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Abstract: The usefulness of sparse-sampling CT with deep learning-based reconstruction for detection
of metastasis of malignant ovarian tumors was evaluated. We obtained contrast-enhanced CT images
(n = 141) of ovarian cancers from a public database, whose images were randomly divided into
71 training, 20 validation, and 50 test cases. Sparse-sampling CT images were calculated slice-by-slice
by software simulation. Two deep-learning models for deep learning-based reconstruction were
evaluated: Residual Encoder-Decoder Convolutional Neural Network (RED-CNN) and deeper
U-net. For 50 test cases, we evaluated the peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) as quantitative measures. Two radiologists independently performed a qualitative evaluation
for the following points: entire CT image quality; visibility of the iliac artery; and visibility of
peritoneal dissemination, liver metastasis, and lymph node metastasis. Wilcoxon signed-rank test
and McNemar test were used to compare image quality and metastasis detectability between the
two models, respectively. The mean PSNR and SSIM performed better with deeper U-net over
RED-CNN. For all items of the visual evaluation, deeper U-net scored significantly better than
RED-CNN. The metastasis detectability with deeper U-net was more than 95%. Sparse-sampling CT
with deep learning-based reconstruction proved useful in detecting metastasis of malignant ovarian
tumors and might contribute to reducing overall CT-radiation exposure.

Keywords: deep learning; neoplasm metastasis; ovarian neoplasms; radiation exposure; tomography;
x-ray computed

1. Introduction

Ovarian cancer is the eighth leading cause of female cancer death worldwide [1]. The incidence of
ovarian cancer increases with age and peaks in the 50s [2]. In addition, malignant germ cell tumors are
common in young patients with ovarian cancer [3].

CT is the major modality for diagnosing ovarian tumors, detecting metastases, staging ovarian
cancer, following up after surgery, and assessing the efficacy of chemotherapy. On the other hand,
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CT radiation exposure may be associated with elevated risks of thyroid cancer and leukemia in all
adult ages and non-Hodgkin lymphoma in younger patients [4]. Patients with ovarian cancer tend to
be relatively young, therefore the reduction of CT radiation exposure is essential. Radiation exposure
of CT is mainly controlled by adjusting the tube current and voltage [5]. Lowering the radiation
dose increases image noise, so techniques that reduce image noise and artifacts and maintain image
quality are needed. Low-dose CT images were reconstructed by filtered back projection (FBP) until the
2000s. However, iterative reconstruction (IR) has been the mainstream since the first IR technique was
clinically introduced in 2009 [5]. IR reconstruction technology has evolved into hybrid IR, followed
by model-based IR (MBIR). IR has been reported to reduce the radiation dose by 23–76% without
compromising image quality compared to FBP [5].

In recent years, a technique called sparse-sampling CT that resembles compressed sensing in MRI
has attracted attention as a possible new technique to reduce exposure. This technique reconstructs CT
images using a combination of sparse-sampling CT and Artificial intelligence (AI), especially deep
learning, which may reduce CT radiation exposure more than two-fold over the current technology [5].
A few studies show that with the application of sparse-sampling CT and deep-learning, lower-dose CT
could be used [6,7].

Research for the noise reduction of CT images using deep learning started around 2017 [6–15].
In 2017, image-patch-based noise reduction was performed using deep learning model on low-dose
CT images [7,11]. On the other hand, Jin et al. show that entire CT images could be directly denoised
using U-net [9]. To improve perceptual image quality, generative adversarial network (GAN) was
introduced for CT noise reduction [12,13]. Following the advancement in noise reduction using deep
learning, Nakamura et al. evaluated noise reduction using deep learning on a real CT scanner [16].
However, most of them focused on quantitative measures such as peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM). To the best of our knowledge, there are few studies that radiologists
visually evaluate abnormal lesions such as metastasis on CT images processed with deep learning [16].
Furthermore, the quantitative measure, such as PSNR and SSIM, and human perceived quality were
not always consistent in agreement [17]. Therefore, we suggest that PSNR and SSIM alone cannot
assure clinical usefulness and accuracy of lesion detection.

The present study aimed to evaluate the usefulness of sparse-sampling CT with deep learning-based
reconstruction for radiologists to detect the metastasis of malignant ovarian tumors. This study used both
quantitative and qualitative assessment of denoised sparse-sampling CT with deep learning, including
PSNR and SSIM, along with radiologists’ visual score, and the detectability of metastasis.

2. Materials and Methods

This study used anonymized data from a public database. The regulations of our country did not
require approval from an institutional review board for the use of a public database.

2.1. Dataset

Our study tested abdominal CT images obtained from The Cancer Imaging Archive (TCIA) [18–20].
We used one public database of the abdominal CT images available from TCIA: The Cancer Genome
Atlas Ovarian Cancer (TCGA-OV) dataset. The dataset is constructed by a research community of
The Cancer Genome Atlas, which focuses on the connection between cancer phenotypes and genotypes
by providing clinical images. In TCGA-OV, clinical, genetic, and pathological data reside in Genomic
Data Commons Data Portal while radiological data are stored on TCIA.

TCGA-OV provides 143 cases of abdominal contrast-enhanced CT images. Two cases were
excluded from the current study because the pelvis was outside the CT scan range. The other 141 cases
were included in the current study. The 141 cases were randomly divided into 71 training cases,
20 validation cases, and 50 test cases. For training, validation, and test cases, the number of CT images
was 6916, 1909, and 4667, respectively.
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2.2. Simulation of Sparse-Sampling CT

As in a previous study [9], sparse-sampling CT images were simulated for the 141 sets of abdominal
CT images of TCGA-OV. The original CT images of the TCGA-OV were converted into sinograms
with 729 pixels by 1000 views using ASTRA-Toolbox (version 1.8.3, https://www.astra-toolbox.com/),
an open-source MATLAB and Python toolbox of high-performance graphics processing unit (GPU)
primitives for two- and three-dimensional tomography [21,22]. To simulate sparse-sampling CT images,
we uniformly (at regular view intervals) subsampled the sinograms by a factor of 10, which corresponded
to 100 views. While a 20-fold subsampling rate was used in the previous study [9], our preliminary
analysis revealed that the abdominal CT images simulated with a 20-fold subsampling rate were too
noisy. As a result, we utilized a 10-fold subsampling rate in the current study. The 10-fold subsampled
sinograms were converted into the sparse-sampling CT images using FBP of the ASTRA-Toolbox.

2.3. Deep Learning Model

To denoise the sparse-sampling CT images, a deep learning model was employed in the current
study. The outline of the training phase and deployment (denoising) phase using a deep learning
model is represented in Figure 1. In the training phase, pairs of original and noisy CT images were
used for constructing a deep learning model. In the deployment phase, we used the deep learning
model for denoising noisy CT images. We used a workstation with GPU (GeForce RTX 2080 Ti with
11 GB memory, NVIDIA Corporation, Santa Clara, California, USA) for training and denoising.
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Figure 1. Outline of the training phase and deployment phase of the deep learning model.

Two types of deep learning models were evaluated: Residual Encoder-Decoder Convolutional
Neural Network (RED-CNN) [7] and deeper U-net with skip connection [6]. RED-CNN combines
autoencoder, deconvolution network, and shortcut connections into its network structure, and it
performed well in denoising low-dose CT images. RED-CNN used image patches extracted from the
CT image (size 55 × 55 pixels) for training [7]. Nakai et al. developed deeper U-net for denoising
sparse-sampling chest CT images and showed that deeper U-net was superior to conventional U-net
with skip connection [6]. Contrary to RED-CNN, deeper U-net made it possible to use entire CT
images (size 512 × 512 pixels) as training data. In the current study, the usefulness of deeper U-net was
evaluated and compared to RED-CNN.

https://www.astra-toolbox.com/
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We implemented deeper U-net using Keras (version 2.2.2, https://keras.io/) with TensorFlow
(version 1.10.1, https://www.tensorflow.org/) backend. The major differences of network structure
between our deeper U-net and Nakai’s deeper U-net were as follows: (i) the number of maxpooling
and upsampling was 9; (ii) the numbers of feature maps in the first convolution layer of our U-net was
104. After the maxpooling layer, the number of feature maps in the convolution layer was doubled.
However, if the numbers of feature maps were 832, the number of feature maps was not increased
even after the maxpooling layer. The changes in the network structure of our deeper U-net including
(i) and (ii) are shown in Appendix A in more detail. To train deeper U-net, pairs of original CT images
and sparse-sampling CT images were prepared. Mean squared error (MSE) between the original and
denoised CT images represented the loss function of deeper U-net. Adam was used as an optimizer,
and its learning rate was 0.0001. The number of training epochs was 100. 4000 seconds were required
for training deeper U-net per one epoch.

RED-CNN was trained using its PyTorch implementation (https://github.com/SSinyu/RED_CNN).
RED-CNN was trained on an image patch size of 55 × 55 pixels. Network-related parameters of
RED-CNN were retained as described previously [7].

2.4. Quantitative Image Analysis

To evaluate the denoising performance of deep learning models, we used two quantitative
measures, PSNR and SSIM, on the 4667 CT images from 50 test cases [23]. These parameters are
frequently used as standard objective distortion measures and for quantitative assessment of the
reconstructed images [10]. PSNR is defined as

PSNR = 20log10(
MAXI
√

MSE
), (1)

where MSE is calculated between the denoised and original CT images, and MAXI is the maximum
value of the original CT image. SSIM is a metric that supposedly reflects the human visual perception
rather than PSNR. It is defined as

SSIM(x, y) =
(2uxuy + c1)(2sxy + c2)

(u2
x + u2

y + c1)(sx2 + sy2 + c2)
, (2)

where x and y are the denoised and original CT images, respectively; ux and uy are the means of x and
y, respectively; sx2 and sy2 are the variances of x and y, respectively; sxy is the covariance of x and y;
and c1 and c2 are determined by the dynamic range of the pixel values to stabilize the division with the
weak denominator. Scikit-image (version 0.13.0, https://scikit-image.org/) was used to calculate these
two quantitative measures.

2.5. Qualitative Image Analysis

On the denoised sparse-sampling CT of 50 test cases, the normal and abnormal lesions were
visually evaluated. For the qualitative evaluation, four radiologists were participated, two performing
visual assessments as readers and the other two defining and extracting lesions to be assessed. The two
groups were independent of each other.

As readers, two board-certified radiologists (with 17 and 10 years of experience, respectively)
independently evaluated the denoised CT images and referred to the original images on 3D Slicer
(version 4.10.2, https://www.slicer.org/) [24]. For all visual evaluations described in the following
section, we used a five-point scale as follows: (1) Unacceptable, (2) Poor, (3) Moderate, (4) Good,
and (5) Excellent. The definition of each score and detail procedure of qualitative evaluation is shown
in Tables 1–3 and Appendix B, respectively.

https://keras.io/
https://www.tensorflow.org/
https://github.com/SSinyu/RED_CNN
https://scikit-image.org/
https://www.slicer.org/
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Table 1. Score criteria for entire CT image quality.

(A) Overall Image Quality

Score

1 Unacceptable non-diagnostic
2 Poor poor visualization, heavily blurred appearance of structures
3 Moderate moderate visualization, moderate blurring
4 Good good delineation, slight blurring

5 Excellent excellent visualization, sharp delineation (equivalent to or better compared
with the original image)

(B) Noise and Artifacts

Score

1 Unacceptable heavily noise and artifacts, structures are not visible on entire CT image
2 Poor heavily noise and artifacts, structures are not visible on most parts of CT image
3 Moderate moderate noise and artifacts, but acceptable for clinical evaluation
4 Good minor, but slight noticeable noise and artifacts are found compared with the original image
5 Excellent noise and artifacts levels are equivalent to or better compared with the original image

Table 2. Score criteria for the evaluation of normal local lesions (common iliac artery, internal iliac
artery, and external iliac artery).

Score

1 Unacceptable Unrecognizable
2 Poor recognizable, but not measurable
3 Moderate recognizable and measurable despite a blurred margin
4 Good slightly blurry margin compared with the original image, but measurable
5 Excellent measurable, sharp margin equivalent to the original image

Table 3. Score criteria for the evaluation of abnormal lesions.

Score

1 Unacceptable unrecognizable
2 Poor recognizable but unqualified for diagnosis and measurement
3 Moderate moderately noisy and blurry, but recognizable and qualified for diagnosis and measurement
4 Good qualified for diagnosis and measurement, but slightly inferior to the original image
5 Excellent qualified for diagnosis and measurement equivalent to the original image

The image quality evaluation of the entire CT and the normal local lesions were evaluated. For the
entire CT image quality, (A) Overall image quality and (B) Noise and artifacts were evaluated. The overall
image quality represented a comprehensive evaluation, including noise, artifacts, and visibility of
anatomical structures.

As an evaluation of the normal local lesions, the visibility of the iliac artery (the common iliac
artery, internal iliac artery, and external iliac artery) was evaluated. A score was given on whether
or not the diameter could be reliably measured at each of the three points of the common iliac artery,
internal iliac artery, and external iliac artery.

Peritoneal dissemination, liver metastasis, and lymph node metastasis were visually evaluated as
abnormal lesions by the two radiologists. The abnormal lesions were determined by the consensus of
two other independent board-certified radiologists (6 and 14 years of experience, respectively) on the
original CT image based on the following criteria. Peritoneal dissemination was defined as previously
established as either 1) an isolated mass or 2) subtle soft tissue infiltration and reticulonodular
lesions [25]. Lymph node metastasis was defined as short axis ≥10 mm. With reference to RESIST
v1.1, we defined peritoneal dissemination and liver metastasis as follows: peritoneal dissemination
for non-measurable or measurable (long axis ≥ 10 mm); liver metastasis (long axis ≥ 10 mm) [26].
The measurable lesions of peritoneal dissemination were further subdivided into long axis ≤ 20 and
> 20 mm because the staging of FIGO 2014 differs depending on the size [27].
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2.6. Statistical Analysis

For the quantitative assessment of the denoised images, the mean scores of PSNR and SSIM of
deeper U-net and RED-CNN were calculated. All the qualitative image quality scores were compared
between deeper U-net and RED-CNN using the Wilcoxon signed-rank test. For each abnormal lesion,
a 5-point score ≥ 3 was regarded as true positive (TP), and a 5-point score < 3 as false negative
(FN). He detectability of abnormal lesions was calculated based on the following equation: TP

TP+FN
(sensitivity). The detectability of abnormal lesions was compared between deeper U-net and RED-CNN
using the McNemar test. Statistical analyses were performed using JMP® (version 14.2, SAS Institute
Inc., Cary, NC, USA). All tests were two sided with a significance level of 0.05.

3. Results

A summary of patient demographics of the 141 cases is provided in Table 4. The location of
ovarian cancer and clinical stage were available from TCIA in 140 cases. Age was obtained from
DICOM data of CT images. For the 50 test cases, 124 abnormal lesions were determined, including
6 liver metastases, 25 lymph node metastases, and 93 peritoneal disseminations. For the peritoneal
disseminations, the numbers of non-measurable lesions, measurable lesions with long axis ≤ 20 mm,
and measurable lesions with long axis > 20 mm were 53, 28, and 12, respectively.

For normal local lesions and abnormal lesions, representative images of the original CT and
denoised CT obtained using deeper U-net and RED-CNN are shown in Figure 2. Additionally,
representative images of the original CT, the sparse-sampled CT images before denoised processing and
denoised CT obtained using deeper U-net and RED-CNN are shown in Figure 3.

Table 4. Patient demographics of TCGA-OV.

Category Value

Age * 60.7 ± 11.2 (39–82)
Location of tumor

Bilateral 107
Left 13

Right 12
Not available 8

Clinical Stage **
IB 1
IC 7
IIA 3
IIB 1
IIC 4
IIIA 1
IIIB 3
IIIC 93
IV 26

Not available 1

Note: * and ** indicate that data were obtained from 139 and 140 cases, respectively. Clinical stage of patients were
extracted from the TCGA-OV dataset; it is unknown whether the clinical stage is based on FIGO classification or
TNM classification.
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Figure 2. Representative images of the original CT and denoised CT obtained using deeper U-net
and RED-CNN. Note: (A) Visual scores of common iliac artery (red arrow): 5 points for deeper U-net,
2 points for RED-CNN for reader 1; 4 points for deeper U-net, 2 points for RED-CNN for reader 2.
(B) Visual scores of liver metastasis (yellow arrow): 3 points for deeper U-net, 2 points for RED-CNN
for reader 1; 4 points for deeper U-net, 2 points for RED-CNN for reader 2. Abbreviation: RED-CNN,
Residual Encoder-Decoder Convolutional Neural Network.
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Figure 3. Representative images of the original CT, sparse-sampling CT before denoising, and denoised
CT obtained using deeper U-net and RED-CNN. Note: (A) Case 1: Visual scores of peritoneal
dissemination (white circle): 4 points for deeper U-net, 1 points for RED-CNN for reader 1; 4 points for
deeper U-net, 1 points for RED-CNN for reader 2. (B) Case 2: Visual scores of lymph node metastasis
(yellow arrow): 5 points for deeper U-net, 2 points for RED-CNN for reader 1; 4 points for deeper
U-net, 2 points for RED-CNN for reader 2. (C) Case 3: Visual scores of liver metastasis (red arrow):
4 points for deeper U-net, 2 points for RED-CNN for reader 1; 4 points for deeper U-net, 2 points for
RED-CNN for reader 2. (D) Case 4: Visual scores of peritoneal dissemination (red arrow): 4 points for
deeper U-net, 2 points for RED-CNN for reader 1; 4 points for deeper U-net, 1 points for RED-CNN
for reader 2.

3.1. Quantitative Image Analysis

We evaluate the PSNR and SSIM on the 4667 CT images from 50 test cases. The number of samples
for calculating PSNR and SSIM was 4667. The PSNR and SSIM were 29.2 ± 1.49 and 0.75 ± 0.04 for the
sparse-sampling images before denoising, 48.5 ± 2.69 and 0.99 ± 0.01 for deeper U-net, and 37.3 ± 1.97
and 0.93 ± 0.02 for RED-CNN.

3.2. Qualitative Image Analysis

The results of the visual evaluation are shown in Figures 4 and 5 and Tables 5 and 6. For all items
of the visual evaluation, deeper U-net scored better than that of RED-CNN for both readers as shown
in Table 7.

Streak artifacts tended to be stronger on images at the upper abdomen level, especially where the
lung and abdominal organs were visualized on the same image.
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(A) Overall Image Quality

Reader 1 Reader 2

score Deeper U-net RED-CNN score Deeper U-net RED-CNN

1 1 41 1 2 42

2 5 7 2 0 8

3 24 2 3 22 0

4 20 0 4 26 0

5 0 0 5 0 0

(B) Noise and Artifacts
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score Deeper U-net RED-CNN score Deeper U-net RED-CNN

1 1 41 1 1 43

2 7 8 2 3 7

3 20 1 3 5 0

4 21 0 4 39 0

5 1 0 5 2 0



Appl. Sci. 2020, 10, 4446 10 of 15

Appl. Sci. 2020, 10, x 10 of 15 

 
Figure 5. Visual evaluation of normal local lesions and abnormal lesions by the two readers using 
different deep learning algorithms. 

Table 6. Visual evaluation of normal local lesions and abnormal lesions by the two readers using 
different deep learning algorithms. 

A) Normal Local Lesions 
Reader 1 Reader 2 

score Deeper U-net RED-CNN score Deeper U-net RED-CNN 
1 0 2 1 0 0 
2 1 21 2 3 42 
3 7 21 3 6 8 
4 12 6 4 31 0 
5 30 0 5 10 0 

B) Abnormal Lesions 
Reader 1 Reader 2 

score Deeper U-net RED-CNN score Deeper U-net RED-CNN 
1 2 16 1 13 0 
2 6 30 2 66 5 
3 26 69 3 44 35 
4 56 9 4 0 68 
5 34 0 5 0 15 

  

Figure 5. Visual evaluation of normal local lesions and abnormal lesions by the two readers using
different deep learning algorithms.

Table 6. Visual evaluation of normal local lesions and abnormal lesions by the two readers using
different deep learning algorithms.

(A) Normal Local Lesions

Reader 1 Reader 2

score Deeper U-net RED-CNN score Deeper U-net RED-CNN

1 0 2 1 0 0

2 1 21 2 3 42

3 7 21 3 6 8

4 12 6 4 31 0

5 30 0 5 10 0

(B) Abnormal Lesions

Reader 1 Reader 2

score Deeper U-net RED-CNN score Deeper U-net RED-CNN

1 2 16 1 13 0

2 6 30 2 66 5

3 26 69 3 44 35

4 56 9 4 0 68

5 34 0 5 0 15
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Table 7. Results of visual evaluations by the two readers using different deep learning algorithms.

Deeper U-net RED-CNN p

Entire CT image quality

(A) Overall image quality Reader 1 median, 3; IQR, 3 to 4 median, 1; IQR, 1 to 1 <0.0001
Reader 2 median, 4; IQR, 3 to 4 median, 1; IQR, 1 to 1 <0.0001

(B) Noise and artifacts Reader 1 median, 3; IQR, 3 to 4 median, 1; IQR, 1 to 1 <0.0001
Reader 2 median, 4; IQR, 4 to 4 median, 1; IQR, 1 to 1 <0.0001

Normal local lesions
Reader 1 median, 5; IQR, 4 to 5 median, 3; IQR, 2 to 3 <0.0001
Reader 2 median, 4; IQR, 4 to 4 median, 2; IQR, 2 to 2 <0.0001

Abnormal lesions
Reader 1 median, 4; IQR, 3 to 5 median, 3; IQR, 2 to 3 <0.0001
Reader 2 median, 4; IQR, 3 to 4 median, 2; IQR, 2 to 3 <0.0001

Abbreviation: IQR, interquartile range; RED-CNN, Residual Encoder-Decoder Convolutional Neural Network.

The detectability of abnormal lesions with deeper U-net was significantly better than that with
RED-CNN: 95.2% (118/124) vs. 62.9% (78/124) (p < 0.0001) for reader 1 and 97.6% (121/124) vs. 36.3%
(45/124) (p < 0.0001) for reader 2. The number of FN with deeper U-net were six and three for readers 1
and 2, respectively. All these abnormal lesions were non-measurable peritoneal dissemination, which
were identified as slight subtle soft-tissue infiltration and reticulonodular lesions on the original CT
image. The representative images of the FN case are shown in Figure 6.
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for reader 1 and 2 points for reader 2.

4. Discussion

In the current study, we compared the quantitative and qualitative image quality of sparse-sampling
CT denoised with deeper U-net and RED-CNN. RED-CNN was compared with our deeper U-net
because of its similar network structure [7]. For quantitative analysis, mean scores of PSNR and SSIM
of CT image quality with deeper U-net were better than those with RED-CNN. For all of the visual
evaluation items, the scores of CT image quality with deeper U-net were significantly better than
those of RED-CNN. In addition, the detectability of ovarian cancer metastasis was more than 95% in
deeper U-net.

A few studies on deep learning-based reconstruction have shown that it improved image quality
and reduced noise and artifacts better than hybrid IR and MBIR [8,16,28]. Nakamura et al. reported
that deep learning reconstruction could reduce noise and artifacts more than hybrid IR could and
that it may improve the detection of low-contrast lesions when evaluating hypovascular hepatic
metastases [16]. While their study did not evaluate low-dose CT, the deep learning model is also
considered an effective method with the potential to use lower-dose CT techniques such as sparse
sampling with clinically acceptable results [5]. Our results showed that denoising with deeper U-net
could be used to detect ovarian cancer metastasis.
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To the best of our knowledge, this was the first study that evaluated the detectability of cancer
metastasis, including peritoneal dissemination, liver metastasis, and lymph node metastasis on deep
learning-based reconstructed CT images. The usefulness of sparse-sampling CT with deep learning
has been previously reported [6,7,9,10], but image evaluation was limited to quantitative measures in
most of these studies. While Nakai et al. reported on quantitative and qualitative assessments of the
efficacy of deep learning on chest CT images [6], our study evaluated the usefulness of sparse-sampling
CT denoised with deep learning techniques from the clinical viewpoint. We have proven that deeper
U-net has an excellent ability to improve image quality and detectability of metastasis, and it could
prove effective in clinical practice.

The performance difference between deeper U-net and RED-CNN was significant when assessing
sparse-sampling CT images. A strong streak artifact around bony structures affected the image quality
of sparse-sampling CT [29]. Therefore, to improve the image quality of sparse-sampling CT, an ideal
deep learning model should reduce streak artifact associated with anatomical structures. RED-CNN
used an image patch (size 55 × 55 pixels) for its training, therefore the algorithm had difficulty
discerning between a streak artifact and anatomical structures. As a result, reducing the streak artifact
related to anatomical structure may be limited in RED-CNN. In contrast, since deeper U-net used the
entire CT image (size 512 × 512 pixels) for training, deeper U-net could be optimized to reduce streak
artifact related to anatomical structures. This difference between the two deep learning models may
lead to performance differences shown in the current study.

Since score 5 was defined as image quality and visualization equivalent to original CT (Tables 1–3),
the denoised CT images of deeper U-net was not the same image quality as original CT images from the
viewpoint of score. However, the visual scores and detectability of deeper U-net were sufficiently high.

Although patients with peritoneal dissemination are diagnosed as advanced stage, complete
debulking surgery can be expected to improve the prognosis in epithelial malignant ovarian tumor [30].
In addition, there are some histological types with a favorable prognosis due to successful chemotherapy,
such as yolk sac tumor [31]. Thus, the reduction of CT-radiation exposure is essential for patients with
ovarian cancer. With our proposed method, theoretically, the CT radiation exposure can be reduced to
one-tenth of that of the original CT. The reduction of radiation exposure may reduce the incidence of
radiation-induced cancer. Furthermore, while we evaluated about only the detection of metastasis of
malignant ovarian tumors in the current study, we speculate that the proposed method may be applied
to other diseases.

While our results show that deeper U-net proved useful in detecting cancer metastasis, there
were several drawbacks in the model. First, fine anatomical structures were obscured due to excessive
denoising. This effect might be minimized by blending images of FBP and deep learning-based
reconstruction, such as hybrid IR and MBIR, by adjusting radiation exposure (rate of sparse sampling)
and blending rate. Secondly, the strong streak artifacts around the prosthesis and the upper abdomen
compromised diagnostic ability near these anatomical lesions. Furthermore, streak artifacts tended to
be stronger on images at the upper abdomen level, especially where the lung and abdominal organs
were visualized on the same image. This effect may have resulted from the relatively small number of
training data images that included both lung and abdominal organs compared to images that included
only abdominal organs. Since ovarian cancer primarily metastasizes to the peritoneal liver surface and
the liver, improving the image quality in these areas is considered a future research area. Increasing
the number of training data images with cross-sections displaying both the lung and abdominal
organs may help improve image quality and reduce streak artifacts in deep learning models, including
deeper U-net.

Our study had several limitations. First, we used images from only one public database.
The application of our deep learning model should be further evaluated in other databases. Second,
sparse-sampling images cannot be obtained from real CT scanners at the current time. Our simulated
subsampled images may differ from the images on real scanners. In future, we need to evaluate the
performance of our deeper U-net using real CT acquisitions. Third, images obtained with the deep
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learning model of GAN tended to be more “natural” than those obtained with conventional deep
learning model. However, the noise reduction of GAN is weaker than that of a conventional deep
learning model [17]. There was a concern that the radiologist’s ability to detect metastasis might
decline if the noise reduction was insufficient. Therefore, GAN was not used in the current study.
Finally, because of our study design, we did not evaluate false positives, true negatives, and specificity
in the current study. Therefore, it is necessary to conduct radiologists’ observer studies in which false
positives and true negatives are evaluated.

5. Conclusions

Sparse-sampling CT with deep learning reconstruction could prove useful in detecting metastasis
of malignant ovarian tumors and might contribute to reducing CT radiation exposure. With our
proposed method, theoretically, the CT radiation exposure can be reduced to one-tenth of that of the
original CT, while keeping the detectability of ovarian cancer metastasis more than 95%. It may reduce
the incidence of radiation-induced cancer.
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Appendix A. Network Structure of Deeper U-Net

The network structure of our deeper U-net is slightly modified from original deeper U-net [6].
The differences between the two networks were as follows:

1. The numbers of maxpooling and upsampling were 9 in our deeper U-net.
2. The numbers of feature maps in the first convolution layer of our U-net was 104. After the

maxpooling layer, the number of feature maps in the convolution layer was doubled. However,
if the numbers of feature maps were 832, the number of feature maps was not increased even
after the maxpooling layer.

3. Rectified Linear Unit (ReLU) was used, instead of Leaky ReLU.
4. Probability of Dropout was changed. 0.2% was used in our deeper U-net.

Appendix B. Detail Procedure of Qualitative Evaluation by Radiologists

The detail procedure of qualitative evaluation was as follows. Two board-certified radiologists
(17 and 10 years of experience, respectively) independently performed the visual evaluation as readers.
The patient IDs of TCGA-OV in 50 test cases were sorted in alphabetical and numerical order, and the
two radiologists interpreted the CT images in this order. All the 50 sets of denoised CT images with
deeper U-net were evaluated first, then followed by those with RED-CNN. Image quality evaluation of
the entire CT and the local normal lesions were performed by comparing the original image and the
denoised image on 3D Slicer (version 4.10.2, https://www.slicer.org/) [24], and then the abnormal lesions
were evaluated. Two other board-certified radiologists (6 and 14 years of experience, respectively)
determined the abnormal lesions on the original image by consensus, and recorded the locations of

https://www.slicer.org/
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the abnormal lesions on a file. In evaluating the abnormal lesions, the two readers referred to the file
for the locations of abnormal lesions. At the time of interpretation, the two readers were informed of
patient’s age, and blind to all other clinical data. The image quality differed greatly between the two
models, therefore the readers could easily determine the deep learning model with which the given CT
images were denoised. Therefore, the interpretation order of the denoised images with deeper U-net
and RED-CNN was not randomized. It was presumed that bias in evaluation of denoised CT images
was inevitable even if interpretation order of deeper U-net and RED-CNN was randomized or the
evaluations of CT images denoised with the two models were performed separately at long interval.
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