological characteristics of the eye with infrared technology along with high-resolution
cameras [6]. This technique uses image processing software to capture two eye features [4]: the corneal
reflection appearing as small bright glint on the eye pupil, and the center of the pupil. The analysis
software finds the position of the user’s gaze on the screen based on the relative position of the pupil
center and the glint, along with trigonometric computation [4].

Two important eye-tracking elements are saccades and fixation. Saccades are the short duration
eye movements (ranging between 30 ms and 80 ms duration) with no information processing [6,23].
Fixations are short stops between saccades [4] generally lasting a minimum of 50 ms (e.g., for text
processing) or 150 ms (e.g., for image processing). Fixations are usually analyzed at specific area of
interest (AOI) defined by the researcher [6,23]. There are five main eye-tracking measures that are
usually employed: fixation duration (amount of time a point is fixated by the user), fixation frequency
(or fixation counts: number of times a point is fixated), time to first fixation (the time it has taken the
user to gaze inside an AOI), visit count (number of times a viewer’s gaze entered an AOI), and total
visit duration (length of time a user gaze remained in an AOI).

Additionally, there are two main gaze representations used with eye-trackers: fixation patterns
and gaze heatmaps. Fixation patterns are two-dimensional plots of the fixation points for a given
user. Gaze heatmaps are heatmaps made of the aggregation of user fixation patterns, with fixation
intensities being represented using gradients of a discrete set of colors (red for high, yellow for
moderate, and green for low intensity) [24].

2.3. Synchronous Dual Gaze Recording

As the ubiquity of eye-tracking technology has increased over the past decade, so too has its
affordability [7]. Today, there is far more potential to employ eye-tracking in studies regarding
collaborative IT use. Correspondingly, eye-tracking experiments with multiple participants have
become more common [7,25]. However, a major limitation of prior multiuser eye-tracking studies is that
the recordings have essentially been done separately for each participant and have commonly not been
synchronized, making eye-tracking data analysis tedious and imprecise. Indeed, not synchronizing
the recording computers means that their clocks may not be linked, permitting an artificial temporal
mismatch between concurrent actions between the participants. Although realignment of the data
can be achieved by using timestamps, the procedure is prone to inaccuracies or errors [7], and it is
time-consuming and complicated. However, synchronous recording of eye gaze of multiple participants
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has started gaining some attention, notwithstanding the use of low-cost, low-accuracy eye-tracking
devices [25].

To address the above concerns, the present study implemented synchronous dual gaze recording
through a high-accuracy eye-tracking setup. All data recording computers for user dyads were
synchronized during simultaneous collaborative use of a shared system interface. We used a dual
eye-tracking method involving participants sitting each in front of a separate display. Compared to
setups in which one display is shared for all participants on the same device, our method provides a
higher accuracy of the eye-tracking data, since it is as precise as the eye-tracking method with one
participant [25]. An important advantage of synchronized dual eye-tracking is that it brings order to
the gaze data files and eases later data analysis, allowing to track exact time and order in which the
gaze data were collected [7]. For details, please see the Methodology section.

3. Hypothesis Development

3.1. Gaze Convergence Index

We built a GC index based on the gaze of each dyad member (see Figure 1). As mentioned earlier,
we conceptualize GC as comprising two formative dimensions, namely SOGC and MGC. For the sake
of parsimony, and as an initial effort, the present paper examines the GC index through the SOGC
dimension. Hence, in the remainder of this paper, GC is defined as the extent to which a user dyad look
at the same locations in a system interface. We propose two reflective dimensions of SOGC: real-time
gaze distance (RTGD) and overall fixation distance (OFD). RTGD is defined as the distance between
the gaze fixation point of each dyad member at any given time. Thus, when dyad members look near
the same location on the screen at any given point in time, RTGD will be small and GC will be high.
Meanwhile, OFD is defined as the extent to which dyad members have overall looked at the same
locations on the screen. On this basis, GC will be considered high for the duration of a task if dyad
members have generally looked at the same locations with similar intensities.
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These definitions hold true irrespective of the display device as long as the dyad members interact
with the same interface with the same visual layout. The proposed GC index is depicted in Figure 1.

3.2. Dyad Gaze Convergence and Its Impact

In order to assess the predictive validity of the proposed GC index, we developed a model to
examine salient associations with GC in the context of a user dyad collaborating simultaneously on a
shared system interface. As gaze convergence is the focus of the present paper, our model is developed
in the context of tasks performed jointly using a shared system interface, with the users having the
same objective and focus. Figure 2 depicts the research model.
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User cognition has been frequently investigated in the IS field and has been referred to as what
occupies individual’s mind and that s/he is aware of or not while using a system [26,27]. Cognitive
load has been a prominent construct of cognition studied in the HCI and IS disciplines, considered an
indicator of efficient use of a system [28,29]. System user cognitive load has been referred to as the
extent to which mental resources are employed by users to encode, activate, store, and manipulate data
or information as they use a system [29,30]. The present study adopts this conceptual definition in the
context of user dyads collaborating simultaneously on a shared system interface. Cognitive load at
dyad level results not only from each individual mind alone but also from interactions between team
members, that is, it also happens socially [31]. Users process information not only from the system
interface but also the other dyad member. In the context of multiple users, some level of individual effort
is needed in order to reach common objectives. Moreover, individual efforts have to be coordinated
and aligned to ease collective task achievement [32]. Yet, the effort required for coordination could
conceivably be eased when the dyad members share mental models [33] of the system interface they
use together. A user’s mental model within any time range may develop from how and where he or
she looks at the system interface. Thus, mental model is a mechanism through which the user generates
descriptions of system purpose and visual form. This permits comprehension of system functions and
observed system states, and prediction of future system states [33]. Consequently, when dyad members
working together in real-time on a shared visual interface do not look at the same regions in the shared
interface, they may not share the same mental model at specific moments, consequently requiring
more cognitive resources to communicate and coordinate actions. Thus, we could hypothesize that the
more users look at the same regions on the visual interface the less cognitive resources they will need
to collaborate. Moreover, two collaborating users looking at the same locations are likely to perform
better, as they would be able to better coordinate their interaction. Past research suggests that looking
at the same visual objects in a system interface reduces miscoordination incidents, hence improving
dyad coordination (e.g., Thepsoonthorn et al. [16]; Zhu et al. [34]). Yet, coordinated efforts facilitate the
achievement of collective task, increasing team performance [32,35,36]. Hence, we make the following
hypotheses (H).

H1: Dyad GC will be negatively associated with dyad cognitive load.
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H2: Dyad GC will be positively associated with dyad task performance.

4. Methodology

To validate our proposed GC index and investigate its hypothesized associations, we conducted
two consecutive experimental studies, which were approved by the ethical committee of our institution,
the Comité d’Étique de la Recherche (ethical approval code: 2020-3645). The two studies involved
synchronous dual eye-tracking recording. In other words, eye movements of user dyads were recorded
with real-time synchronization of clocks on two gaze data recording computers. Informed consent was
obtained from all dyad members prior to participation.

The first study assessed the content validity of the proposed GC index. Content validity refers to the
degree to which a construct operationalization is representative of the content domain (i.e., the substance,
the matter, or the topic) of the construct [37–40]. 37-40 Simply put, we ascertained to what extent our GC
operationalization reflected the GC of user dyads. To that end, GC was experimentally manipulated by
having user dyads perform a task in two conditions: gaze convergence (referred to as the convergence
condition) and gaze divergence (referred to as the divergence condition). Hence, the purpose of this
study was to assess the extent to which our dyad GC index is able to distinguish between convergent
and divergent dyad gaze behaviors.

The second study explored the predictive validity of the proposed GC index, that is, the extent
to which the operationalization of the construct was able to correlate with or predict endogenous
constructs it is theoretically expected to correlate with or predict [40]. Specifically, this study tested
whether dyad GC would predict the hypothesized dependent variables, namely, dyad cognitive load
and dyad task performance. User dyads engaged in collaborative tasks using the same interface on
different computer monitors, with only one of the two users controlling input devices (see Figure 3).
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This setup reflects a specific real-world setting in which users work together on the same task,
on a shared system interface, to jointly perform a task. Examples include the following: two workers
sharing their screen (e.g., using a screen sharing software) to work together from same or separate
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offices or rooms but communicating directly of through the phone; or two IT network professionals
jointly working on a shared interface with separate computer monitors in a technical equipment room,
as each worker needs to stay at different locations to monitor different equipments. This setup is also
common among couples who shop online together remotely, as revealed by a forthcoming paper about
the state of the art on multiuser human-computer interactioin settings, providing preliminary evidence
specific to settings in which couples shop online together [41]. In that survey study, more than 70% of
couples shopping online together using separate screens reported sharing the same software window
during the activity.

4.1. Material and Apparatus

We used SmartEye Pro (SmartEye, Gothenburg, Sweden) eye-tracking system, which enables
a non-invasive temporally synchronous collection of gaze and pupil data of multiple participants.
This system employs two cameras per participant for large field of view and permits measurement of a
head orientation and gaze direction in 3D, including the ability to discriminate between gaze directed at
the interface or at the other user in the dyad. SmartEye Pro also permits measurement of pupil diameter
in real-time during the task, and it provides a great gaze accuracy (around 0.5 degrees [42] for a 30 cm
eye distance—a 1 degree gaze accuracy is considered high in the eye-tracking literature [25,43–45]).
It was configured with a sampling rate of 60 Hz. To synchronize computer clocks at all times during
the studies, we configured a Network Time Protocol (NTP) Server. NTP protocol is designed to
synchronize several computers’ clocks across variable-delay networks, with an accuracy below one
millisecond between network devices [7].

The experimental stimuli were developed and administered using E-Prime 3.0 software
(Psychology Software Tools, Sharpsburg, MD, USA). The software ran on a computer with a clock
perfectly synchronized with SmartEye computers through the NTP server. A crucial benefit of E-Prime is
that it is able to provide a rich set of time stamps for every event or display, allowing for direct matching
with our resulting eye movement data. Moreover, E-prime permitted synchronized acquisition of
questionnaire data during the experimental tasks. The stimuli were run on two identical computer
monitors connected to the same computer central processing unit (CPU) to permit shared display.

In addition to the two SmartEye cameras, a video camera was fixed on the top of each user’s
computer monitor. The audio and video of each user’s face, which were sampled by these cameras
during the two experimental tasks were recorded with Media Recorder software (Noldus, Wageningen,
The Netherlands), thereby permitting future assessment of behaviors such as head orientation
and characteristics of auditory communication. Observer XT software (Noldus, Wageningen,
The Netherlands) synchronized Media Recorder recordings to our eye-tracking recording through time
stamps that were accurately linked to the absolute time of the study as provided by the NTP server.

Figure 3 depicts the physical setup used for both studies.

4.2. Users

Our experimental sample comprised 8 dyads, or 16 users (5 females and 11 males), with an
average age of 24.1-year-old and a standard deviation of 2.6-year-old, recruited through our institution’s
recruitment panel. To participate in our study, panel members had to be 18 years or older and could
not have specific skin sensitivity or allergies, a history of epilepsy, neurological or any other health
related disorder, nor use a cardiac pacemaker. The recruitment was done with no requirements over
whether participants knew one another, and dyads were formed randomly.

4.3. Experimental Procedure

One user dyad was scheduled for every experimental session (both Study 1 and Study 2).
After welcoming users and ensuring no exclusion criteria were met, two research assistants asked
the users to sit comfortably at their respective computer desks and briefed them about the study’s
purpose. User dyads sat in a configuration allowing them to gaze at each other and communicate
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during the tasks. Only one dyad member had access to the computer’s input devices (mouse and
keyboard) during every experimental task: as this study’s hypotheses are not specific to any input
control setting, giving that control to only one of the two dyad members allowed for more simplicity.
It helped rule out possible events of no interest in the present study such as input control switching or
negotiation. The research assistants proceeded to calibrate the SmartEye system for each user, based
on the SmartEye system manual [42]. After all experimental tools were ready, the E-Prime executable
file was run in full-screen mode throughout the duration of the experimental session. At the beginning
of the first part of the experimental session (Study 1), participants were instructed to close their eyes
and breathe for thirty seconds, then while each dyad member looked at an initial blank screen display,
baseline eye parameters were recorded through SmartEye. The same process was followed at the
beginning of the second part of the experimental session (Study 2), but the baseline data of the first part
were used for the whole experimental session. SmartEye data were recorded throughout the entire
session as well.

4.4. Study 1 Experimental Design

The experiment was a factorial design with repeated measures in two conditions: convergence
and divergence. In both conditions, dyads were exposed to the same stimuli. The stimuli were a small
blue and a small red solid colored circle moving in opposite directions along a single track of twelve
fixed display positions. The two circles’ displays were made to never overlap. Both circles displayed
for five seconds and then immediately moved to their respective following positions. Thus, user gaze
was expected to move steadily along in a stepwise fashion along each of the twelve circle positions.

In the convergence condition, dyads were asked to stare at the blue moving circle at all times.
In the divergence condition, one dyad member was instructed to stare at the blue moving circle,
while the other was instructed to stare at the red moving circle. Each user dyad was exposed to one
trial of each condition, resulting in a total of sixteen trials and one hundred and ninety-two dyad eye.
Figure 4 depicts the sequence of movements for the blue and the red circles in the experimental stimuli.
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Figure 4. Experimental stimulus: circle movement sequences. The bold frame represents computer
screen. The gray circles represent the twelve possible positions of either blue or red circle. Solid arrows
represent blue circle’s movement sequence. Dotted arrows represent red circle’s movement sequence.
Each ordered number sequence (from 1 to 12) depicts the direction of blue circle’s course and the red
circle’s course, respectively.
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4.5. Study 2 Experimental Design

In the second experiment, GC was not manipulated. Dyads had to perform a psychological
task collaboratively, namely, a change blindness task. Change blindness is so named due to the
psychological phenomenon where a difference between two nearly identical images becomes difficult
to discern when the images are viewed after a small time delay [46]. In the present study, seven image
pairs with a single subtle difference were used. The images in a given image pair were alternately
displayed for one second with a one-second white blank display between them. This cycle of display
was repeated for an unlimited amount of time. The cycle stopped when the dyad decided to answer
the related question by pressing the “SPACE” key on the keyboard (they were instructed to do so only
when the two dyad members were ready). Then a multiple-choice question displayed regarding what
element of the image was changing. The question was phrased as follows: “What type of change did
you notice?” There were a total of four answer options, including the option “We could not identify
any change”. For each image pair trial, dyad response time and final response choice were recorded.
The experiment resulted in a total of fifty-six trials across all eight dyads. The change blindness
task was chosen because it is a well-known psychological task that can be readily programmed in
E-Prime software for experimental purpose. Moreover, the task was driven by dyad’s common interest
and objective in the visual interface. Besides, in order to further foster dyad collaboration, dyad
members were told that they could collaborate during the task. The collaboration happened naturally,
as participants were not limited in their movements.

4.6. Measures

As we are interested in where dyads look in the system interface, and since all E-Prime displays
were in full-screen mode, we considered gaze location in the orthonormal plane represented by the
computer screen. As suggested previously, dyad GC is high when the distance between gaze locations
is low, and vice versa. We measured dyad GC in both studies as the opposite (i.e., multiplied by −1)
average Euclidian distance between gaze locations of the two dyad members at all fixation points.
The fixation data of both users were synchronous in time, allowing for direct comparison. Similar
measures based on Euclidian distance but in context of asynchronous gaze recording have been
reported to be valid measures [47–49].

In Study 1, in order to get a more comprehensive assessment of the distribution of distance
between dyad gaze locations (see time series of distances in Figure 5), other statistics of Euclidian
distance between dyad gazes were planned for analysis, including minimum, standard deviation,
1st quartile, 2nd quartile (i.e., the median), 3rd quartile, and maximum. These analyses would reveal
whether the difference between convergent and divergent gaze behavior detected by our dyad GC
index is supported throughout the gaze distance data distribution, from lower (lower GC) to higher
(higher GC) data points.

In Study 2, two other constructs were measured: dyad task performance, and cognitive load.
We operationalized dyad task performance to be associated with higher accuracy and shorter response
time. Accuracy was scored according to the following: 1 point for incorrect responses, 2 for unknown
answers, and 3 for correct responses. This grading was in line with the nature of the experimental task.
As every image pair had a single subtle difference and dyads had unlimited time for double-checking,
it was more expected that user dyads would either find the right difference or abandon the trial without
finding the image difference. Hence, incorrect response was the most penalizing answer. The sum of
points for all trials in Study 2 determined a dyad’s Accuracy Score. Moreover, the total time taken by a
dyad to analyze the stimuli for each trial before responding was deemed as the Trial Completion Time.
Dyad task performance was measured as follows:

Task performance = {Accuracy Score}/{Trial Completion Time}
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Meanwhile, cognitive load was indexed via pupillary dilation, a common strategy for
human-computer-interface studies in the IT literature [22,50,51]. Specifically, cognitive load for
an individual user was determined as the increase (or decrease) in pupil diameter during the task,
that is, pupil diameter recorded during the main experimental task minus baseline recorded before the
start of the experiment. Dyad cognitive load was determined as the mean cognitive load between the
two users in the dyad. This operationalization of dyad cognitive load is in line with past studies of
team-level cognitive load (e.g., Gopikrishna [52]; Litchfield and Ball [53]; Lafond et al. [54]).

4.7. Statistical Analyses

In study 1, manipulating gaze convergence permitted to assess content validity of dyad GC index,
that is, the extent to which our measure captures gaze convergence. To do so, we used Wilcoxon
signed-rank test [55] with Statistical Analysis Software (SAS). This statistical method is particularly
useful when the population is not assumed to be normally distributed and the sample size is small.
Because our hypothesis was directional, we used one-tailed p-values.To get further insights related
to patterns of task performance by dyads, we ran an ANOVA with a two-tailed p-value. Here we
analyzed trial completion time to check for differences relative to the answer accuracy. This analysis
would inform us whether dyads took different time to provide correct, wrong, or “unknown” answers.
The significance level was set at α = 0.05.

To test hypotheses H1 and H2 through the change blindness experiment (Study 2), we used a linear
regression with random intercept model. Hence, we tested negative association between dyad GC and
dyad cognitive load measured using pupillary dilatation as mentioned earlier. We also tested negative
association between dyad GC and dyad task performance. Moreover, we used one-tailed p-values and
significance level of α = 0.05 for the same reasons as in the first experiment. Finally, it is important to
recognize that the images used in the Change Blindness task were of lower luminosity than the blank
white screen displayed immediately prior to and after each image. There is a possibility that as the
time taken to complete the trial increases, the eyes become accustomed to the less luminous images,
causing pupil diameter to gradually increase, and thereby causing an artificial increase in cognitive
load. To control for this, we added trial completion time as a control variable in the statistical model.
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5. Results

5.1. Study 1

Results revealed that GC index values were significantly higher in the convergence condition,
compared to the divergence condition (p = 0.004; r = 0.19). This result is illustrated in Figure 5,
which depicts a clear visual difference in GC between the two conditions, GC being the opposite of
gaze distance as mentioned earlier. Moreover, a more detailed analysis showed significant differences
in main statistics between the convergence and the divergence conditions. The convergence condition
recorded the highest maximum of convergence between dyad members’ gazes (p = 0.004; r = 0.31).
Moreover, significantly higher GC values were recorded in the convergence condition for GC first
quartile (p = 0.004; r = 0.05), second quartile (p = 0.004; r = 0.31), and third quartile (p = 0.004;
r = −0.19). Besides, the convergence condition recorded significantly lower standard deviation (p = 0.02;
r = 0.12). Clearly, the difference in GC between the two conditions was consistent throughout the data
distribution. Thus, we are confident that the dyad GC index does measure gaze convergence (content
validity is supported). Table 1 presents descriptive statistics for each treatment condition.

Table 1. Descriptive statistics, Study 1, per experimental condition.

Variable Mean StD 1st Qrtl 2nd Qrtl 3rd Qrtl

C D C D C D C D C D

Dyad GC −333.51 −1013.53 −153.55 −107.67 −468.28 −1126.12 −261.59 −1007.32 −223.20 −916.55
Min GC −1832.14 −1872.52 −167.72 −155.33 −1992.26 −2031.86 −1831.51 −1886.64 −1661.59 −1710.79
Max GC −5.39 −36.61 −4.12 −17.86 −7.30 −46.05 −4.49 −34.88 −2.03 −25.26
StD GC −317.81 −433.86 −126.11 −39.38 −443.02 −473.26 −280.23 −432.91 −209.35 −405.92

1st Qrtl GC −127.96 −653.06 −39.72 −81.14 −166.37 −722.63 −135.78 −664.00 −93.14 −570.49
2nd Qrtl GC −224.02 −931.74 −94.87 −157.93 −293.32 −1025.84 −199.64 −894.01 −157.83 −807.07
3rd Qrtl GC −427.62 −1428.92 −277.82 −125.41 −631.48 −1556.36 −273.19 −1404.40 −247.67 −1367.46

GC = Gaze convergence; StD = Standard Deviation; Qrtl = Quartile; C = Convergence condition; D = Divergence
condition. The Variable column refers to descriptive statistics examined as independent variables. With a total of
sixteen participants, our sample size was eight dyads in each treatment condition.

5.2. Study 2

Results of the linear regression with random intercept model, with trial completion time as a
control variable, showed that dyads with higher GC during the task exhibited significantly less pupil
dilatation (p < 0.001; t = −4.09), supporting hypothesis H1. Moreover, dyads with higher GC performed
significantly better during the task (p = 0.003; t = 2.90), supporting hypothesis H2. Table 2 presents
descriptive statistics, complemented with statistical results in Table 3 and Figure 6. Figure 7 depicts the
plots for the two regression models. Finally, post-hoc regression with cognitive load as dependent
variable and trial completion time as independent variable was non-statistically significant (p = 0.810;
R2 = 0.001; F = 0.058).

To check for differences in dyad performance at trial level, we ran an analysis of variance (ANOVA).
The test was significant at α = 0.05 (F = 5.629; p = 0.006). Simple contrast analysis showed that dyad
trial completion time was significantly lower for right answering than for “unknown” answering
(p = 0.005; C.I. = [0.478; 2.626]) and than for wrong answering (p = 0.043; C.I. = [0.064; 3.628]).

Table 2. Descriptive statistics, Study 2.

Variable Mean StD 1st Qrtl 2nd Qrtl 3rd Qrtl

Dyad GC −281.62 −99.64 −370.05 −301.91 −221.05
Dyad TP 2.05 0.66 1.75 1.99 2.16
Dyad PD 0.38 2.72 −0.79 0.36 2.59

GC = Gaze convergence; TP = task performance; PD = pupil diameter; StD = Standard Deviation; Qrtl = Quartile.
With a total of 16 participants, i.e., 8 dyads for a total of 56 trials.



Appl. Sci. 2020, 10, 4508 12 of 20

Table 3. Statistical results, Study 2.

DV Effect Estimate DF t p-Value

Dyad TP 26.19 46 2.90 0.0029
Dyad PD −15.99 46 −4.09 0.0001

DV = Dependent variable. TP = task performance; PD = pupil dilation; DF = Degrees of freedom.
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6. Discussion

The present research conducted two studies to assess (1) the content validity of dyad GC index
during collaborative use of a shared system interface, and (2) predictive validity of that dyad GC
index via its relationship to dyad cognitive states and performance. By addressing these points,
the present study aimed to contribute to the IS and HCI literature regarding the use of dyad GC
constructs in examinations of two or more users working collaboratively on a shared system interface.
As mentioned earlier, studying dyad GC is important for several reasons. First, it influences group
learning (e.g., Belenky et al. [2]); second, group work is impacted by the way dyads of workers look at
the screen (e.g., Kwok et al. [9]); third, dyad GC helps build similar mental models within the dyad to
facilitate coordination; finally, many systems designed for single user are actually used by multiple
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users together, involving users gazing at visual artefacts within a system interface or at each other.
Given this importance of dyad GC, our validation of the proposed dyad GC index is useful for any study
relying on GC to investigate multiuser human-computer interaction. Overall, our results were very
statistically significant at α = 0.001, α = 0.01, and α = 0.05, giving a high degree of confidence that the
investigated relationships do hold. These results are promising for future dual-eye-tracking research.

6.1. Content Validity

As for content validity, our proposed dyad GC index permitted clear and accurate discrimination
of convergent and divergent gaze behaviors. Post-hoc analyses further confirmed this across the entire
data distribution. Overall, Study 1 demonstrated that our proposed dyad GC index is in line with the
conceptual definition of the dyad GC construct.

6.2. Predictive Validity

In line with our hypotheses, we observed that, the greater the GC of dyads, the better they
performed on the Change Blindness task. As suggested in the literature, looking at the same locations
reduced coordination efforts and incidents [9,34], facilitating better achievement of the dyad’s task
at hand [32,35,36,56]. As mentioned earlier, high performance related to answer accuracy and short
trial completion time. Differences in trial completion time revealed that globally two main scenario
types were observed. Dyads spending a lot of time performing the task generally ended up giving up
or choosing the wrong answer. However, dyads who were fast in performing the image difference
identification task generally found the right answer. In this scenario, GC was high because dyads’
collaboration helped them visually converge together towards the target quickly. It may be that,
for instance, as the two dyad members had to both be ready before they could move to the question,
the dyad member finding the answer first and quickly was efficient in making his/her partner find it
on the screen. Pehaps dyad communication influenced dyad GC, which was positively associated
with higher performance. However, because our second experimental study aimed at demonstrating
predictive validity of the GC index, we focus on dyad GC as an independent variable.

Also in line with our hypotheses, the greater the GC of dyads, the lesser cognitive load they
exhibited. Actually, as literature suggests, during interactions between two persons, gaze direction is
special in producing shift of attention on the other person [57,58]. Hence in our context, at any time
during interactions within a dyad, a dyad member’s gazing at a location of the screen is likely to shift
the other member’s gaze to the same location when the former communicates to the later where he or
she intends to look at. This behavior was typical and recurrent during dyad collaboration in Study 2.
When dyad members interacted during the experimental task (e.g., discussing a specific visual element
in the system interface), they were thus likely to look in the same regions of the screen to indicate
to each other what their actions or words refer to on the interface. It may be that, knowing that the
other dyad member looked at the same location during interaction reduced the cognitive load needed
to make him or her shift attention to specific regions of the shared interface. A reason may be that
looking at the same regions on the screen improves harmonization of dyad members’ mental models
of the shared system interface [33]. Moreover, because shifting their partner’s attention and gaze to
screen areas required communication, faulty communication between dyad members during the task
likely led to lower gaze convergence and longer times taken to look at and process the image before
answering the related question. The longer they visually processed the image the more cognitive
resources it took them to perform the task, that is, the higher their cognitive load. This logic applies to
all trials, whether a dyad found the right answer or not, and whatever the length of time the dyad
took to complete the trial. However, no association was found between the trial analysis time and
cognitive load. Hence, perhaps this finding can be explained by the fact that it is more the actual
visual processing of the image than the time looking at it that impacted user cognitive load. Moreover,
participants were more likely to visually process the images to a greater extent when they spent more
time looking at the images.
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6.3. Advantage of Real-Time Synchronized Gaze Recording in Multiuser Human-Computer
Interactions Setting

An advantage of synchronizing participants’ gaze recording is that it brings order to the gaze data
files and eases later data analyses, allowing the tracking of the exact time and order in which the gaze
data were collected [7]. Moreover, synchronizing participants’ gaze recording permitted us to develop
a measure of gaze convergence using perfectly temporally aligned data, unlike existing measures
that are based on Euclidian distance and use temporally asynchronous fixation data. This is a major
advantage provided by our synchronized dual eye-tracking setup. Major methods for comparing two
eye movement sequences based on Euclidian distance between pairs of eye fixation points [47] were
proposed by Mannan et al. [49], Mathot et al. [59] and Henderson et al. [48]. Mannan et al. and Mathot
et al. analyze similarity between two participants’ fixation sets by computing their index of similarity
based on the linear distance between each fixation point in the first fixation set and its nearest neighbor
in the second fixation set, as well as the linear distance between each fixation point in the second
fixation set and its nearest neighbor in the first fixation set. As the spatial distance here is always
computed against the nearest neighbor in the other fixation set, a problem with this algorithm is that it
does not consider the spatial variability in the distribution of the fixation sets [48]. For example, if all
fixations in the first set are circumscribed within a very small area of the screen and only one fixation
point in the second set is within that same area, then all fixation points in the first set will be compared
to only that point from the second set. On the other hand, Henderson et al. analyze similarity between
two participants’ fixation sets as follows. In order to assign each fixation point in the first set to a
fixation point in the second set, they analyze all possible assignments of fixation points in the first set
to fixations in the second set, to find the unique assignment producing the smallest average deviation.
A limitation of these algorithms is that they disregard the ordering of the fixation points of the two
participants. Thus, these methods are suitable only when temporal ordering of eye fixations is not
important, a condition that does not fit to the definition of the RTGD reflective measure of our SOGC
construct (see Table 1). The measure of RTGD in our context of joint use of shared system interface has
been facilitated by the synchronized dual eye-tracking paradigm.

Moreover, in general, despite the advantages provided by existing methods for comparing two
eye movement sequences, some are subject to some issues such as not considering the temporal
ordering of gaze data (Linear Distance and Edit Distance methods), data loss (MultiMatch method),
high sensitivity to small temporal and spatial differences and not accounting for fixation duration
(Sample-based measures) [47]. Hence, a straightforward benefit of our study is that we measure the
dyad GC construct with data perfectly aligned in time and validate it in terms of content validity and
predictive validity. Such measurement is appropriate to IS and HCI contexts. Since the synchronized
data are not truncated nor shrunk, it accounts for the natural happening of joint use of shared system
interfaces, as it is based on perfectly aligned data and acknowledges the variety of ways user dyads
may look together at the screen, including all instants of diverging or converging users’ gazes.

6.4. Contributions

The present paper theoretically contributes to the IS and HCI literature in demonstrating that GC is
a valid construct with predictive validity towards performance and the cognitive states of users engaged
in simultaneous collaboration on a shared user interface. Hence, this study illustrates and promotes
the investigation of antecedents and consequences of GC in the IS and HCI fields. This piece or work
additionally methodologically contributes to the IS and HCI literature by illustrating the feasibility of
synchronous eye-tracking data recording of two or more users, a technique that improves the accuracy
and simplicity of corresponding data analyses [7]. This study is one of the first ones that measure and
validate gaze convergence in a synchronized multi-eye-tracker setting, involving verbal collaboration
on a computerized task. Moreover, our GC index can be used in studies requiring synchronized dual
eye-tracking of participants. Our experimental setup allows for real-time exploitation of GC information
based on synchronized fixation data, improving accuracy of such information. For example, in addition
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to or in place of the display of the other participant’s gaze, our experimental setup permits the real-time
display of GC information of user dyads working on the same shared interface. Implementing similar
experimental setups could be used in studies examining how individuals can benefit from peers
and experts, projecting real-time synchronized gaze convergence cues (e.g., D’Angelo and Begel [60];
Jarodzka et al. [61]; Król and Król [62]; Sharma et al. [63]).

Overall, the present study marks and important first step in establishing a multiuser GC index
based on synchronized fixation data of user dyads and in demonstrating its utility in predicting IS and
HCI constructs.

6.5. Implications and Research Perspectives

Dual-eye-tracking technology has been of practical utility in research. For example, some studies in
multiuser settings used eye-trackers to display and share user gaze information (e.g., Nyström et al. [7];
Zhang et al. [64]). In that context, users self-assess gaze convergence based on their coworker’s
gaze information. The present study can contribute to investigations of impacts of real-time gaze
information display in multiuser settings. For example, research works may involve enriching above
gaze information by providing users working together on an interface with real-time numerical
information or visual cues (e.g., color gradients) to indicate the extent to which their gazes converge
at any point of time as well as for time ranges. This information may enrich collaborative use
experience, permitting the examination of gaze information impacts on collaboration. For instance,
just as Kwok et al. [9] found that partner user’s gaze information display improved collaborative
remote surgery, it may be examined whether synchronized real-time gaze convergence gradient display
may improve collaborative remote surgery, which uses a shared software to remotely control robots
operating surgery [9]. Moreover, as suggested in the literature, seeing a coworker’s gaze information
may promote users’ attention shift triggering insight problem solving [53]; in addition, learning can be
improved by showing an expert’s information to the learner [7]. In this regard, future research may
investigate the extent to which gaze convergence information may promote shifts of attention and
performance during collaborative use of a shared system interface.

The present study opens multiple avenues for further research regarding gaze convergence during
collaborative use of a shared interface. For instance, research could investigate possible relationships
between gaze convergence and system use-related constructs, namely, emotions, cognitions and
behaviors. In this respect, system use-related constructs could be investigated as consequences as well
as antecedents of gaze convergence. For example, eye-tracking-based user information may be used to
examine relationships between user dyads’ gaze behaviors and user emotions during collaborative
use of shared system interface. Such information could be exploited to improve recommendation
systems’ advices (for an example of a recommendation system based on user gaze and emotions, see
Jaiswal et al. [65])

Another avenue for research could be to investigate team adaptation in the context of collaborative
use of a shared system interface. Research could examine how IS triggers, namely, system-related,
task-related, and collaboration-related triggers, impact the way IT users collectively look at a system
interface, ultimately influencing performance. Moderating factors could be examined in terms of
system, task, individual, group, and organizational characteristics. For instance, as literature suggests
that system-related discrepant events are detrimental to performance [26], it may be investigated how
such events influence gaze convergence and performance in multi-user settings.

Additionally, the success of the present study warrants further for groups of three and more
users simultaneously collaborating on a shared system interface. For instance, influence of gaze
convergence on learning for groups of students taking a virtual class and collaborating through the
computer-supported collaborative learning system may be investigated. Likewise, it may be useful
to examine how gaze convergence of groups of relatives is related to buying decisions. A tentative
generalization of our operationalization of gaze convergence could involve considering the average
Euclidian distance matrix of the set of users in a group, with every matrix element representing
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Euclidian distance between two specific users’ gaze locations on the system interface overtime. Hence,
such a matrix would be made of two by two computations using the present study’s proposed dyad
gaze convergence index.

Furthermore, our Study 2 was done in hedonic settings, with promising findings. As our
hypotheses were not specific to hedonic settings, future real-time dual eye-tracking research could
be conducted in utilitarian settings to support our GC index validity as well as the generalizability
of our findings to other contexts. As the scope of our study is joint task performance using a shared
system interface, it is expected that in utilitarian settings, the users’ looking at the same visual
artefacts in the screen will be important for the same reasons presented in the hypothesis development.
Looking at the same locations on the screen is expected to help harmonize users’ mental model of
the system and improve collaboration during the joint task. Examples of utilitarian settings include
the following. Our GC index could be examined during a learning task involving a teacher (or an
expert) and a learner—or learners and their peers—interacting together with a shared system interface,
to better understand how gaze convergence impacts learning performance. To illustrate, existing
studies use asynchronous eye movement comparison to demonstrate that people may benefit from
learning what experts have looked at (e.g., Jarodzka et al. [61]; D’Angelo and Begel [60]) or that
individuals perform better when they get real-time feedback on their gaze convergence vis-à-vis
high-performing peers (e.g., Król and Król [62]; Sharma et al. [63]). Hence, the present study’s
setup—more generally, synchronized multiuser-eye-traking—could enrich these studies with the
real-time gaze synchronization aspect. Moreover, during a professional task jointly performed by a
dyad of workers, our GC index could be used to identify patterns of collaborative use of a shared
interface that foster lower cognitive load and higher performance.

Additionally, our experimental setting—that is, joint task performance using a shared display on
separate computer monitors—is only one of several common settings used for joint task performance.
For example, it is common that two users sit in front of a single computer monitor to jointly perform
a task. Future studies could examine gaze convergence with users sharing the same computer
monitor. The model developed in this paper also applies in this context, which is very common in real
business environments.

Finally, future research may focus on the measure and validation of the gyad GC construct through
the OFD reflective dimension we proposed (see Figure 1), in the context of joint use of shared a system
interface. Our experimental setup could be used in such purpose to collect perfectly synchronized
dyad gaze data. However, the OFD dimension by definition does not require temporal ordering of
gaze data; it looks for overall similarity in both dyad members’ gaze behaviors and its focus is instead
fixation positions and duration. Hence, to measure OFD in future research, existing methods of gaze
similarity measures can be considered while benefiting the temporal precision and related spatial
(fixation positions) accuracy provided by real-time synchronized dual eye-tracking.

6.6. Limitations

The first limitation of the present study resides in the fact that the measurement model was
assessed through the SOGC dimension. Future research may focus on the operationalization of mutual
gaze convergence and investigate its nomological network. For example, it may be examined how
mutual gaze convergence is related to interpersonal processes during the collaborative use of a shared
system interface. Secondly, we limited our study to dyads of users for simplicity of all aspects of
the research. As mentioned earlier, the present work could be used to examine groups of three or
more persons. Thirdly, this study does not investigate qualitative data related to dyad behaviors
during the experimental task. Such data may provide more insights about mechanisms though which
dyad members’ gazes converge. For example, qualitative data may clarify how the decision processes
during the dyad task (e.g., jointly deciding where to investigate on the screen) may have influenced
convergence of dyad members’ gazes. Fourthly, because of the exploratory nature of the present study,
a small sample size was used. Nevertherless, as mentioned earlier, our very significant results are
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promising. Finally, this study does not control for gender and dyad familiarity, that is, whether dyad
members knew each other at the time of the study. Indeed, literature suggests that group familiarity
may influence group collaboration and team performance (e.g., Cattani et al. [66]; Janssen et al. [67])
and that males and females may display different gaze patterns (e.g., Abdi Sargezeh [68]). Nevertheless,
related risk was mitigated: participants were recruited independently from each other, and dyad were
formed randomly; moreover, to analyze data related to the collaborative task, we used linear regression
with random intercept model, which accounts for random effects. Notwithstanding, the role of dyad
familiarity in the present context of collaborative use of a shared system interface is worth investigating
in future research.

7. Conclusions

This paper investigates factors related to eye movements of IT user dyads during simultaneous
collaboration on a shared system interface. A central concept is users’ GC whose importance in the
IS and HCI literature, although implied, has not been directly investigated nor measured. In the
present study, we propose and test a dyad GC index. This GC index is validated in two studies.
In the first study the GC index’ content validity was demonstrated, as the measurement instrument
was able to clearly distinguish convergence from divergence. In the second study, the GC index’s
predictive validity was strongly supported: as expected, we found that GC was positively associated
with dyad task performance and negatively associated with dyad cognitive load. This paper has
several contributions to the IS and the HCI literatures, in which research on GC’s nomological network
is lacking. Hence, we hope this piece of work will foster more investigations of multiuser eye-tracking
in the IS and HCI fields.
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