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Abstract: For the conveyor belt, variable material flow influences the energy efficiency of the speed
control technology significantly. The fluctuation of material flow on the conveyor belt will lead to the
detrimental vibrations on both the belt and the conveyor while the conveyor works at certain speeds.
In order to improve the model inaccuracy caused by the uniform bulk material flow assumption
in the current conveyor belt model, the paper establishes a high-precision dynamic model that can
consider speed control of a conveyor belt under non-uniform bulk material transportation. In this
dynamic model, a non-uniform bulk material distribution model is firstly proposed based on laser
scanning technology. Then, a high-precision longitudinal dynamic model is proposed to investigate
the dynamic behavior of a belt conveyor. Considering the micro-units of actual load on a conveyor
belt, it can well describe the transient state of the conveyor belt. These models can be used to
determine the optimal speed for safety and energy conservation in operation. Experimental results
are used to validate the proposed dynamic model for analyzing belt mechanical behavior under
non-uniform bulk material distribution on the belt. The results show that the proposed models can
be used for optimizing the operating procedures of belt conveyor systems.

Keywords: dynamic modelling; belt conveyor; laser scanning; non-uniform bulk material distribution;
speed control

1. Introduction

Belt conveyor systems are critical equipment for the continuous transportation of bulk materials
in many industrial fields [1,2]. With the advantages of long distance, high speed, and large capacity,
belt conveyor systems are used widely. A typical belt conveyor system consists of an endless belt for
traction and bearing components driven by a high-power redundancy electric roller. Idlers, conveyor
belts, and other inertial equipment require less power for smooth transportation than the start-up.
In addition, the “big horse pulls a small carriage” phenomenon can occur during the process of
conveying bulk materials due to the load changes on the belt and the mode of constant speed operation,
as shown in Figure 1. More than 60% of the total energy consumption of bulk material handling and
production is spent by the belt conveyor system [3]. If the belt conveyor system starts with no load or
operates at nominal speed with unevenly distributed and intermittent bulk materials, a lot of energy is
wasted. Therefore, it is necessary to improve the energy efficiency of belt conveyor systems.
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Figure 1. The phenomena of unevenly distributed or intermittent bulk materials on the conveyor belt.

A belt conveyor system is a complex electromechanical coupled system. Its energy efficiency can
be improved mainly at the equipment level and the operational level. At the equipment level, a variety
of techniques of local motor controls have been developed to optimize the operational process of belt
conveyor systems, for example, start-up process optimization [4], soft-start device addition [5,6], less
motor operation [7,8], asynchronous motor Y-∆ switching [9], and material flow automated control.
In addition, a reduced-order model based on a balanced truncation method was proposed in [10],
and a predictive controller model based on a reduced-order model performed well in controlling a belt
conveyor system. To quantify the energy and cost savings, a motor sequencing controller was installed
in [11] to reduce the energy use and to perform initial saving calculations.

Generally, a belt conveyor is a continuous transport machine consists of a conveyor belt and a
bearing mechanism. Energy efficiency improvements that occur only at the equipment level may
inhibit the production capacity of a bulk terminal or limit certain scenarios since the conveyor belt is
usually coupled closely with other mechanical equipment [12]. Operation is another aspect for energy
efficiency of belt conveyors. Many researches have explored the effect of optimum control parameter
prediction at the operational level. These studies were performed mostly using the global optimization
by adjusting the belt speed according to the bulk material flow to reduce energy consumption [13–16].
With the development of the variable frequency technique, the variable speed drive (VSD) strategy has
the most potential for energy savings and can be categorized into three categories.

Recent decades have seen the rapid development of intelligent controls [17–19], including
fuzzy logic control [20,21], and neural network control [22–24]. In terms of fuzzy logic control,
Mazurkiewicz [25] established an expert diagnosis system of belt conveyors to predict the potential
fault information in the belt speed condition. Ristić and Jeftenic [26] developed a speed-regulating
controller for open-pit mine remote control based on VSD technology. To optimize the speed control
strategy, a fuzzy logic method was applied to classify the material feeding rates and the reference speed
could be defuzzified based on the linear relationship between belt speed and conveyor capacity [27].
Nevertheless, it is not well adapted to the situation since the relationship is mainly by experience
or trial and error. Based on the system optimum loading rate principle, Jeftenić et al. [28] deduced
an optimal belt velocity by making the cross-section of the material flow reach the optimal loading
rate of the belt conveyor. The remote control of belt conveyors for energy savings in open pits has
been realized through direct torque control (DTC). To accurately predict the optimum belt speed,
RISTIĆ et al. [29] established the relationships between the belt speed and material instantaneous flow
rate. Still, the energy consumption mechanism of a belt conveyor has not been reported yet.

Presently, optimal control is a well-accepted approach in energy optimization field [30–32].
Based on the practical engineering problem, Lodewijks [33] deduced a speed control strategy that
considered the parameters of friction force, power consumption, number of bags per hour and the
interval time between two adjacent bags to reduce the power consumption of the baggage transport
system. Mathematically, the above coordination is usually formulated as a kind of optimization
problem. Typically, an accurate energy model is one of the key optimization objectives of belt
conveyor’s energy optimization problem. Based on the International Organization for Standardization
(ISO) 5048, an energy model of belt conveyors was proposed for calculation of the drive power [34].
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Then, this model can be used as the optimization objective with other operation constraints to assess the
optimal scheduling of conveyor belts in a coal power plant [35]. With the consideration of time-of-use
(TOU) tariff, load shifting was achieved by operation efficiency optimization. In order to improve
the practicability, a closed-loop model predictive control (MPC) methodology was proposed to deal
with the disturbances arising from coal consumption forecasting and the feed rate [36]. Furthermore,
Zhang and Mao [37] took conveying systems and crushers as a whole for energy efficiency optimization
and firstly investigated the energy models of belt conveyors and ring hammer crushers.

It should be noted that to a large extent, the dynamic characteristics determine the working
performance [38]. However, both energy improvement methods at equipment level and operational
level did not consider the dynamic characteristics of a belt conveyor in transient operation. For example,
detrimental vibrations may occur on the belt and conveyor structures when the material flow fluctuates.
That is because the dynamic characteristics of a fabric conveyor belt is nonlinear and viscoelastic.
When speed adjustment is not properly controlled on the belt, it will cause potential risks, such as
belt slipping around pulley and belt tearing at the splicing area, especially when the speed changes
dramatically [39]. Based on Deutsches Institut für Normung (=German Industry Standard, DIN) 22101,
Lauhoff [40] questioned the appropriateness of speed control for energy savings because the nonlinear
and viscoelastic dynamic characteristics of the conveyor belts were not considered.

The speed control strategy must fulfil the reliability and safety requirements of the belt conveyor
system. He et al. [41–43] proposed the Estimation–Calculation–Optimization (ECO) method to adjust
the control parameters of the belt conveyor system after dynamic characteristics analysis. It could
greatly improve the reliability of the speed control system of the belt conveyor. Štatkić [44] provided a
reliability assessment of a single motor drive on a belt conveyor station with a changeable structure of
frequency converter power modules. Nevertheless, their approach did not consider actual non-uniform
material distribution either.

Furthermore, today’s conveyor belts have been built with longer transmission distance, up to tens
of kilometers. For such a long conveyor belt, complex characteristics will be always expected, such as
nonlinear, hysteresis, creep, and relaxation. It becomes even more complicated due to the interactions
of the belt and the bulk material. At present, a variety of theoretical and numerical methods have
been developed to simulate the dynamic characteristics of this long belt [45–47]. The theoretical
calculation of longitudinal belt characteristics only considers a uniform bulk material distribution.
However, the non-uniform bulk material distribution has been rarely considered for optimal speed
control. In the previous study [48], we presented a noncontact measurement system and a bulk
material flow calculation method using laser scanning technology. It could contribute to establishing a
mechanical model of a loaded belt based on more accurate bulk material flow data. Considering the
previous discussion, the main purpose of this paper is to propose a high-precision dynamic model
intended to determine the dynamic characteristics of a conveyor belt under non-uniform bulk material
distribution. In addition, a method for measuring the actual bulk material distribution using laser
scanning technology is presented.

In this paper, an experimental facility for bulk material distribution measurement based on
laser scanning technology is designed and constructed firstly. After acquiring the bulk material
cross-sections in real-time, a non-uniform bulk material distribution model is proposed. Due to the
bulk material on the conveyor belt is discretized into a series of micro-units, this distribution model can
describe the actual load distribution on a conveyor belt. Based on this, a high-precision longitudinal
dynamic model to investigate the dynamic behavior of a belt conveyor is investigated. We represent the
experimental verification results for the non-uniform bulk material distribution model and establish
the discrete simulation model of the belt conveyor system using MATLAB software. Then, we present
a simulation test on the different belt tensions, accelerations and tensioning device displacements at
the head and tail of the belt conveyor system. The discussion on the influence of the non-uniform bulk
material distribution and starting time on the dynamic characteristics of the belt conveyor is proposed,
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which contribute to the establishment of speed control constraints for developing a control strategy for
practical application.

The layout of the rest of the paper is as follows: Section 2 introduces the laser scanner on-line
measurement system and describes the theoretical determination of the non-uniform bulk material
distribution on the conveyor belt with the data collected by the laser scanner online measurement
system, and then formulates an improved mathematical model considering the non-uniform bulk
material distribution to determine the dynamic characteristics of the conveyor belt in Section 3. Section 4
presents the numerical simulation study of a belt conveyor dynamic behavior with non-uniform bulk
material distribution, and Section 5 discusses the results. Section 6 concludes the paper.

2. Actual Non-Uniform Bulk Material Distribution Measurement Methodology

2.1. Problem Formulation

A high-precision dynamic model is the basis of the dynamic analysis of the belt conveyor.
At present, the commonly used dynamic models of belt conveyors include partial differential equations
based on continuous systems and one- or two-dimensional vibration finite element models based on
discretized systems. However, the above models for the longitudinal belt dynamic characteristics
analysis typically assume a uniform distribution of bulk material on the belt. The belt dynamic
characteristics is more complicated because of the interaction of the bulk material and the belt.
The complexity is increased when considering the effect of the actual non-uniform bulk material
distribution on conveyor belt tension during the speed changing process. This complex interaction
makes it difficult to measure and predict the belt tension change accurately, which may lead to slip,
wear, or tear of the belt. Therefore, the reliability and safety of belt conveyor systems can be effectively
assured if belt tension can be predicted accurately, and control parameters can be selected reasonably
when energy-saving controls are implemented.

In this part, a non-uniform bulk material distribution model based on bulk material flow
measurement data from a laser scanner is proposed. The data are used to establish the balance equation
of the conveyor belt when considering the effect of the bulk material distribution. A longitudinal
dynamic model of the belt conveyor system is established by using the finite element method (FEM).
Finally, the tension change law of the belt, considering the non-uniform bulk material distribution,
will be drawn from the simulation analysis. This provides a theoretical basis for establishing an
energy-saving control strategy for a belt conveyor system.

2.2. Measurement Facility

An experimental facility for bulk material distribution measurement is designed and constructed,
as shown in Figure 2. It is designed to experimentally measure bulk material cross-sections in real-time
and can be used to study the mechanical properties of a belt under actual material distribution
conditions. The facility conforms to DIN 22101 (1982) “Type and Basic Parameters of Belt conveyors”,
which can simulate a real process of continuous transportation of bulk material in laboratory conditions.
It consists of a variable frequency controller which can adjust the belt speeds varying from 0.2 to 4 m/s.
Due to the limited size of the laboratory space, the longitudinal length, horizontal width, and height
of the facility are designed as 3500 mm, 760 mm, and 400 mm, respectively. It is a trough-type belt
conveyor with three idlers, and the idler roll set spacing is 700 mm. The height of the facility is
adjustable from 400 mm to 1338 mm to change the inclination angle of the belt conveyor system.
The parameters of the experimental facility are listed in Table 1. A (7000 × 500 × 11 mm) rubber
canvas belt is used to test the non-shrinkage of bulk materials. The electrical control components of
the facility include a squirrel cage asynchronous motor, power switch box and frequency converter.
The parameters of the frequency converter can be modified to realize open-loop control functions
(starting, positive or negative rotating, etc.) or closed-loop control functions.
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Figure 2. Experimental facility for measuring bulk material distribution. (a) Sand cross-sections
measurement in real-time; (b) the fitting of iron powder cross-section in real-time.

In the bulk material distribution measurement system, a laser scanner (Sick LMS291-S05, made in
Germany) is installed on the adjustable bracket and located above the conveyor belt to scan the profile
of the bulk material cross-section orthographically. The parameters of angular resolution, scanning
angle, resolution/typical measurement accuracy and maximum range are configured respectively by
using the supplied LMSIBS configuration software. Then the laser scanning points are transmitted
to the computer via Ethernet by using a MOXA Nport 6250. In addition, a belt speed monitor (SEW
ES1T (OG 72 DN 1024 TTL)) is mounted on the central axis of the driving wheel to collect the belt
speed synchronously. After the belt speed is detected by the speed monitor, the microcontroller STM32
records it and sends it to the computer in time through a GSM & GPRS module GTM900C. Accordingly,
a three-dimensional point cloud of the material cross-section moving on the belt conveyor can be
acquired in real-time. Using the software developed in our laboratory, the profiles and areas of the
bulk materials cross section are obtained in real-time.

Table 1. Parameters of the experimental facility.

Parameter Description Value Parameter Description Value

Facility longitudinal length, mm 3500 Belt length, mm 7000
Facility horizontal width, mm 760 Belt width, mm 500

Facility height, mm 400 Belt thickness, mm 11
Facility height range, mm 400~1338 (adjustable) Drive motor Shanghai shenli yvf2-90l-4
Idler roll set spacing, mm 700 Reduction ratio 1:29

Inclination angle, ◦ δ ≤ 8◦ Large and small gear ratio 24:16
Conveyor Belt Rubber canvas ordinary Frequency converter ABB:ACS550-01-05A4-4

2.3. Non-Uniform Bulk Material Distribution Model

The non-uniform bulk material distribution affects the dynamic performance of the system. Belt tear
and breaking accidents can occur when the belt encounters unsteady working conditions, such as
starting and braking, since the dynamic characteristics of the belt under a non-uniform bulk material
distribution are more complex. Moreover, the type of material, the conveying process requirements,
the equipment layout and other factors often cause non-uniform bulk material distribution in actual
operation, as shown in Figure 3, it makes the dynamic characteristics of the belt even more complex.
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To describe the non-uniform bulk material distribution on a conveyor belt, we discretize the bulk
material on the conveyor belt into a series of micro-units according to the travel distance l in unit
time T. Assumed T contains T seconds, t is the t-th unit of time between time (t-1)T and time tT, k is
the number of material flow cross-section areas per unit time. Accordingly, the non-uniform bulk
material distribution qG(t) = {q(t1), q(t2), . . . . . . , q(tk)}, which denotes the collection of k sampling bulk
material loads in unit time T between time (t-1)T and time tT, can be represented as Figure 4. Due to
the scanning frequency which the laser scanner can capture frames of cross section per second is fspeed,
k is obtained by k = T·fspeed.. Then tk means the k frame of t-th unit of time. Compared with the tT (t is
from 1~t), the tk (t is from 1~t, k is from 1~k) can much better reflect the original time series. Based on
the model of cross-sectional area of the bulk material proposed in [49], the bulk material distribution
model can be presented.
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Figure 4. Schematic diagram of the micro-units of a non-uniform bulk material distribution on the
conveyor belt.

In Figure 4, the belt moves in the negative direction of the x-axis. s(t) = {s(t1), s(t2) . . . , s(tk)} is the
collection of cross-sectional areas of material flow calculated in unit time T between time (t-1)T and
time tT. v(t) = { v(t1), v(t2) . . . , v(tk)} is the collection of belt speed in unit time T between time (t-1)T
and time tT. Therefore, the bulk material distribution qG(t) (kg/s) in unit time T between time (t-1)T
and time tT could be represented as

qG(t) =
{
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where ρ is the bulk density, {v(t1), v(t2) . . . , v(tk)}is the successive instantaneous speed of the belt in
unit time T measured by the speed monitor, (m/s), {s(t1), s(t2) . . . , s(tk)} is the successive cross-sectional
area of material flow in the i frame in unit time T (m2).

3. The Longitudinal Dynamics Model of the Belt Conveyor with Non-Uniform Bulk
Material Distribution

The belt conveyor is a complex nonlinear, transient and coupled system. The implementation of
safety control of the belt conveyor needs accurately predicted dynamic characteristics of the belt when
the conveyor works under unsteady conditions. Therefore, a precise longitudinal dynamic model of
the belt conveyor is established using the finite element method (FEM) combined with the non-uniform
bulk material distribution model. Figure 5 shows the transmission principle of the belt conveyor.
The belt conveyor consists of two driven rollers at the head, a single return drum at the tail and a
tensions device. The deformation, speed and acceleration along the elastic conveyor belt are different
at a given time. These kinematic parameters depend on the position of the conveyor belt and time.
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3.1. Discrete Model of the Belt Conveyor System

Firstly, the belt is discretized by the finite element method. Different element sizes are set to model
the carrying section and the return section of the belt. The carrying section of the belt is discretized in a
very high resolution to model the changes of dynamic tension. Conversely, the return section of the
belt is roughly discretized to reduce computational complexity. The Kelvin–Vogit model is adopted
to represent the characteristic of the conveyor belt. Then, a discrete closed-loop model of the belt
conveyor system can be formed by connecting the elements successively (Figure 6).
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In Figure 6, the belt is discretized into N+1 elements along the opposite running direction of the
conveyor belt. The driven roller of the head is the No. 1 and the return drum at the tail is the No. N + 1.
The length of the element of the belt at the carrying section is set to v(t) · T, and N ≈ int(L/v(t) · T),
where L is the length of the belt conveyor, v(t) is the mean value of the transient speed v(t) in the
time t·T. The length of the element of the belt at return section is set to a multiple of v(t) · T. Similarly,
the belt at return section is divided into M elements starting from the tail (No. N + 2) to the end driven
roller (No. N + M + 1), and M ≈ int(L/r · v(t) · T), where r is the constant coefficient.

3.2. Element Mass

The belt conveyor is discretized into N + M + 1 elements according to the travel distance, of which
N + 1 elements within unit time T at the bearing section and M elements within time rT at the return
section. Considering the non-uniform bulk material distribution, the mt (x(tT), tT) at the bearing
section of the belt conveyor is expressed as

mt(x(tT), tT) =
1

fspeed − 1
[(qB + qRO)

k∑
i=1

v(ti) + ρ
k∑

i=1

s(ti)v(ti)] (2)
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where qB is the mass of the conveyor belt per unit length at the bearing section, (kg/m), qRO is the
rotating mass of the roller per unit length at the bearing section, (kg/m), and t is the tth infinitesimal
element, t values from 1 to N + 1.

On the other hand, the mt(x(t·rT), t·rT) at the return section of the conveyor belt is formulated as

mt(x(t · rT), t · rT) =
1

fspeed − 1
(qB + qRU)

rk∑
i=1

v(ti) (3)

where qB is the mass of the conveyor belt per unit length at the return section, (kg/m), qRU is the rotating
mass of the roller per unit length at the return section, and t is the tth infinitesimal element, (kg/m),
t values from N + 2 to N + M + 1.

3.3. Force Equilibrium Equation of the Conveyor Belt

3.3.1. At the Bearing Section

As the conveyor belt travels along the positive direction, the displacement x(tT) of one element of
the belt at the bearing section at time tT can be expressed as

x(tT) = x′(tT) +
1

fspeed − 1

t∑
t=1

k∑
i=1

v(ti) (4)

where x′(tT) is the elastic displacement of the conveyor belt at time tT, t is the tth infinitesimal element,
t values from 1 to N + 1.

The force equilibrium equation of the tth infinitesimal element at the displacement x(tT) at time
tT is formulated as

St(x(tT), tT) − St(x((t + 1)T), (t + 1)T) = mt(x(tT), tT)
..
x(tT) + wt(x(tT), tT) (5)

where mt (x(tT), tT) is the tth infinitesimal element mass of the belt conveyor, St(x(tT), tT) is the belt
tension of the tth infinitesimal element at the displacement x at time tT, can be calculated by

St(x(tT), tT) = ktT(x(tT) − x((t + 1)T)) + ctT(
.
x(tT) −

.
x((t + 1)T)) (6)

where ktT is the stiffness coefficient of the belt at the displacement x(tT) at time tT of tth infinitesimal
element, which can be determined by

ktT =
( fspeed − 1)E′BB

k∑
i=1

v(tT)
(7)

where B is bandwidth, (mm), E′B is the equivalent elastic modulus of the conveyor belt, which is used
to describe the influence on characteristics of belt by the deformed belt between adjacent idlers due to
the weight of the conveyor belt and bulk material distribution (Figure 7).
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As shown in Figure 7, we assume atT is the idler spacing at the displacement x(tT) at time tT, (m),
δ is the conveying inclination of the belt, (◦), ltT is the arc length at the displacement x, (m), qB is the
mass of the conveyor belt per unit length (kg/m), and St(x(tT), tT) is the belt tension of tth infinitesimal
element at the displacement x(tT) at time tT.

Then E′B can be determined by

E′B =
EB

1 +
(qB+

ρ
fspeed−1

k∑
i=1

s(ti)v(ti))
2 g2a2

tT cos2 δ

12S3
t (x(tT),tT)

EBB

(8)

where EB is the elastic modulus of conveyor belt which can be measured experimentally, and the
calculation formula is

EB =
∆Q× L0

∆L
(9)

where ∆Q is the load difference on the unit width of the specimen, (N/mm), ∆L is the elongation of the
specimen, and L0 (mm) is the original length of the specimen, (mm).

Assume that ctT is the composite viscosity coefficient for materials and idlers at the displacement
x(tT) at time tT of tth infinitesimal element, and it can be determined by

ctT =
( fspeed − 1)E′BBτ

k∑
i=1

v(tT)
(10)

where τ is the rheological constant, usually from 0.8 to 1. wt(x(tT), tT) is the main resistance of tth
infinitesimal element at the displacement x(tT) at time tT of the belt at the bearing section, which is
calculated by

wt(x(tT), tT) =
ftTqRO g
fspeed−1 (Cv0 + Cv

∂x(tT)
∂t )

k∑
i=1

v(ti) +
g sin δtT
fspeed−1 [qB

k∑
i=1

v(ti) + ρ
k∑

i=1
s(ti)v(ti)]

+
ftT g cos δtT

fspeed−1 (Cv0 + Cv
∂x(tT)
∂t )[qB

k∑
i=1

v(ti) + ρ
k∑

i=1
s(ti)v(ti)]

(11)

where Cvo is the coefficient independent of the belt speed, C′v is the coefficient related to the belt speed,
and ftT is the dynamic resistance coefficient at the displacement x at time tT and can be determined by

ftT = f0(Cvo + C′vv(ti)) (12)

where f 0 is the coefficient of static friction between the belt and the material and usually equal to 0.03,
Cvo is the coefficient independent of the belt speed, and C′v is the coefficient dependent of the belt speed.
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3.3.2. At the Return Section

The displacement x(t·rT) of one element of the belt at the return section at time t·rT can be
expressed as

x(t·rT) = x′(t·rT) +
1

fspeed − 1

t∑
t=1

rk∑
i=1

v(ti) (13)

where x′(t·rT) is the elastic displacement of the conveyor belt at time t·rT, t is the tth infinitesimal
element, t values from N + 2 to N + M + 1.

The force equilibrium equation of the tth infinitesimal element at the displacement x(t·rT) at time
t·rT is formulated as

St(x(t·rT), t·rT) − St(x((t + 1)rT), (t + 1)rT) = mt(x(t·rT), t·rT)
..
x(t·rT) + wt(x(t·rT), t·rT) (14)

where mt (x(t·rT), t·rT) is the tth infinitesimal element mass of the belt conveyor at the return section,
St(x(t·rT), t·rT) is the belt tension of the tth infinitesimal element at the displacement x(t·rT) at time t·rT,
can be calculated by

St(x(t·rT), t·rT) = kt·rT(x(t·rT) − x((t + 1)rT)) + ct·rT(
.
x(t·rT) −

.
x((t + 1)rT)) (15)

where kt·rT is the stiffness coefficient of the belt at the displacement x(t·rT) at time t·rT of tth infinitesimal
element at return section, which can be determined by

kt·rT =
( fspeed − 1)E′BB

rk∑
i=1

v(ti)

(16)

where E′B can be determined by

E′B =
EB

1 +
qB2 g2a2

t·rT cos2 δ

12S3
t (x(t·rT),t·rT)

EBB
(17)

where at·rT is the idler spacing of tth infinitesimal element at return section at time t·rT.
Assume that ct·rT is the composite viscosity coefficient for materials and idlers at the displacement

x(t·rT) at time t·rT of tth infinitesimal element at return section, and it can be determined by

ct·rT =
( fspeed − 1)E′BBτ

rk∑
i=1

v(ti)

(18)

At the return section, wt(x(t·rT), t·rT) is

wt(x(t · rT), t · rT) =
ft·rT(qRU + qB cos δ)g

fspeed − 1
(Cv0 + Cv

∂x(t · rT)
∂t

)
rk∑

i=1

v(ti) −
qBg sin δ
fspeed − 1

·

rk∑
i=1

v(ti) (19)

where ft·rT is the dynamic resistance coefficient at time t·rT at return section and can be determined by
Equation (12).

3.4. Dynamics Model of the Belt Conveyor System

The belt conveyor system is discretized into N + M + 1 elements. The first driver motor is numbered
as the first element. Assuming that the conveyor belt does not slip on the roller, the equivalent mass
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of the drive motor at the straight direction can be put in the mass of the first element. Similarly,
the equivalent mass of the second driver motor can be put in the mass of the N + M + 1 element.

Based on Newton’s Second Law, the dynamic model of a belt conveyor can be described as

(m1 +
J1
R2

1
)

..
x1 + (k1 + k2)x1 − k1x2 − knxn + (c1 + cn)

.
x1 − c1

.
x1 + cn

.
xn = Fd1 + Fd2 −w1

m2
..
x2 + (k2 + k1)x2 − k1x1 − k2x3 + (c2 + c1)

.
x2 − c1

.
x3 = −w2

...
m j

..
x j + (k j + k j−1)x j − k j−1x j−1 − k jx j+1 + (c j + c j−1)

.
x j − c j−1

.
x j+1 = −w j

...
(mn +

J2
R2

2
)

..
xn + (kn + kn−1)xn − kn−1xn−1 − knxn+1 + (cn + cn−1)

.
xn − cn−1

.
xn+1 = −wn

(20)

where J1 and J2 are the rotational inertias of the two driven rollers, R1 and R2 are the radius of the
two driven rollers, n is the total number of the elements, which is equal to N+M+1, {m1, m2, . . . mj
. . . mn} are the mass of the {1th, 2th, . . . , jth, . . . nth} element respectively, which can be calculated
by Equations (2) or (3). {k1, k2, . . . kj . . . kn}, {c1, c2, . . . cj . . . cn}and {w1, w2, . . . wj . . . wn} are the
stiffness coefficients, the composite viscosity coefficients and the main resistances of the {1th, 2th, . . . ,
jth, . . . nth} element, respectively; {x1, x2, . . . xj . . . xn},{ ẋ1, ẋ2, . . . ẋj . . . ẋn}, { ẍ1, ẍ2, . . . ẍj . . . ẍn} are the
displacement, velocity, and acceleration of the linear motion of the {1th, 2th, . . . , jth, . . . nth} element
of the conveyor belt respectively, Fd1 and Fd2 are the equivalent driving forces acts on driving rollers.

Therefore, the matrix form of Equation (20) is

M
..
X + C

.
X + KX = F(t) (21)

where M is a matrix of mass, C is a matrix of damping factor, K is a matrix of spring factor, F(t) is a
vector of external forces, X is a vector of element displacement, Ẋ is a vector of element velocity, and Ẍ
is a vector of element acceleration.

4. Simulation Conditions and Procedures

4.1. Measurement of the Bulk Material Distribution

The traditional dynamic model of belt conveyor assumes that the bulk materials are uniformly
distributed, without considering the influence of the non-uniform distribution of bulk materials.
The non-uniform bulk material distribution model is obtained by integrating the instantaneous
bulk material flow cross section, and the accuracy is higher than that of the traditional uniform
distribution model.

Experimental measurements have been used to verify the correctness and accuracy of the
measurement system of the non-uniform bulk material distribution (Figure 8). The materials for the
measurement is iron ore powder (bulk density ρ, 2980 kg/m3) which provided by Wuhan Iron & Steel
(group) Corp. To measure the distribution of the iron ore powder on the moving belt, constant speeds
of 0.5 m/s, 1.0 m/s, and 1.5 m/s were selected as suitable values, which were controlled by using the
frequency converter in the control cabinet. A spherical cap was used to calibrate the spatial coordinates
captured by the measurement system. After that, the perpendicular distance and horizontal width of
the adjustable bracket were set 583 mm and 820 mm respectively. The resolution of the laser scanner
was set 10 mm/±35 mm over a typical range of 30 m. Next, experiments were performed as the iron
ore powder was poured on the belt artificially in three flow rates of 2.971 kg/s (1 L/s), 8.911 kg/s (3 L/s),
and 14.853 kg/s (5 L/s) from the guild chute. Standard volumes of 1 L, 3 L, 5 L were used to verify the
volumes measured by the measurement system. The triangular area accumulation method [48] was
used to calculate the cross-sectional area of iron ore powder. Then, the measured data of instantaneous
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iron ore powder distribution with a flow rate of 8.911 kg/s (3L/s) at a stable speed of 1.0 m/s are shown
in Figure 9.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 20 
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Figure 9. The measured data of instantaneous non-uniform iron ore powder distribution with a flow
rate of 8.911 kg/s (3L/s) at a stable speed of 1.0 m/s.

The original data curve in Figure 9 shows that the transient iron ore powder distribution fluctuates
violently. Due to the high resolution of the laser scanner, the non-uniform bulk material distribution
model can better reflect the real state of bulk material transportation. However, the violently fluctuation
of original data may affect the measurement of real logistics morphology. Therefore, a mean filter
is adopted to smooth the original data. Through experimentation, the average of every 30 frames
is smoother than every 15 frames. For verification, 9 sets of measurements had been designed to
obtain non-uniform iron ore powder distribution. Every 8 measurement values from 10 measurements
corresponding to the same level standard flow rate of iron ore power were recorded after removing
the maximum and minimum values. Table 2 shows the repeated measurements corresponding to
standard volumes at three speeds of the belt and their repeatability. The average error between the
laser measurement and the artificial measurement is within 3%. The repeatability and correlation (RPT)
are more than 98%. In addition, the variation coefficient (CV) of the measurement value at different
speeds is less than 2%, which means that the belt speed has a small influence on the measurement
results. In the subsequent dynamic simulation test, the non-uniform bulk material distributions on
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belt, which are used for establishing the discrete model of the belt conveyor system, can be obtained
from this measurement system.

Table 2. Measured values of the iron ore powder distribution based on laser scanning and
their repeatability.

Test
NO.

Belt Speed
(m/s)

Artificial Flow
Rate (L/s)

Distribution Calculated by the Accumulation of the Triangular Area (dm3)

1 2 3 4 5 6 7 8 Mean Stdev CV RPT

1 0.5 1 0.985 1.015 1.016 0.978 1.003 0.992 0.968 0.991 0.994 0.017 0.017 0.983
2 0.5 3 2.989 3.101 2.954 2.963 2.987 3.013 2.981 3.022 3.001 0.046 0.015 0.985
3 0.5 5 5.017 4.989 4.993 5.003 4.995 4.899 5.100 5.002 5.000 0.054 0.011 0.989
4 1 1 1.019 0.997 0.988 1.026 1.003 0.996 1.011 0.987 1.003 0.014 0.014 0.986
5 1 3 2.984 3.063 3.013 2.999 2.896 2.989 2.986 3.001 2.991 0.046 0.015 0.985
6 1 5 4.898 5.016 4.895 5.012 5.008 4.995 4.986 4.929 4.967 0.052 0.010 0.990
7 1.5 1 1.024 0.989 1.003 0.989 0.976 0.989 0.978 0.997 0.993 0.015 0.015 0.985
8 1.5 3 2.998 3.021 2.982 2.978 3.104 2.973 2.990 2.976 3.003 0.044 0.015 0.985
9 1.5 5 4.983 4.889 5.020 4.915 4.979 5.042 4.987 5.037 4.982 0.055 0.011 0.989

4.2. Dynamic Simulation Analysis

Using the MATLAB simulation platform, a discrete model of the conveyor is established and
the changing laws of belt tension, speed, and displacement under the non-uniform bulk material
distribution are obtained through a simulation test. All the simulation cases are coded with M files in
MATAB R2010b. The user interface is designed by the graphical user interface (GUI) toolbox of MATAB.
When the non-uniform bulk material distribution measured by the experimental facility mentioned in
Section 2.2, the real and simulated parameters of the belt conveyor are input to the GUI, the matrix of
M, C, K in Equation (21) can be built. After a soft start control is applied on the belt conveyor, the ode
45 function in MATAB is used to solve this state equation. The computer configuration is as follows:
Inter (R) Core (TM) i5-3317 U CPU @ 1.70 GHz 1.70 GHz, Memory 3.86GB. Taking a belt conveyor at
the Tongnu bulk cargo terminal of Nantong Tiansheng Gang Power Generation Co. LTD in China
for example, the real parameters and simulation parameters are listed in Table 3. As described in
Section 3.1, the conveyor belt at bearing segment is discretized in a very high resolution to model
the changes of dynamic tension. Due to the length of belt conveyor is 4500 m and the belt speed is
3.75 m/s, 15 m as an appropriate for the unit lengths of belt at bearing segment if T = 4 s. The unit
lengths of belt at return segment set 30 m for roughly discretized to reduce computational complexity.
The value of rheological constant τ is constant, see in description of formula (10). The conveyor belt
stiffness coefficient k is the unit length of ktT, which is obtained from ktT (formula (7)) divided by T.
Then multiply the conveyor belt stiffness coefficient k by rheological constant τ to get the damping
coefficient of conveyor belt c. The coefficient independent of belt speed Cvo, the coefficient related
to belt speed C’v, the unit mass of conveyor belt qB, the equivalent mass of upper idler qRO, and the
equivalent mass of lower idler qRU are obtained from the real parameters of the belt conveyor system.

The Harrison sinusoidal acceleration curve [49] is selected to apply a soft start control on the belt
conveyor. In addition, to analyze the changing rules of the dynamic behavior of the conveyor belt
under the non-uniform bulk material load, three load levels, i.e., empty-load, light-load, and over-load,
are set. If the non-uniform bulk material distributions on the Tongnu bulk conveyor system are
measured in the field test, we could obtain more accurate simulation results of dynamic behavior
of the conveyor system. However, the dynamic characteristics of a conveyor belt is so complicated
that the non-uniform bulk material distribution on belt. It may cause tremendous economic loss to
bulk terminal if major security incidents accidents happened, such as strip breakage or longitudinal
tear. Therefore, for the safety and experimental feasibility, we perform the simulation first by setting
the corresponding instantaneous material flow parameters (shown in Table 4) to analyze the belt
mechanical behavior under non-uniform bulk material distribution on the belt. In order to measure
the non-uniform bulk material distributions on the moving belt at speed of 3.75 m/s in the laboratory,
the iron ore powder was used for the measurement material and it was poured on the belt artificially
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in pre-set flow rates from the guild chute. Then substituting the non-uniform distributions of the iron
ore powder measured by the experimental facility into the matrix of M, C, K in Equation (21), the belt
tensions, accelerations, and displacements at the head and tail of the belt conveyor system are easily
obtained by simulation.

Table 3. Real and simulated parameters of the belt conveyor.

Real Parameters Numerical Value Simulated Parameters Numerical Value

Length of belt conveyor,
L (m) 4500 Unit length of belt at

bearing segment, l (m) 15

Bandwidth, B (mm) 1600 Unit length of belt at
return segment, l (m) 30

Belt speed, v (m/s) 3.75 Coefficient related to belt
speed C′v

0.002

Conveying inclination, (◦) 8◦ Coefficient independent
of belt speed Cvo

0.025

Upper idler spacing, (m) 1.5 Rheological constant, τ 0.8

Lower idler spacing, (m) 3 Conveyor belt stiffness
coefficient, k (kN/m) 4267

Elastic modulus,
EB (kN/mm) 160 Damping coefficient of

conveyor belt, c (kN/m) 3414

Diameter of all idlers, (mm) 159 Unit mass of conveyor
belt, qB (kg/m) 53.472

Length between tensioning
device and head drum, (m) 100 Equivalent mass of

upper idler, qRO (kg) 26.18

Number of element, n 450 Equivalent mass of lower
idler, qRU (kg) 19.22

Table 4. Section and corresponding load of the belt conveyor.

Subsection 1–69 70–129 130–189 190–249 250–300

Empty-load qG1/kg/s 0 0 0 0 0

Light-load qG2/kg/s 300 280 270 290 260

Over-load qG3/kg/s 600 680 670 690 660

5. Results and Discussion

5.1. Influence of Bulk Material Distribution on Start-Up Dynamic Characteristics

Starting under Harrison sinusoidal acceleration, the starting time T is 50 s, the maximum band
speed under stable operations is 3.75 m/s, and the simulation time is 50 s. Then, the dynamic
characteristic surface of the belt conveyor under empty-load, light-load and over-load is shown in
Figure 10.

In Figure 10, it can be seen from the tension-time history of all elements of the conveyor belt that
during the starting process of the belt conveyor, the head needs to overcome the inertia of the body
and the friction resistance of the system, which generates strong tension fluctuations. In particular,
under the over-load, the influence on the tension of the conveyor belt is obvious, and this tension lasts
for a long time. However, due to the length of the belt conveyor, the transmission of tension needs
time to overcome the resistance along the way, so the amplitude of belt tension fluctuates after the
number of segments decreases, which is consistent with the realistic tension distribution law of the belt
conveyor. It also shows that the conveyor belt starts to accelerate at approximately 12 s at the initial
section. The speed curve turns smooth after about 25 s and the belt speed reaches 3.75 m/s at 50 s,
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which is in line with the starting speed curve. From the time history of all unit displacements of the
conveyor belt, it can be seen that the displacement of the conveyor belt keeps growing with increasing
time and that the segment terminal of the conveyor belt fluctuates greatly.
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Figure 10. Dynamic characteristic curves of the belt conveyor. (a) Empty-load. (b) Light-load. (c) Over-load.

5.2. The Influence of Starting Time on the Dynamic Characteristics of the Belt Conveyor

The Harrison sinusoidal acceleration control is adopted in the belt conveyor under light-load,
and the starting time is set at 50 s, 100 s, and 150 s. The dynamic characteristics of the conveyor belt are
shown in Figure 11.

In Figure 11a, the soft-start control curve is the same, however the starting time is different.
The longer the starting time, the less the starting acceleration of the conveyor belt. It is found that
the probability of peak dynamic tension in the conveyor belt at the head and the tail of the machine
is significantly reduced. It can be seen from the figures that the maximum tension on the conveyor
belt presents a law of exponential decline as the starting time increases. When the starting time is less
than 100 s, the peak value of the dynamic tension of the conveyor belt increases significantly, and the
conveyor belt vibration is more severe. After prolonging the starting time, the dynamic characteristics
of the conveyor belt are obviously improved.
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5.3. Utility for Energy Efficiency Improvement

In speed control, the optimal speed regulation time should be chosen for a good dynamic
performance of the belt conveyor system. In this way, the risks, such as belt overloading, belt slippage,
and belt tear or breaking can be prevented. Based on presented results, the dynamic model of a belt
conveyor considering the non-uniform bulk material distribution would be very useful for optimization
of the speed regulation time of the belt conveyor. It should be pointed out that this dynamic model is
capable of refined calculating the belt tensions of all elements of the belt conveyor system with the bulk
material distribution, especially the belt tensions around the drive pulley. With the dynamic model,
simulations can be carried out to analyze the dynamic characteristics of the belt conveyor during the
regulation operation if the initial regulation time is obtained. In this way, the risks can be predicted in
advance. In addition, more simulations should be carried out to get the optimal regulation time to
improve the regulation performance.

Generally, a series of influencing factors, such as external constraints (electricity consumption,
electricity cost, greenhouse gas emissions, etc.), operation efficiency (throughput rate, average
throughput, etc.), and system constraints (the belt, idler, driver system, etc.), should be considered in
speed control strategies for the energy efficiency improvements. However, the relationship among
them is hardly expressed by a mathematic function. Therefore, there are a couple of negative side
effects of a speed control strategy that solely or primarily focus on equipment level or operational
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level. Most of the existing strategies make belt conveyors operate at unsuitable operating points since
they do not consider the system constraints and external constraints. There must be a mechanism to
compensate the inaccuracy caused by modelling uncertainties, external disturbances, and unexpected
reactions of relevant components. However, during the process of conveying bulk materials on a
belt conveyor, any belt speed changes will lead to nonlinear changes in the drive tension of the belt.
In particular, if the non-uniform bulk material distribution is exerted a sudden dynamic shock on
the belt, the tension of the belt will change greatly, which may lead to skidding, damage or even
tearing. In actual situations, this may lead to misjudgment, affecting safety. We know that the speed
optimization can play an important role in the energy efficiency improvement of the belt conveyor.
Energy efficiency improvement brings not only high efficiency and low electricity consumption but
also high safety. Therefore, developing a reasonable speed control strategy is the key for energy savings.
The dynamic characteristics of the belt should be considered in the construction of the speed control
strategy of the belt conveyor.

6. Conclusions

The characteristics of a long conveyor belt is complicated when it involves the interactions of
the belt and the non-uniform bulk material distribution. It influences the speed control technology
for energy efficiency significantly, especially for the conveyor belt applications. Therefore, for the
speed control, it is necessary to establish a high-precision dynamic model to analyze the dynamic
performance of a conveyor belt. However, the current dynamic belt models typically assume that the
material distribution on the belt is uniform. The effects of the non-uniform bulk material distribution on
the belt tension are rarely considered. By implementing the laser scanning technology, a non-uniform
bulk material distribution model is firstly proposed. The model is verified by the experiment in
realistic operational conditions. Then, a high-precision longitudinal dynamic model of a belt conveyor
considering the micro-units of actual load on the belt is proposed. FEM and MATLAB simulation
platforms are used to form the dynamic modelling and simulation research of belt conveyors with
non-uniform bulk material distribution. In the model, the measurement accuracy is less affected by the
unevenly distributed and intermittent bulk materials. The dynamic behavior with non-uniform bulk
material distribution, start time and conveyor belt position are studied comprehensively. The model is
suitable for analyzing mechanical behavior and optimizing the operating procedures of belt conveyor
systems. Further research will be focused on developing a speed control strategy considering the
control objectives and the dynamic characteristics of the system comprehensively.
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29. RISTIĆ, L.; BEBIĆ, M.; ŠTATKIĆ, S.; Mihailoví, I.; Jevtí, D.; Jeftení, B. Bulk material transportation system in
open pit mines with improved energy efficiency. In Proceedings of the 15th WSEAS International Conference
on Systems, Part of the 15th WSEAS CSCC Multiconference, Corfu Island, Greece, 14–16 July 2011; pp. 327–332.

30. Revollar, S.; Vega, P.; Vilanova, R.; Francisco, M. Optimal Control of Wastewater Treatment Plants Using
Economic-Oriented Model Predictive Dynamic Strategies. Appl. Sci. 2017, 7, 813. [CrossRef]

31. Singla, M.; Shieh, L.-S.; Song, G.; Xie, L.; Zhang, Y. A new optimal sliding mode controller design using
scalar sign function. ISA Trans. 2014, 53, 267–279. [CrossRef]

32. Sethi, V.; Song, G. Multimodal Vibration Control of a Flexible Structure using Piezoceramic Sensor and
Actuator. J. Intell. Mater. Syst. Struct. 2007, 19, 573–582. [CrossRef]

33. Lodewijks, G. Energy efficient use of belt conveyors in baggage handling systems. In Proceedings of the
2012 9th IEEE International Conference on Networking, Sensing and Control (ICNSC), Beijing, China,
11–14 April 2012; pp. 97–102.

34. Zhang, S.; Xia, X. A new energy calculation model of belt conveyor. In Proceedings of the IEEE Africon 2009,
Nairobi, Kenya, 23–25 September 2009; pp. 1–6.

35. Zhang, S.; Xia, X. Modeling and energy efficiency optimization of belt conveyors. Appl. Energy 2011, 88,
3061–3071. [CrossRef]

36. Luo, J.; Huang, W.; Zhang, S. Energy cost optimal operation of belt conveyors using model predictive control
methodology. J. Clean. Prod. 2015, 105, 196–205. [CrossRef]

37. Zhang, S.; Mao, W. Optimal operation of coal conveying systems assembled with crushers using model
predictive control methodology. Appl. Energy 2017, 198, 65–76. [CrossRef]

38. Hou, Y.-F.; Meng, Q.-R. Dynamic characteristics of conveyor belts. J. China Univ. Min. Technol. 2008, 18,
629–633. [CrossRef]

39. Andrejiova, M.; Grincova, A.; Marasova, D. Failure analysis of the rubber-textile conveyor belts using
classification models. Eng. Fail. Anal. 2019, 101, 407–417. [CrossRef]

40. Lauhoff, H. Speed Control on Belt Conveyors-Dose is Really Save Engery? Bulk Solids Handl. 2005, 25,
368–377.

41. He, D.; Pang, Y.; Lodewijks, G. Green operations of belt conveyors by means of speed control. Appl. Energy
2017, 188, 330–341. [CrossRef]

42. He, D.; Pang, Y.; Lodewijk, G.; Liu, X. Healthy speed control of belt conveyors on conveying bulk materials.
Powder Technol. 2018, 327, 408–419. [CrossRef]

43. He, D.; Liu, X.; Zhong, B. Sustainable belt conveyor operation by active speed control. Measurement 2020,
154, 107458. [CrossRef]
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