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Featured Application: The inter-annual variability of rainfall distribution in the Mediterranean
region has an important impact on the vegetative cycle of dryland pastures and, consequently,
on the availability of animal feed in extensive regime. The results of this study show the practical
interest of spectrometry and of remote sensing as expeditious tools for monitoring pasture quality
and support farm management decisions in terms of animal supplementation needs in the critical
periods.

Abstract: Pasture quality monitoring is a key element in the decision making process of a farm
manager. Laboratory reference methods for assessing quality parameters such as crude protein
(CP) or fibers (neutral detergent fiber: NDF) require collection and analytical procedures involving
technicians, time, and reagents, making them laborious and expensive. The objective of this work was
to evaluate two technological and expeditious approaches for estimating and monitoring the evolution
of the quality parameters in biodiverse Mediterranean pastures: (i) near infrared spectroscopy (NIRS)
combined with multivariate data analysis and (ii) remote sensing (RS) based on Sentinel-2 imagery to
calculate the normalized difference vegetation index (NDVI) and the normalized difference water
index (NDWI). Between February 2018 and March 2019, 21 sampling processes were carried out in
nine fields, totaling 398 pasture samples, of which 315 were used during the calibration phase and
83 were used during the validation phase of the NIRS approach. The average reference values of
pasture moisture content (PMC), CP, and NDF, obtained in 24 tests carried out between January and
May 2019 in eight fields, were used to evaluate the RS accuracy. The results of this study showed
significant correlation between NIRS calibration models or spectral indices obtained by remote sensing
(NDVIRS and NDWIRS) and reference methods for quantifying pasture quality parameters, both of
which open up good prospects for technological-based service providers to develop applications that
enable the dynamic management of animal grazing.

Keywords: spectrometry; Sentinel-2; pasture quality index; normalized difference vegetation index;
normalized difference water index; supplementation; decision making
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1. Introduction

Montado is a highly complex agro–forestry–pastoral ecosystem due to the particular climate and
soil conditions and the synergies between animals, trees, and pastures. In addition, the Mediterranean
climate presents two very distinct dry and wet seasons accentuated by an increasing inter-annual
irregularity [1]. Consequently, dryland pasture quality and productivity fluctuate greatly over time
as a result of the seasonal distribution of rainfall [2]. Therefore, it is important to highlight the
fact that decisions (e.g., about soil amendment or fertilization, dynamic grazing, and livestock feed
supplementation) have to be made in a context of great unpredictability [1]. Understanding seasonal
changes in pasture nutritive value can enhance ruminant production systems and management [3].

The value of pasture is a combination of not only pasture production but also its nutritional
quality [3]. Decisions on supplementation are based on assessments of pasture quantity and quality.
The quantification of pasture quality can be done by using measurable parameters, such as crude
protein (CP) content and neutral detergent fiber (NDF) content [4]. Animal growth and development
are favored by a high CP content and a low NDF content, which are usually associated with early stages
of pasture development. During the spring, pastures tend to lose quality. The inter-annual variability
of rainfall distribution has an important impact on the dryland pasture vegetative cycle, to the point
that supplementation needs, which are normal in the critical summer period, can be anticipated
by one to two months (in late spring) in years of reduced spring precipitation [5]. CP levels below
maintenance requirements (9.4% of dry matter in adult sheep [6]) require the use of feed supplements,
hence the interest of regular monitoring of evolution of these pasture parameters. As a result, farm
managers heavily rely on the monitoring of the pasture quality for making decisions related to animal
management. The conventional method for assessing CP and NDF consists of collecting representative
samples and carrying out laboratory analysis. However, this methodology is not practical because it
requires demanding field work and access to a specialized laboratory (cutting, collection, and analytical
procedures). This results in a lengthy and often expensive process that is not practical for a busy farm
manager [7]. Consequently, there is a demand for fast procedures that can monitor pasture variables
and provide farmers with timely information. Proximal sensing (PS) and remote sensing (RS) are
relatively recent technologies that measure certain plant and other indices, with particular interest
in the use of the normalized difference vegetation index (NDVI), and they have gained widespread
acceptance in agriculture [1,8].

In recent years, near-infrared spectroscopy (NIRS) technology, based on the absorption of
the electromagnetic spectrum (radiation at wavelengths between 780 and 2500 nm), has been
used in the pharmaceutical, petrochemical, agricultural, and food processing industries, among
others [9]. Particularly, it has had a wide range of applications in agriculture, such as real-time
pasture management [3], the prediction of the chemical composition of feeds [10], the detection of
plant protein content [11], and the prediction of grape and wine quality [12]. NIR spectroscopy
requires little or no sample preparation [9], thereby offering a simple, rapid, and reliable way to
substitute some routine laboratory procedures and providing a fingerprint of sample composition.
Briefly, energy in the NIR range is directed at the sample, and the reflected energy is measured by the
instrument. However, this non-destructive technique requires a calibration procedure using some
reference methods. The combination of NIR spectroscopy and multivariate data analysis (chemometrics
or computational chemistry) provides calibration models that correlate the spectral response of a sample
with its compositional profile [12,13]. It is also common knowledge that a NIR spectra obtained from
forage samples have absorption bands that are correlated with specific compounds. The spectra regions
between 1650–1670 and 2260–2280 nm are correlated with C–H bonds in lignin and cellulose [14],
and the 2100–2200 nm region absorption bands are correlated with protein functional groups [15].

Though the NIR spectroscopy technique has been widely used in Europe to measure feed quality
and to predict the nutritional value of forage [16], few studies related to its application in dryland
biodiverse pastures of the Mediterranean region can be found, thus highlighting the interest of
this work.
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On the other hand, in recent years, satellite data have been increasingly deployed for RS
applications due to their ready access, low cost, and geographic scale [8]. Satellite images can provide
synoptic information on vegetation characteristics of large areas [17]. RS, based on the correlation
between vegetation indices obtained from satellite-images and some crop characteristics, is becoming
an increasingly appealing technology [7]. The NDVI is related to high levels of chlorophyll, which
is correlated with vegetative vigor and, consequently, with high CP levels [18]. These indices that
are associated with more traditional indicators provide farmers with the information needed for
formulating the most appropriate strategy for management and feeding of the livestock [19]. Over the
past few years, there has been a notorious improvement in the optical resolution of satellite images,
providing now a 10–30 m pixel resolution and a five-day repeat cycle [1]. Therefore, RS techniques
may progressively develop into important tools for the monitoring and management of such complex
ecosystems while allowing for, when necessary, the reconstruction of historical trends through the
use of satellite image time series [7]. Nonetheless, the use of optical satellite imagery requires a clear,
cloud-free sky that may not always be the case during the rainy season in temperate and rainy regions.
In the Montado, as in other forestry ecosystems, there is an added limitation due to lack of visibility of
the plants located under the tree canopies. This limitation of RS-based methods creates an opportunity
for the use of PS to monitor the understory vegetation [5,20]. These two methods can be used in a
complementary way, with PS providing a greater resolution and access to the understory even on
cloudy days [5].

Figure 1, based on data published by Serrano et al. [1], shows the interest of NDVI measurement
(by RS or PS) as an indicator of the seasonal evolution of pasture quality over the vegetative cycle and
of the inter-annual variability that might result from the precipitation pattern. The three years under
consideration in this study showed different patterns of rainfall distribution (Figure 1a): 2015/16 with
regular rainfall distribution, 2016/17 with a relatively dry spring, and 2017/18 with a very rainy spring.
Considering the NDVI reference value of 0.6 (Figure 1b), which was a sudden and significant decrease,
the pasture CP consequently contents fell below the animal maintenance [1], it is evident that animal
supplementary feed is required between the end of spring and the beginning of autumn, and it can last
between four and six months. This inter-annual variability reinforces the interest in having expeditious
tools to support farmers in the dynamic management of animal grazing.

The purpose of this study was to evaluate two technological and expeditious approaches (Figure 2)
for estimating and monitoring the evolution of the quality parameters in Mediterranean pastures
during the 2018 and 2019 growing seasons: (i) NIRS combined with multivariate data analysis and (ii)
RS using images provided by Sentinel-2 satellite to calculate the NDVI and the normalized difference
water index (NDWI).
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Figure 1. Season accumulated rainfall in the meteorological station of Mitra (Évora, Portugal) (a) and 
evolution of the normalized difference vegetation index (NDVI) at the experimental field (b) between 
September and August over three years: 2015/16, 2016/17, and 2017/18. 

0.0

0.2

0.4

0.6

0.8

1.0

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

ND
VI

NDVI_2015/16 NDVI_2016/17
NDVI_2017/18 Average

SupplementationSupplementation

0

50

100

150

200

250

300

350

400

Autumn Winter Spring Summer

A
cc

um
ul

at
ed

 ra
in

fa
ll 

(m
m

)
2015/2016

2016/2017

2017/2018

(a)

(b)

Figure 1. Season accumulated rainfall in the meteorological station of Mitra (Évora, Portugal) (a) and
evolution of the normalized difference vegetation index (NDVI) at the experimental field (b) between
September and August over three years: 2015/16, 2016/17, and 2017/18.
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Figure 2. Schematic representation of the experimental methodology used in this study. 
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Figure 2. Schematic representation of the experimental methodology used in this study.

2. Materials and Methods

This work frames the results of several projects conducted by this research team to monitor the
pasture in the Montado ecosystem in nine experimental fields (Figure 3). The characteristics of the
experimental fields used in this study are presented in Table 1. These are typical biodiverse dryland
pastures that usually grow under a low density plantation of Holm oak or Cork oak, and they are
mainly used for grazing by sheep or cattle in a rotational or permanent basis. The following data
were used: (i) pasture moisture content (PMC), CP, and NDF in experimental field “MIT_1,” collected
between February and December 2018; (ii) PMC, CP, and NDF in 8 experimental fields (“AZI,” “CUB,”
“GRO,” “MIT_2,” “MUR,” “PAD,” “QF,” and “TAP”) collected in May 2018 (“MIT_2,” “QF,” and
“TAP”) and between January and February 2019; (iii) PMC, CP, NDF, the NDVI, and the NDWI in
8 experimental fields (“AZI,” “CUB,” “GRO,” “MIT_2,” “MUR,” “PAD,” “QF,” and “TAP”) collected
between January and May 2019.
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Figure 3. Location of the experimental fields in Portugal.

Table 1. Characteristics of the experimental fields used in this study.

Site Coordinates Pasture Type Predominant
Trees Animal Species

“AZI” 38◦6.2′ N; 8◦26.9′ W
Permanent; biodiverse

(predominance of
composites)

Holm oak and
Cork oak

Sheep in rotational
grazing

“CUB” 39◦10.0′ N; 6◦44.6′ W
Annual; biodiverse

(mixture of grasses and
legumes)

Holm oak and
Cork oak

Cattle in rotational
grazing

“GRO” 37◦52.3′ N; 7◦56.7′ W
Permanent; biodiverse

(predominance of
composites)

Holm oak Cattle in rotational
grazing

“MIT” (1) 38◦32.2′ N; 8◦01.1′ W;
(2) 38◦31.8′ N; 8◦0.9′ W

Permanent; biodiverse
(mixture of grasses and

legumes)
Holm oak

(1) Sheep in
permanent grazing

(2) Cattle in
rotational grazing

“MUR” 38◦23.4′ N; 7◦52.5′ W
Annual; biodiverse

(mixture of grasses and
legumes)

Holm oak and
Cork oak

Sheep in
permanent grazing

“PAD” 38◦36.4′ N; 8◦8.7′ W
Permanent; biodiverse

(predominance of
composites)

Holm oak Cattle in
permanent grazing

“QF” 40◦16.4′ N; 7◦25.9′ W
Permanent; biodiverse
(mixture of grasses and

legumes)
Eucalyptus Sheep and cattle in

rotational grazing

“TAP” 39◦9.5′ N; 7◦31.9′ W Permanent; biodiverse
(mixture of legumes)

Holm oak and
Cork oak

Cattle, sheep or
pigs in rotational

grazing
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2.1. Evaluation of Near Infrared Spectroscopy (NIRS) Approach

2.1.1. Pasture Sample Collection and Chemical Processing

Three hundred and ninety eight composite pasture samples were collected between February
2018 and February 2019 in nine different fields in four districts of Portugal (Beja, Évora, Portalegre,
and Castelo Branco; see Figure 3). The sampling process consisted of defining, at each point, a 0.5 ×
0.5 m area (through a metal quadrat), cutting the pasture at 5–10 mm above ground level, and then
preserving each sample in a numbered plastic bag. Each composite sample resulted from three
representative sub-samples. Once in the laboratory, the pasture sample was weighed to establish total
biomass, dried in an oven 72 h at 65 ◦C, and weighed again to establish PMC (in %). Then, these
samples were ground using a Perten instruments mill equipped with 1 mm sieve. CP and NDF were
analyzed according to standard methods and expressed in percentage on a dry weight basis [21],
constituting the CP and NDF reference values: (i) nitrogen content was analyzed with the Kjeldahl
method, a colorimetric determination in a Bran + Luebbe autoanalyzer with a factor of conversion to
CP of 6.25 (method no. G-188-97 Rev 2, Bran + Luebbe, Analyzer Division, Norderstedt, Germany);
(ii) the NDF content was analyzed according to the Goering and Van Soest [22] method in a fibered
digester (Foss Tecator AB, Sweden). The pasture quality index (PQI; Equation (1)) was then calculated
based on the ratio of these two parameters:

PQI =
CP

NDF
(1)

2.1.2. Sample Spectra Acquisition and Processing

Spectroscopic measurements were made in all samples using an FT-NIR spectrometer (MPA, Opus
Bruker, Germany). Dried and ground pasture samples were placed on integrating sphere, and spectra
was collected in diffuse reflectance mode at room temperature of 20 ◦C in a small circular cup of 20 mm
diameter. Reflectance data (R) were measured as log 1/R (absorbance data) at a 1 nm interval, and NIR
spectra data were obtained. Five spectra were collected from each sample, and an average spectrum
was used for further mathematical processing and chemometrics analysis. Spectra data were obtained
in the entire near infrared region of 12,500–3600 cm−1 (800–2777 nm) after a total of 32 scans with a
scanner velocity of 10 kHz and an average resolution of 16 cm−1, with a receiver gain function with the
lowest gain setting defined as 1 [23]. Each spectrum constituted 1137 points, which means that the first
20 values of each spectrum were discarded because large parts of the spectral noise could be found
below 3741 cm−1 (2673 nm). Background signal was corrected before each set of 20 samples.

2.1.3. Statistical Analysis

The Opus v. 7.5 software (Bruker Optik GmbH, Germany) was employed for spectral data collection,
and FT-NIR spectra were exported to the Unscrambler software (version 10.5.1, Camo, ASA, Oslo,
Norway) for chemometrics analysis, calibration, and external validation models. Prediction models
were developed using partial least square regression (PLSR) algorithm, considering an independent
validation sample set for the chemometrics analysis [24]. In order to obtain the best predictive
model, for PLSR, samples were split in two sets: a training set (calibration) with 79% of the samples
(315 samples of six fields collected between February and December 2018; day of the year (DOY) 39–135)
and a test set, with the rest of the samples (83 samples of eight fields collected between January and
February 2019; DOY 10–50) used as an external and independent validation set of the NIRS calibration
models. In order to test the model robustness, two different years were considered for calibration and
validation sets.

To find the most accurate model to quantify CP, NDF, and the PQI in pastures, the calibration
process was performed on the raw spectra data and after the application of some mathematical
algorithms to remove any irrelevant information. Some pre-processing techniques, like standard
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normal variate (SNV), normalization and normalization followed by SNV (normalization and SNV)
were applied to raw spectra and the best prediction model was selected. Calibration and validation
models were developed based on principal components analysis. The quantitative measure for the
predictive accuracy from each model was evaluated using coefficient of determination (R2; an excellent
indicator of the accuracy and robustness of a model), root mean square error (RMSE; Equation (2)) for
the calibration and external validation data sets, and the residual predictive deviation (RPD; Equation
(3)), which corresponds to the ratio between standard deviation (SD) of the results obtained by reference
method and the corrected mean error of the prediction of the validation (SEP bias). The value of RPD
is usually used as an indicator of the quality of a calibration model. Values of RPD higher than 2, 3,
or 5 are recommended, respectively, for screening purposes, prediction, and quality control [25,26].

RMSE =

√√√√ n∑
i=1

(Ei −Mi)2

n
(2)

RPD =
SD

RMSE
(3)

where n is the number of observations and Ei and Mi are the estimated and observed (measured)
values, respectively.

2.2. Evaluation of Remote Sensing (RS) Approach

2.2.1. Pasture Sample Collection and Chemical Processing

Pasture sampling was carried out between January and May 2019 (DOY between 10 and 145)
in eight experimental fields with area of approximately 25 ha (Figure 3). In each of these fields,
nine composite samples were taken at three different times in geo-referenced areas without trees,
corresponding to 10 × 10 m pixels of Sentinel-2 imagery for a total of 216 samples (3 dates × 8 fields ×
9 samples). The sampling process and the subsequent chemical analysis took place as described above
to obtained PMC, CP, NDF, and the PQI.

2.2.2. Sample Spectra Acquisition and Processing

Reflectance was measured by remote sensing (Sentinel-2). These data were downloaded from
Copernicus data for the nine geo-referenced pixels in each experimental field. Two remote sensing
indices were generated from different surface reflectance bands: the NDVIRS (B4: 665 nm and B8: 842 nm,
with a 10 m spatial resolution; see Equation (4) [27]) and the NDWIRS (B8A: 865 nm and B11: 1610 nm,
with a 20 m spatial resolution; see Equation (5) [28]). The “Sen2Cor 2.3” processor (implemented on
Sentinel Application Platform from European Space Agency) was used for atmospheric correction.

NDVIRS =
B8− B4
B8 + B4

(4)

NDWIRS =
B8A− B11
B8A + B11

(5)

These indices were extracted on the date without clouds closest to the corresponding pasture
collection and were subject to a maximum deletion of 8 days between two dates (pasture sampling and
Sentinel-2 data extraction).

2.2.3. Statistical Analysis

The statistical treatment of these results was performed using the ‘MSTAT-C’ software, version
6.0 (MSTAT-C, Michigan State University, MI, USA) with a significance level of 95% (p < 0.05) and
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consisted of an analysis of regression between average pasture parameters and indices based in satellite
imagery: (i) CP, NDF, and the PQI versus the NDVIRS and (ii) PMC versus the NDWIRS.

3. Results

3.1. Evaluation of Near Infrared Spectroscopy (NIRS)

Table 2 shows PMC, CP, and NDF values of pasture samples at each location and each sampling
date, determined with the reference method and used in the calibration and external validation models.
The first requirement to obtain a good calibration model is to have a wide variation of the chemical
composition of a set. The average values of these parameters (PMC between 62.5% and 89.1%; CP
between 10.4% and 24.3%; and NDF between 29.4% and 60.2%) are characteristic for dryland pastures
during the growing season (autumn, winter, and spring). The variation ranges of these parameters
showed, on the other hand, that the samples used in this study are representative of the inherent
variability of biodiverse pastures of different fields in different phases of the vegetative cycle.

Table 3 shows statistics for calibration and external validation of prediction models developed
using PLSR to correlate NIRS absorbance spectra with the invasive quality measurements (CP, NDF,
and the PQI). Four regression models were developed using the listed mathematical procedure (raw
spectra, normalization, SNV, and normalization and SNV). This table shows that the PLSR models
selected for CP, NDF, and PQI quantification in pasture samples exhibited a small difference between
RMSE from the calibration and RMSE from the external validation models.

Figure 4 shows the optimized spectra of NIRS, considering several pre-processing methods, for CP,
NDF, and the PQI. These are typical absorbance pasture spectrums. Considering that the main goal
of this study was to obtain predictive models to quantify CP, NDF, and indirectly, pasture quality
(PQI), the pasture raw spectra region selected in this study was defined as that within the wavenumber
region from 4000 to 9000 cm−1 (2500–1111 nm).

Considering that an accurate model should have a high RPD, a high R2, a low RMSE, a low average
difference between predicted and actual values (bias) [29], and a small difference between RMSE from
calibration and external validation models [30], when evaluating all pre-processing methods used to
evaluate CP, NDF, and the PQI in pasture samples, the best results were obtained using:

(i) The “raw spectra” procedure for CP prediction model due to the highest RPD (4.0) and R2 (0.844)
and the lowest RMSE (1.622) and bias (0.057) of the external validation model (Table 3).

(ii) The “normalization and SNV” pre-processing for the NDF prediction model due to the highest
RPD (2.4) and R2 (0.826) and lowest RMSE (4.200) of the external validation model (Table 3).

(iii) The “raw spectra” procedure for the PQI prediction model due to the highest RPD (3.2) and R2

(0.808) and lowest RMSE (0.066) and bias (0.009) of the external validation model (Table 3).

Figure 5 shows measured vs. predicted values for CP, NDF, and the PQI, in calibration and
validation phases. It is visible that the range of the calibration and validation sets was similar
for all parameters, which contributed to a good representativeness of the whole group of samples.
According to the coefficients of determination and the predicted vs. reference values, the CP model had
the higher prediction capability and the NDF model had the lowest, which is in accordance with other
studies [31]; nevertheless, these results showed that NIRS calibration models provided significantly
identical data to reference methods to quantify CP, NDF, and the PQI.
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Table 2. Pasture moisture content (PMC), crude protein (CP), and fiber (NDF) reference values of
calibration phase and external validation phase.

PHASE DOY Samples PMC (%) CP (%) NDF (%)

(field) (year) (n) Mean ± SD Range Mean ± SD Range Mean ± SD Range

CALIB. (2018)
MIT_1 39 24 77.5 ± 7.8 55.6–86.1 18.7 ± 4.9 8.7–25.3 34.3 ± 11.9 18.6–58.9

66 24 82.2 ± 5.2 66.7–88.9 18.3 ± 4.7 8.3–27.0 36.4 ± 10.4 17.4–52.6
99 24 84.6 ± 2.4 79.6–88.6 13.2 ± 3.7 8.3–25.5 40.3 ± 7.1 31.3–52.6

122 24 82.7 ± 2.8 73.3–87.1 15.2 ± 3.2 10.2–24.1 46.8 ± 7.1 33.0–60.3
155 24 68.5 ± 5.7 54.2–77.8 10.5 ± 2.4 7.3–15.9 60.2 ± 3.4 51.7–66.4
266 6 89.1 ± 5.0 85.9–93.9 20.5 ± 1.0 19.3–21.8 58.8 ± 3.0 53.0–61.3
295 35 86.2 ± 2.7 77.8–90.8 24.3 ± 8.8 13.4–52.3 50.5 ± 7.0 28.5–64.5
310 35 79.0 ± 6.0 58.5–87.8 16.8 ± 5.1 7.7–31.6 51.8 ± 10.1 28.9–71.1
345 35 82.5 ± 5.6 66.7–88.7 18.4 ± 5.2 13.9–30.0 47.7 ± 8.1 34.2–62.1

MIT_2 130 24 83.7 ± 2.7 77.9–87.1 12.1 ± 1.9 8.9–15.5 51.4 ± 3.6 45.7–58.0
135 12 83.9 ± 2.5 79.1–86.9 11.5 ± 1.6 9.6–14.9 50.1 ± 4.1 43.2–57.4

TAP 130 24 80.4 ± 3.3 72.9–83.4 10.4 ± 1.7 7.7–14.0 49.0 ± 6.7 41.1–66.1
QF 135 24 72.6 ± 3.7 65.8–77.8 12.8 ± 3.4 7.3–19.1 46.7 ± 7.1 35.1–58.3

VALID. (2019)
CUB 10 12 82.2 ± 2.8 77.8–86.5 20.9 ± 4.7 15.3–28.3 29.4 ± 5.4 17.7–37.4
AZI 25 12 71.0 ± 6.5 55.3–79.6 13.0 ± 2.2 10.0–18.9 53.1 ± 5.2 45.8–65.8
GRO 25 12 62.5 ± 6.2 50.0–70.2 11.9 ± 1.1 10.1–13.3 59.9 ± 3.0 55.7–64.2
MUR 45 15 79.7 ± 3.1 72.9–85.3 11.9 ± 2.3 8.8–17.5 44.3 ± 4.3 37.6–53.0

MIT_2 45 8 82.4 ± 2.6 80.2–86.8 17.0 ± 3.8 12.9–24.6 39.6 ± 5.6 30.7–44.9
PAD 55 8 72.8 ± 4.6 63.9–80.0 13.9 ± 5.5 8.4–22.4 52.1 ± 8.8 35.6–60.4
TAP 50 8 75.7 ± 4.9 68.3–81.7 10.7 ± 2.0 7.1–13.5 52.2 ± 5.1 41.5–59.0
QF 50 8 72.8 ± 8.8 57.9–83.3 12.4 ± 3.0 9.1–16.5 48.2 ± 12.6 32.4–67.3

CALIB.—calibration phase; VALID.—validation phase; DOY—day of the year; SD—standard deviation;
PMC—pasture moisture content; CP—crude protein; and NDF—neutral detergent fiber.

Table 3. Statistics for calibration and external validation models for CP, NDF, and the PQI using
near-infrared spectroscopy (NIRS) spectra and partial least squares regression (PLSR)

Spectral Pre-Processing LV Calibration External Validation

R2 RMSE R2 RMSE Bias RPD

CP
Raw spectra * 5 0.874 1.882 0.844 1.622 0.057 4

SNV 4 0.866 1.894 0.653 2.473 −0.877 3
Normalization 4 0.837 1.973 0.817 1.978 0.586 3.4

Normalization and SNV 5 0.902 1.632 0.753 2.16 −0.421 3.1

NDF
Raw spectra 7 0.618 6.261 0.607 6.979 4.453 1.9

SNV 7 0.834 4.061 0.802 4.868 0.426 2.1
Normalization 7 0.807 4.446 0.818 4.742 2.015 2.4

Normalization and SNV * 7 0.828 4.163 0.826 4.2 0.701 2.4

PQI
Raw spectra * 3 0.791 0.071 0.808 0.066 0.009 3.2

SNV 7 0.829 0.079 0.768 0.079 −0.010 2.6
Normalization 7 0.746 0.1 0.747 0.12 −0.024 1.7

Normalization and SNV 7 0.83 0.078 0.736 0.083 −0.015 2.5

LV—latent variables; SNV—standard normal variate; R2—coefficient of determination; RMSE—root mean square
error; RPD—residual predictive deviation; and Bias—average difference between predicted and actual values.
* selected pre-treatment.
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(b) NDF, and (c) the PQI.
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3.2. Evaluation of Remote Sensing (RS)

Table 4 shows the average PMC, CP, NDF, and PQI reference values of pasture samples and the
NDVIRS and the NDWIRS at each of the eight experimental fields and each of the three sampling
dates. The pattern, in general, showed a decrease in PMC and CP and an increase in NDF as the
vegetative cycle of the pasture advanced (increase of the DOY). The PQI, being a ratio between CP
and NDF, tended to decrease with the evolution of the vegetative cycle. This similarity of temporal
patterns of the parameters related to pasture quality (PMC, CP, and the PQI) and spectral indices
obtained by remote sensing (the NDVIRS and the NDWIRS) was reflected in the significant correlation
between (a) the PQI and the NDVIRS (R2 = 0.77; p < 0.01) and (b) between PMC and the NDWIRS (R2

= 0.72; p < 0.01) (Figure 6). This evolution showed, however, the site-specific variability function of
precipitation regimes, which determines the soil moisture availability, the true driver of productivity
in dryland pastures of the Mediterranean region [2].

Table 4. Average PMC, CP, NDF, and PQI reference values and NDVI and NDWI values based on
satellite imagery.

Field DOY
(2019) PMC (%) CP (%) NDF (%) PQI NDVI NDWI

AZI 25 71.0 13.0 53.1 0.248 0.566 0.154
90 70.2 9.2 56.8 0.164 0.611 0.183

120 67.5 7.9 59.3 0.136 0.392 0.036

CUB 10 82.2 20.9 29.4 0.755 0.771 0.487
80 77.6 13.0 39.6 0.335 0.670 0.364

135 66.6 9.4 61.2 0.155 0.437 0.112

GRO 25 62.5 11.9 59.9 0.199 0.609 0.050
105 69.2 11.4 54.9 0.211 0.600 0.100
135 54.9 10.2 62.0 0.168 0.600 −0.150

MIT_2 45 82.4 17.0 39.6 0.446 0.697 0.325
90 78.5 15.9 38.4 0.440 0.700 0.321

125 80.5 11.1 51.1 0.221 0.622 0.337

MUR 45 79.7 11.9 44.3 0.273 0.683 0.328
90 76.3 11.6 43.7 0.276 0.620 0.415

125 73.3 10.1 56.4 0.182 0.643 0.368

PAD 55 72.8 13.9 52.1 0.288 0.685 0.325
90 73.7 13.2 39.4 0.336 0.666 0.346

125 78.5 14.6 50.6 0.291 0.668 0.282

QF 50 72.8 12.4 48.2 0.288 0.584 0.172
110 79.2 13.2 53.2 0.253 0.582 0.207
145 67.2 10.2 51.8 0.202 0.550 −0.027

TAP 50 75.7 10.7 52.2 0.209 0.572 0.152
105 79.2 11.3 44.3 0.268 0.582 0.290
145 69.9 6.9 65.0 0.127 0.365 0.052

DOY—day of the year.
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Figure 6. Relationship between (a) the PQI and the remote sensing NDVI (NDVIRS); (b) PMC and the
remote sensing NDWI (NDWIRS) over sampling times (between January and May 2019) and locations
(8 experimental fields). Data are the average values of sampling pixels in each time and site location.

4. Discussion

4.1. Evaluation of Near Infrared Spectroscopy (NIRS)

Choosing a proper wavenumber range is an essential pre-processing step to find the most
representative wavelengths and eliminate uninformative spectra regions. Actually, many authors
have found that the diffuse reflection from the wavenumber region of 4000–9000 cm−1 (2500–1111 nm)
carries information associated with organic material and structural fibers that is typical of a NIRS
spectra [14,16]. Considering the selected wavenumber range used in NDF prediction model
development (4003–5600 and 7050–7300 cm−1 or 2498–1786 and 1418–1370 nm), Givens and Deaville [15]
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also found two regions around 6066–5988 and 4424–4385 cm−1 (1649–1670 and 2260–2280 nm) that
were the most important regions associated with the presence of lignin and cellulose. On the other
hand, Bagchi et al. [11] found that the region around 6798–6535 cm−1 (1471–1530 nm) corresponded
to the absorbance band of protein in molecules. Additionally in the CP calibration model, it was
observed in this study that the spectra within 4003–7800 cm−1 (2498–1282 nm) were the most important
regions that contributed to the performance of the models. These results indicated that aforementioned
wavenumbers may play important roles in modeling protein content in pasture samples.

As mentioned in the Results section, in terms of pre-processing methods used to evaluate CP, NDF,
and the PQI in pasture samples, the best results were obtained using, respectively, the “raw spectra,” the
“normalization and SNV,” and the “raw spectra” procedures. Additionally Garcia and Cozzolino [31]
found similar R2 values for CP quantification, denoting the high capacity of NIRS to predict this
parameter in a wide range of forages and pastures. An RPD greater than 3 is an indicator of good
quality of calibration model for prediction of CP [25,26]. On the other hand, successful calibrations
have also been made for the prediction of NDF with similar predictive accuracy and using the same
spectral region in other plant species (grasses, cereal, and straws) [15]. The lower calibration accuracy
of NDF models, relatively to CP models, might reflect some variability in the reference method due to
high starch content on the forage and pasture samples [31], as fiber is a more complex component of
forages that protein [32]. An RPD greater than 2 is an indicator of a calibration model for the screening
purposes of NDF [25,26] that suggests that more work needs to be done to build a more robust model.
Regarding the PQI, as this parameter is a ratio between CP and NDF, an intermediate behavior would
be expected. An calibration model with an RPD greater than 3 can be used as routine analysis in the
prediction of the PQI [25,26,33].

The small difference observed in this study between the RMSE from the calibration and the RMSE
from the external validation models selected for CP, NDF, and PQI quantification in pasture samples
(Table 3) was similar to that obtained by Aleixandre-Tudo et al. [30], who indicated robust and accurate
calibrations. Models are robust when prediction accuracy is relatively insensitive to unknown changes
of external factors. Additionally, according to Fagan et al. [34], a model is considered good enough to
monitor the quality of individual samples when the R2 is around 0.90 and the RDP is greater than
3. The R2 (0.80–0.90) and the RPD (2.4–4.0) obtained in this study indicated that there were very
little differences between reference and predicted values of CP, NDF, and the PQI [11]. In general, R2

increased as more information was added to the database, which means that, although these results are
encouraging, more accurate models will be built in the future that enable the chemical and nutritional
analysis of feed stuffs in a non-destructive and inexpensive way.

4.2. Evaluation of Remote Sensing (RS)

As discussed in the Introduction, historical time series of an NDVIRS enable one to follow the
evolution of vegetative vigor and, therefore, the quality of pasture throughout the year. The significant
correlations obtained in this work between the PQI and the NDVIRS (R2 = 0.77; p < 0.01) confirmed
previous studies. According to Gu et al. [35], the NDVI has been recognized as an excellent proxy
for both the chlorophyll content and the intracellular spaces of plant leaves [36]: in general terms,
higher NDVI values are indicative of greater vigor and photosynthetic activity, whereas lower NDVI
values are associated with stress phenomena that result in decreased presence of chlorophyll and
wilting or senescence of the leaves. The nonlinear behavior of this relationship seems to indicate the
lower sensitivity of the NDVI to variations in the quality of pasture (PQI) in periods of more feeble
vegetative vigor (NDVI values of approximately 0.4–0.6; Figure 6a), an aspect to be further explored
in future works. Serrano et al. [1] observed significant correlations between the NDVI and pasture
quality parameters, showing that this index can be used to develop a system of alarms that can inform
a farm manager of the need for providing supplementary feed to the animals.

On the other hand, the significant correlation between the NDWIRS and PMC was in agreement
with the observations of Sanchez-Ruiz et al. [37], who indicated that the spectral signature of vegetation
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in NIR and SWIR (short-wave infrared) bands can be related with the plant water status. The NDWIRS,
known as a “water index” [28,35], has shown sensitivity to changes in leaf water content. By using the
NDWIRS, the amount of leaf material can be known in order to estimate vegetation dryness [38].

These results show the practical interest of the satellite-derived indices (as the NDVIRS and the
NDWIRS) in the site-specific management of the Montado ecosystem, namely to provide the farmer
with the information needed to intensify this production system in a climate change scenario [1].
The RS-based models can more accurately assess ecosystem services when their indicators mainly
depend on green vegetation, such as for erosion prevention and the provision of forage [17].

This RS approach has the great advantage of not requiring displacement to the field to collect
information, unlike the NIRS approach. However, it is affected by the presence of clouds, which are
very common in this region in the period of greatest vegetative development of the pasture (spring);
an additional limitation is the inaccessibility under the trees, a characteristic element of this ecosystem
that induces specific microclimates, influencing soil fertility and productivity, as well as the quality
of pasture [39]. Thus, there seems to be a high potential for future research studies to evaluate the
complementarity between NIRS approach (especially based on proximal and portable technology (PS))
and RS for monitoring and supporting pasture and grazing management in the Montado ecosystem.

5. Conclusions

The development and productivity of dryland pastures mainly depend on the distribution of
precipitation throughout the year and on its combination with the air temperature. The important
inter-annual variability of rainfall, characteristic of the Mediterranean region, places agricultural
decision-makers in a scenario of great unpredictability regarding the availability of food for animals
in an extensive regime. The results of this study showed significant correlation between NIRS
calibration models or spectral indices obtained by remote sensing (the NDVIRS and the NDWIRS)
and reference methods for quantifying pasture quality parameters. They demonstrated the practical
interest of spectrometry and of remote sensing as expeditious and complementary tools for monitoring
pasture quality and supporting farmer management decisions in terms of animal supplementation
needs in the critical period between the end of spring and the beginning of autumn in southern
Portugal. Though these are already very interesting results and with immediate practical applications,
clearly reducing the time and means needed to process pasture samples and obtain quality parameters,
we believe that it is still possible (i) to improve the robustness of the NIRS calibration models in estimating
pasture quality attributes, possibly by resorting to a greater number of pasture samples; (ii) contribute
to the practical implementation of NIRS technology with the use of portable spectrophotometers that
enable direct field sampling (green sampling), thus eliminating the need for sample preparation; and
(iii) the use of historical time series of the NDVI, the NDWI, or others indices obtained by satellite
imagery relative to several years to create a database that allows small technology-based enterprises
to provide alert services to the livestock farming management, constituting effective systems for the
holistic evaluation and monitoring of Montado ecosystem.
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