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Abstract: In the image forgery problems, previous works has been chiefly designed considering
only one of two forgery types: copy-move and splicing. In this paper, we propose a scheme to
handle both copy-move and splicing image forgery by concurrently classifying the image forgery
types and localizing the forged regions. The structural correlations between images are employed
in the forgery clustering algorithm to assemble relevant images into clusters. Then, we search
for the matching of image regions inside each cluster to classify and localize tampered images.
Comprehensive experiments are conducted on three datasets (MICC-600, GRIP, and CASIA 2) to
demonstrate the better performance in forgery classification and localization of the proposed method
in comparison with state-of-the-art methods. Further, in copy-move localization, the source and
target regions are explicitly specified.
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1. Introduction

In an era of globalization, social networks such as Facebook, Twitter, and Instagram are widely
used in our daily lives and a huge number of photos are uploaded to these networks everyday.
Further, it becomes easy even for unpracticed users to manipulate digital images without leaving any
perceptible trace. Copy-move and image splicing are two most popular image manipulation methods.
In the copy-move forgery (CMF), one or more regions are copied from an authentic image and then
pasted into other regions of that image. The authentic image used to compose the copy-move image is
called the host image. On the other hand, in image splicing, some regions are copied from a source
image (the donor image) and pasted into a target image (the host image) [1]. Examples of copy-move
and spliced images are given in Figure 1.

In the image forgery scenario, a tampered region might not be exactly the same as the original
region since it usually undergoes a sequence of post-processing operations such as rotation, scaling,
edge softening, blurring, denoising, and smoothing for a better visual appearance [1]. Therefore,
human beings may easily be deceived by tampered images and it is difficult to manually verify the
authenticity of images.

Many researchers have put considerable effort into detecting and localizing tampered regions of
image forgery. However, in most cases, forgery detection and localization algorithms were designed
considering only one of two forgery types, copy-move and image splicing. In this paper, we propose
an image forgery detection and localization algorithm that can handle both types of image forgeries
simultaneously. The proposed method utilizes the bag-of-features (BOF) image representation and
Hamming Embedding (HE) based image retrieval. The image forgery clustering algorithm classifies
input images into distinct clusters, each of which consists of one authentic image and all the spliced and
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copy-move images which were composed using that authentic image as the host image. The algorithm
also determines the authentic image based on structure and luminance similarity between images and
assigns it as the centroid of the cluster. The cluster centroid is used to classify the image forgeries and
localize the tampered regions. The experimental results show that the proposed method outperforms
state-of-the-art techniques in image forgery classification and localization accuracy. In addition,
we distinguish the source and target regions in copy-move tampering localization.

(a) (b) (c) (d)

Figure 1. Examples of image forgery in the top row, the corresponding host images are in the middle
row, and the groundtruth images of forged regions are in the bottom row. Copy-move images are
shown in (a,b), while spliced images are shown in (c,d).

The further part of this paper is organized as follows. Section 2 provides a brief review of image
splicing and copy-move detection and localization methods. In Section 3, we present the image
retrieval algorithm based on HE and BOF. The proposed image clustering algorithm is introduced in
Section 4. Section 5 presents the image forgery detection and localization. The experimental results are
discussed in Section 6. Finally, Section 7 concludes the paper.

2. Related Works

In the literature, image splicing forgery detection problem has been addressed efficiently [2–4].
In recent years, a substantial attention has been paid to deep learning based approaches [5,6]
for localizing image splicing [7–15] wherein convolutional neural network (CNN) has been
widely used [8–12]. Bondi et al. [8] extracted and employed features capturing characteristic traces
from different camera models to localize a tampered mask by an iterative clustering algorithm.
Region proposal network and condition random field are the main components of the model developed
in Chen et al. [10]. The noise levels difference between spliced and original regions was utilized to find
the splicing traces [11,13]. Non-linear camera response function was used in Yao et al. [11] and was
combined with noise level function to exploit the strong relationship between two functions to localize
the forged edges using a CNN. Mayer et al. [12] used a similarity network and a CNN-based feature
extractor to determine whether image patches contain different traces or being captured by different
camera models. Zeng et al. [13] estimated the noise levels using the principal component analysis
and then clustered using k-means algorithm to localize the spliced regions. Matern et al. [15] utilized
the gradient-based illumination descriptor to detect the illumination inconsistency and object color
change, which helped localize image splicing traces. Wang et al. [16] used gamma transformation to
detect splicing forgery and localize spliced region by estimating the probabilities of sliding window
based overlapping blocks being gamma transformed.

CMF detection is the problem of detecting the tampered regions in copy-move images, is called
CMF localization (CMFL) in this paper, to distinguish from CMF classification. CMFL has also
been actively studied in many researches, which can be divided into three categories: block-based
methods [17–22], keypoints-based methods [23–28], and segmentation-based methods [29–32].



Appl. Sci. 2020, 10, 4458 3 of 17

Park et al. [17] introduced the upsampled log-polar Fourier descriptor, which is invariant to rotation
and scaling, to robustly detect various types of tampering attacks. Wu et al. [18] proposed a two-branch
deep neural network to detect potential manipulation via visual artifacts and visually similar regions,
which helps specify the copied and pasted regions. Park et al. [19] used the scale space representation
of scale-invariant feature transform (SIFT) to handle different geometric transformation. PatchMatch,
an algorithm used to search for approximate nearest neighbors, was combined with Zernike moments
to detect copy-move attacks in [23,24] whereas SIFT was utilized in [25–27]. In segmentation-based
approaches, the input image was semantically segmented into non-overlapped regions [29–32].
Li et al. [29] developed two stages of matching to detect the copy-move regions. Firstly the affine
transformation matrix between segmented regions was roughly estimated and then iteratively refined
by using an expectation-maximization algorithm-based probability model. However, the major
disadvantage of this method is its high computational complexity. Zheng et al. [30] classified smooth
regions and non-smooth regions (keypoint regions) to be apply two different techniques. On the one
hand, SIFT was used in a keypoint-based method to detect forgery in non-smooth regions. On the other
hand, Zernike moments were extracted in a block-based method to handle smooth regions. The CMFL
was effectively performed by the fusion of above-mentioned techniques.

3. Bag-of-Features and Hamming Embedding Based Image Retrieval

In image retrieval, images are represented by descriptive features. The features are used to
evaluate similarity or dissimilarity between images. In the image forgery, since the forged regions may
be rotated, scaled, and translated in different manners, the features of the images should be invariant
to these transformations. The features generated by SIFT [33] have such noteworthy characteristics
and the proposed algorithm utilizes the SIFT features to represent images [34,35].

In this section, we briefly review the image retrieval method based on BOF [36–38] and
HE encoding [38,39]. Suppose that a query image Q is represented by a set of N descriptors,
XQ =

{
xQ

1 , xQ
2 , . . . , xQ

N

}
. All of these descriptors are mapped into a visual vocabulary set W =

{w1, w2, . . . , wK} by a K-means vector quantizer q. For example, q maps xQ
n (n = 1, 2, . . . , N) to the

closest visual word wk (k = 1, 2, . . . , K), where q(xQ
n ) = wk ∈W. We define a set of descriptor indexes,

which assigns descriptors of Q to a particular visual word wk as IQ
k =

{
n
∣∣∣q (xQ

n

)
= wk

}
.

A matching model HE is used to estimate the matching of descriptors to a visual word.
HE represents each descriptor as D-dimensional binary signatures [38]. Let bQ

nd , 1 ≤ d ≤ D, is a

single bit binary code used to represent xQ
n , then bQ

n =
{

bQ
n1 , bQ

n2 , . . . , bQ
nd , . . . , bQ

nD

}
is a binary signature

of descriptor xQ
n . The Hamming distance between two descriptors, xQ

m and xQ
n , is computed using their

binary signatures as follows:

h
(

bQ
m , bQ

n

)
=

D

∑
d=1

∣∣∣bQ
md − bQ

nd

∣∣∣. (1)

Let us denote XP be the set of descriptors of the database image P. The probability that two sets
of descriptors, XQ and XP are assigned to the same visual word wk is defined as:

Pk(XQ,XP) = ∑
i∈IQ

k

∑
j∈IP

k

f
(

h
(

bQ
i , bP

j

))
, (2)

where the weighting function for a Hamming distance h is calculated as a Gaussian function [38]:

f (s) =

{
e−h2/σ2

, if h ≤ 3σ/2,

0, otherwise.
(3)

The number of dimensions for the binary signatures is typically set to D = 64, and the Gaussian
bandwidth parameter [38,40] is set to σ = D/4 = 16.
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In order to retrieve images, an inverted index file is built in the image indexing process.
The inverted file consists a list of entries. In each entry, a visual word is stored along with the
identifier of associated images, descriptors of those images which are assigned to the visual word
and the HE used for matching measurement. When the query of Q is performed, the entries of visual
words associated to Q are searched in the inverted file. The score of a database image P in this query
is calculated by accumulating the Hamming distances between two sets of descriptors’ signatures
for all the shared visual words of two images. Specifically, the similarity between Q and P is defined
as follows:

ΩP
Q =

∑
wk∈W

αkPk(XQ,XP)√
∑

wk∈W
αkPk(XQ,XQ)

√
∑

wk∈W
αkPk(XP,XP)

, (4)

where the constant αk is the inverse document frequency [41] of a visual word wk in W. Suppose that
p(wk) is the probability of wk occurring in W, then αk = − log p(wk).

4. Image Forgery Clustering

In this section, we give an exposition of the proposed image forgery clustering algorithm.
Suppose that we have an input dataset including authentic and tampered images. The proposed
algorithm classifies images into separate clusters, where each cluster consists of tampered images
which were composed using an identical host image and that host image. Subsequently, the proposed
algorithm finds the host image to be the centroid of each image cluster. The details of images clustering
and centroid determination are provided in Algorithm 1.

Firstly, we randomly select a query image Q in the dataset. The ranking score of a database image
P in the query of Q is denoted as ΩP

Q and calculated as the similarity between two images according to
Equation (4). The retrieval results are a list of images arranged in descending order of ranking scores.
A cut-off threshold θ is set to obtain the set of images. Let us denote Q̈ as the host image of the image
Q in the dataset. An authentic image is considered as the host image of itself. We need to retrieve
all the relevant images R to the query Q satisfying R̈ = Q̈. To this end, we set the threshold θ to a
relatively low value. This low threshold value leads to the case where also some irrelevant images
may be retrieved together. Note that, the irrelevantly retrieved images will be discarded in the last
step of the iteration. Due to the insignificant processing time of these operations, we can easily handle
the case of a large number of images in a cluster. Further, we perform an additional query to ensure
that all the relevant images to Q are retrieved. Notice that the top ranked image in retrieved list L1,
image D1 is identical to the query image Q. Therefore, the second highest ranked result in L1, image
D2, is selected as the query image. The score threshold θ is also used in this query, then we obtain the
set of retrieved images L2.

The image cluster C is the union of two sets of retrieved images, i.e., C = L1 ∪L2. The centroid
of C is determined based on two criteria which measure the correlations in structure and luminance
among images in the cluster. In this work, we extract SIFT features [33] in images and use Random
Sample Consensus [42] to find the matching. Let KUV =

{
(k1

U, k1
V), (k

2
U, k2

V), . . .
}

denote the set
of matched keypoints between two images U and V in C where (ki

U, ki
V) is a pair of keypoints.

Then sUV = |KUV| is the number of matching keypoints between U and V. We denote by ci
U the pixel

coordinates of ki
U in U. The number of matching keypoints in the corresponding positions of U and V,

denoted by ŝUV, is calculated as follows:

ŝUV =
sUV

∑
i=1

δ(ci
U, ci

V), (5)
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where δ is the Kronecker delta function:

δ(a, b) =

{
1, if a = b,

0, if a 6= b.
(6)

We define the ratio ŝUV/sUV as the structural similarity between U and V.

Algorithm 1: Image forgery clustering

Input: Image set S
Output: Clusters of relevant images
/* Each image is classified into only 1 cluster */

1 function Query (Q,S, θ)

2 Query Q in S
3 return

{
P|P ∈ S, ΩP

Q ≥ θ
}

// ΩP
Q: similarity score of P and Q defined in (4)

4 procedure Cluster (S)
5 repeat
6 Randomly select an image Q in S
7 L1 ← Query (Q,S, θ)

8 Select D2, the second highest ranking image in the list L1

9 L2 ← Query (D2,S, θ)

10 C← L1 ∪L2

11 foreach U ∈ C do
12 foreach V ∈ C, V 6= U do
13 Compute sUV // number of keypoints matching
14 Compute ŝUV // number of keypoints matching at relevant position
15 Compute lUV // luminance similarity index

16 T← arg max
U∈C

∑
V∈C

(
lUV + ŝUV

sUV

)
// Determine centroid T of cluster C

17 foreach V ∈ C do
18 if ŝTV < sTV/2 then
19 C← C \V

20 C is a new image cluster with centroid T
21 S← S \C
22 until S = ∅

In addition, we denote by UY(x, y) the luminance value of image U at pixel (x, y), which can be
calculated as follows [43]:

UY(x, y) = 0.299UR(x, y) + 0.587UG(x, y) + 0.114UB(x, y), (7)

where UR(x, y), UG(x, y), and UB(x, y) are the red, green, and blue color values of U at pixel (x, y),
respectively. We define lUV, the luminance similarity image between U and V as follows:

lUV =

H
∑

x=1

W
∑

y=1
φ [UY(x, y)−VY(x, y)]

HW
, (8)
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where H and W are height and width of U, respectively and

φ(γ) =

{
1, if |γ| ≤ 3,

0, otherwise.
(9)

We determine T, the centroid of image cluster C as follows:

T = arg max
U∈C

∑
V∈C

(
lUV +

ŝUV

sUV

)
. (10)

Afterwards, we refine the image cluster by discarding irrelevant images V to T where V̈ 6= T
as follows

ŝTV

sTV
< 0.5. (11)

Therefore, all the retrieved authentic images, with the exception of the centroid image T,
are discarded from the cluster. In other words, T is the unique authentic image in C. Figure 2
illustrates an example of discarding an image from the cluster according to Equation (11).

(a) (b) (c)

(d) (e)

Figure 2. Image (d,e) are the illustrations of keypoints matching between couples of images (a,b), (b,c),
respectively. Although (b,c) have many matching keypoints, the positions of those keypoints in relative
images are different. In this example, image (c) is discarded from the cluster.

Figure 3 depicts an example of image database indexing and one iteration of the proposed
image forgery clustering algorithm to obtain one image cluster with. After each iteration of the
proposed clustering algorithm, all the images of the new cluster are excluded from the image
database. We repeatedly perform querying and clustering process until the database S is empty.
Finally, each input image belongs to only one cluster.
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Image database Image scoring matrix
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Figure 3. The illustration of image database indexing and one iteration of the proposed image forgery
clustering algorithm.

5. Image Forgery Classification and Localization

Given the centroid T and an image Ui in the cluster, we can easily estimate the mask of forged
regions of Ui based on TY −UiY. Specifically, Ui ∩ T denotes the image region including all image
pixels that Ui and T jointly have, and Ui \ T denotes the image region in Ui but not in T.

[Ui ∩ T](x, y) =

{
Ui(x, y), if |UiY(x, y)− TY(x, y)| ≤ 3,

0, otherwise.
(12)

[Ui \ T](x, y) =

{
Ui(x, y), if |UiY(x, y)− TY(x, y)| > 3,

0, otherwise.
(13)

Consequently, two image regions Ui ∩ T and Ui \ T are extracted as shown in Figure 4.
These image regions are refined by using median filter to remove salt and pepper noise.

We use SIFT to find the matched regions of Ui ∩ T and Ui \ T. 3 pairs of matched keypoints
are utilized to calculate the affine transformation matrix, and subsequently, a warped image is
generated for each transformation matrix. To localize the duplicated regions, the zero mean normalized
cross-correlation method is adopted [19]. If we can find such regions, the image Ui is classified as
a copy-move image; otherwise, the tampered image is classified as a spliced image. In Figure 4,
images U1 and U2 are classified as copy-move images and the detected forgery regions are illustrated
in the last column. The previously detected regions, Ui ∩ T, are the target regions in white, and the
newly found matched regions are the source of the copy-move operation, which are represented in
green. In the last two examples of Figure 4, the spliced regions of images U3 and U4, are highlighted
in white.
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Copy-move images

Spliced images

Cluster centroid T

U1

U2

U3

U4

U1 ∩ T

U1 \ T
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U4 \ T

No matched
region found

No matched
region found

Forgery images

Finding matching of

Ui ∩ T and Ui \ T

Classification and

tampering localization

Figure 4. Image forgery classification and localization in an image cluster.

6. Experimental Results

6.1. Datasets

There exist several benchmarking datasets for evaluating the performance of image forgery
detection algorithms. In our experiments, we used three challenging datasets MICC-600 [25], GRIP [23],
and CASIA 2.0 [44] for the evaluation.

6.1.1. MICC-600

MICC-600 is a dataset of 600 high resolution images with various sizes from to pixels. There are
440 original images and 160 copy-move images. As shown in Figure 5, multiple scenarios of copy-move
operations were performed in this dataset:

• Single source region and single target region—Figure 5c,d,f
• Single source region and multiple target regions—Figure 5b
• Multiple source regions and multiple target regions—Figure 5a,e
• Target regions were rotated 30 degree counter-clockwise—Figure 5a,f
• Target regions were scaled by 120%—Figure 5a

6.1.2. GRIP

GRIP is a small dataset with copy-move and original images. All the images in this dataset have
either resolution 1024× 768 or 768× 1024. The target regions in copy-move images were composed
using different attacks, such as compression, noise addition, rotation, scaling.

6.1.3. CASIA 2

CASIA 2 is a big dataset with more than 12,000 images in three categories: authentic, spliced and
copy-move images. The images in this dataset are in low resolution with the sizes vary from 240× 160
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to 900× 600 pixels. Among three datasets in our simulations, CASIA 2 is the only dataset which has
both types of forgery: splicing and copy-move.

(a) (b) (c) (d) (e) (f)

Figure 5. Examples of CMFL in MICC-600 dataset. First row: original images, second row: copy-move
images, third row: ground truth images, and fourth row: source regions (green) and target regions
(white) detected by the proposed method.

6.2. Evaluation Metrics

In the experiments, we evaluate the performance of image retrieval and image forgery
classification and localization.

6.2.1. Metrics for Image Retrieval

To evaluate the performance of the proposed image forgery clustering algorithm, we use the
mean average precision (MAP) metric used in image retrieval problem. For a query q, let us denote
Nq the number of retrieved images, Mq the number of relevant images, and Relq(k) the number of
relevant images in top k retrieved results. The precision and recall of query q at cut-off k, denoted by
Pq(k) and Rq(k), are calculated as follows:

Pq(k) =
Relq(k)

k
. (14)

Rq(k) =
Relq(k)

Mq
. (15)

Then, the average precision for query q is computed as follows:

APq =
Nq

∑
k=1

Pq(k)∆Rq(k), (16)

where ∆Rq(k) = Rq(k)− Rq(k− 1) is the change in recall from items k− 1 to k. Note that Rq(0) = 0.
Finally, MAP for all the queries is defined as follows:

MAP =
∑Q

q=1 APq

Q
, (17)
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where Q is the number of queries.

6.2.2. Metrics for Image Forgery Classification and Localization

Since we concurrently classify image forgery types and localize the forged regions, the evaluation
is performed in both image and pixel levels.

To quantitatively evaluate the performance of forgery localization, we adopt two metrics for
tampered regions of a classified tampered image [19], localization precision LP and localization recall
LR, which are defined as follows:

LP =
# correctly detected pixels

# all detected pixels
. (18)

LR =
# correctly detected pixels

# all tampered pixels
. (19)

Similarly, we define the classification precision CP, and recall CR at image level:

CP =
# correctly detected tampered images

# all detected tampered images
. (20)

CR =
# correctly detected tampered images

# all tampered images
. (21)

In order to balance between precision and recall, we consider both of these quantities by
computing their harmonic mean, called localization F-measure, as follows:

LF =
2LPLR

LP + LR
. (22)

CF =
2CPCR

CP + CR
. (23)

The metrics precision, recall, and F-measure at pixel level are used for all 3 datasets in this work.
Nevertheless, the metrics at image level are only used to evaluate performance of the proposed method
in MICC-600 and GRIP datasets. To evaluate the classification performance in CASIA 2, which contains
3 classes, we use confusion matrix.

6.3. Image Retrieval Results

To evaluate the performance of the proposed image forgery clustering algorithm, we carry out the
experiments to estimate MAP of image retrieval in 3 different scenarios related to cluster formation
of Algorithm 1. In the first case, only one query is performed to compose the cluster. In the second
case, the second query is performed to augment the retrieved results. In the third case, the cluster
refinement using structural correlation of Algorithm 1 is conducted after two queries to form the image
forgery cluster. We denote these cases by case A, case B, and case C, respectively. Figure 6 shows
the retrieval performance of 3 above-mentioned cases in 3 datasets. It is clear that MAP significantly
increases from case A to case C in all 3 datasets to prove the efficiency of the proposed image retrieval
based clustering algorithm.

We present the average ratios that the host image of the query is retrieved in 3 cases in Table 1.
The results ensure that by using image forgery clustering algorithm, we can generally retrieve the host
images of query images into the clusters.
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Case A Case B Case C
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M
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CASIA 2

Figure 6. The mean average precision obtained by 3 scenarios of image retrieval performed by the
proposed clustering algorithm.

Table 1. Average ratios when the host image of the query image is retrieved (%).

Case A Case B Case C

MICC-600 87.6 98.3 98.3
GRIP 100 100 100

CASIA 2 97.5 99.6 99.4

6.4. Forgery Detection and Localization Results on MICC-600 Dataset

Table 2 presents the performance of the proposed method in comparison with state-of-the-art
on MICC-600 dataset. Our classification F-measure outperforms Li. et al. [29] and is slightly lower
than Li. et al. [27]. In term of localization performance, our method surpasses other methods with
LF = 93.1%. Visual examples of CMFL are shown in Figure 5 where we distinguish the source and
target regions in green and white, respectively.

Table 2. Performance comparison on MICC-600 dataset (%).

CP CR CF LP LR LF

Li et al. [29] 69.8 88.1 77.9 86 88 87
Jin et al. [26] - - - 90.2 93.7 91.9
Li et al. [27] 97.5 86.2 91.5 - - 91.8

Proposed method 88.6 92.5 90.5 90.8 95.5 93.1

6.5. Forgery Detection and Localization Results on GRIP Dataset

Table 3 summarizes the performance on GRIP dataset where the proposed method exceeds
other methods in both classification and localization indexes. The evaluations in different types of
copy-move situations are also considered. Specifically, 4 attacks includes Gaussian noise addition and
JPEG compression to the copy-move images, rotation and scaling to the copied regions. Figure 7a
indicates that our method is better than other methods in term of localization F-measure with different
levels of Gaussian noise added to the copy-move images. Figure 7b shows that different CMFL
methods handling JPEG compression situation with a slight difference. In case the copied regions are
rotated or scaled, Chen et al. [20], Chen et al. [32], and our method sequentially perform better than
the rest (Figure 7c,d). The proposed method performs better than other methods when the changes of
the copied regions are small. On the contrary, its performance declines for larger rotation angle and
scaling factor. Figure 8 illustrates the CMFL examples of the proposed method on GRIP dataset.
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Table 3. Performance comparison on GRIP dataset (%).

CP CR CF LP LR LF

Chen et al. [20] - - - - - 95.33
Cozzolino et al. [24] - - 94.61 - - 94.06

Li et al. [27] 100 100 100 - - 94.66
Bi et al. [28] - - 96.63 - - 92.98

Chen et al. [32] - - - - 95.77
Proposed method 96.3 98.8 97.5 96.2 97.4 96.8
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Appl. Sci. 2020, 10, 4458 13 of 17

Figure 8. Examples of copy-move forgery detection in GRIP dataset. First row: original images, second
row: copy-move images, third row: ground truth images, and forth row: source regions (green) and
target regions (white) detected by the proposed method.

6.6. Forgery Detection and Localization Results on CASIA 2 Dataset

Table 4 summarizes the 3-class classification results of the proposed method on the CASIA 2
dataset. To the best of our knowledge, all of the previous researches on forgery detection of this dataset
are binary classification. Therefore, only the results of our work are reported. The detection accuracy
of authentic images achieve 96.9%, which is higher than two image forgery types. 6.7% of copy-move
images are classified as spliced images. By contrast, 4.4% of spliced images are mistakenly detected as
copy-move images.

Table 5 and Table 6 compare the proposed method with other researches on localization
performance of spliced images and copy-move images of CASIA 2 dataset, respectively. Examples of
CMFL results of the proposed method are shown in Figure 9. Since CASIA 2 is the most challenging
dataset in our experiments with many small and smooth tampered regions, the proposed method
occasionally fails to search for matching regions.

Table 4. Performance of image forgery classification in CASIA 2 dataset (%).

Actual Class
Authentic Copy-Move Splicing

Predicted class
Authentic 96.9 1.8 1.9

Copy-move 1.0 91.5 4.4
Splicing 2.1 6.7 93.7

Table 5. Performance of image splicing localization on CASIA 2 (%).

LP LR LF

Shi et al. [9] 77 51 62
Chen et al. [10] - - 73.88

Proposed method 80.3 70.9 75.3
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Table 6. Performance of copy-move images localization on CASIA 2 (%).

LP LR LF

Abd-Almageed et al. [18] 77.38 59.15 67.05
Cozzolino et al. [24] 81.87 61.34 70.13

Wu et al. [22] 67.83 85.69 75.72
Proposed method 79.2 73.8 76.4

(a) (c)(b) (d) (e) (f)

Figure 9. Examples of splicing forgery detection in CASIA 2 dataset. Columns (a–c): copy-move images,
columns (d–f): spliced images. First row: original images, second row: spliced images, third row:
ground truth images, and forth row: tampered regions detected by the proposed method.

7. Conclusions

This paper introduces a novel method to detect and localize authentic images and two types of
tampered images: copy-move and spliced images. We propose a robust algorithm to divide relevant
images into cluster using BOF and HE based image retrieval. From image clusters, by exploiting the
structural correlation between images, the proposed algorithm determines the cluster centroid, which is
the only authentic image in the cluster. Afterwards, the image forgery are classified, and the forged
regions are localized. The experimental results show that this method achieves higher performance
in both forgery detection and localization in comparison with state-of-the-art methods. Notably,
the proposed method can indicate the source and target regions of copy-move images.
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Abbreviations

The following abbreviations are used in this manuscript:

CMF Copy-Move Forgery
CNN Convolutional Neural Network
CMFL Copy-Move Forgery Localization
SIFT Scale Invariant Feature Transform
BOF bag-of-features
HE Hamming Embedding
MAP mean average precision
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