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Abstract: The regularities of the processes and characteristics of convection in a sessile drop on a hot
wall after the second drop fall are investigated experimentally. The movement of a particle on a drop
surface under the action of capillary force and liquid convection is considered. The particle motion is
realized by a complex curvilinear trajectory. The fall of droplet with and without surfactant additives is
considered. Estimates of the influence of the thermal factor (thermocapillary forces) and the dynamic
factor (inertia forces) on convection are given. The scientific novelty of the work is the investigation
of the simultaneous influence of several factors that is carried out for the first time. It is shown that in
the presence of a temperature jump for the time of about 0.01–0.1 s thermocapillary convection leads
to a 7–8 times increase in the mass transfer rate in drop. The relative influence of inertial forces is
found to be no more than 5%. The fall of drops with surfactant additives (water + surfactant) reduces
the velocity jump inside the sessile drop 2–4 times, compared with the water drop without surfactant.
Thermocapillary convection leads to the formation of a stable vortex in the drop. The dynamic factor
and surfactant additive lead to the vortex breakdown into many small vortices, which results in the
suppression of convection. The obtained results are of great scientific and practical importance for
heat transfer enhancement and for the control of heating and evaporation rates.
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1. Introduction

1.1. Promising Technologies Based on the Interaction of Falling Liquid Drops and Heated Surfaces

Surface cooling by a spray (drop aerosol) is widely used in practice [1,2]. In this process, it is
important to properly model the interrelated processes of heat and mass transfer, as this is what
determines the efficiency of the technology as a whole. Rather frequently used are multicomponent
solutions where convection in liquid depends on a set of key factors [3]. The continuous fall of drops of
water–salt solution is realized on the tube walls in falling-film evaporators at desalination and cooling [4].
The dynamics of drop falling are important to consider in the chambers of internal combustion
engines [5]. When the rate of the drop fall on a layer of burning fuel increases, three different modes
are realized: spraying-injecting, splashing-injecting-secondary-injecting and bubble splashing [6].
The dynamics of the drop fall are important to consider when using fire suppression technologies [7,8].
The drop impact on the surface and the collective interaction of drops is important to consider in the
following technologies: plasma spraying, inkjet printing, spray cooling power and electronic devices,
and at increasing thermal comfort in the room and outside it [9].

The impact of single- and multicomponent liquid drops on a heated wall and liquid film was
considered in [10,11].
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1.2. Modern Understanding of the Processes of Interaction of Falling Liquid Drops and Heated Surfaces

Evaporation modes depend on the simultaneous influence of thermal and dynamic factors,
which significantly complicates both experimental research and the construction of a theoretical model.
The thermal aspect is largely related to the temperature of the wall, which is associated with four
distinct evaporation regimes: (1) film evaporation, (2) nucleate boiling, (3) transition boiling, and (4)
film boiling [12]. Dynamic factors lead to the regimes of the drop impingement, grouped into five
different impact patterns: (1) completely wet; (2) wet film boiling; (3) transition; (4) dry rebound,
and (5) satellite dry rebound, where dry impact implies that no liquid–solid contact occurs during the
impact process. The number We has a stronger influence on dry wall impact than that on wet wall
impact [12]. It has been found that when the impact time scale td = d01/U01 (where d01 is the diameter
of the falling drop and U01 is the velocity of the falling drop before droplet interaction) is of the order
of the thermal time scale tT = λwqwcw/h2 or larger (where λw is the wall thermal conductivity, cw is the
wall specific heat, and h is the heat transfer coefficient), the effects of heat transfer (thermal factor) on
impact behavior cannot be neglected, and the drop will inevitably contact the wall directly. If tT is
longer than td, the wall remains isothermal, and the impact is not affected by the heat transfer [13,14].
In this case, only the dynamic factor is decisive. Different modes of high-temperature evaporation of
droplets depending on the properties of the solution, wall temperature and wettability are considered
in [15–17].

Surfactants affect not only the surface properties of the solution, but also the heat exchange
in the drop, as the number of Marangoni and surface forces change. The peculiarities of solution
wetting using surfactants are considered in [18–20]. Experimental data on free convection in a sessile
evaporating drop show that theoretical predictions overestimate the experimental data on the water
velocity dozens of times, which is associated with the influence of natural surfactants (contaminants
in the form of surfactants) [3,21,22]. The use of surfactants reduces the surface tension of the liquid,
which leads to a change in the modes of evaporation of the sessile droplet [23,24]. The evaporation
kinetics of solutions with surfactant are similar to the droplet kinetic of pure aqueous solutions without
surfactant. The main differences of surfactant solutions are as follows: (1) the lower values of initial
contact angles, (2) the larger values of initial diameters of the droplet base, and (3) dependence of
the receding contact angle on time for the second time stage at concentrations below the critical
wetting concentration (CWC) [23]. For a drop of pure water at constant contact radius (Rd = constant),
the static contact angle depends only on the evaporation rate. The evaporation of the water droplet
with surfactant results in an increase in surfactant concentration and its redistribution between the
bulk and interfaces due to a decrease in droplet volume. As a result, the contact angle will decrease
over time. Surfactants play an important role in suspensions. Surface textures enhance heat and mass
transfer near a wall [25,26]. A small concentration of surfactants in emulsions allows reaching small
droplet sizes and prevents the droplets’ merger and the growth of their diameter [27,28]. The behavior
of droplets on the heated wall was considered in [29,30].

1.3. Modern Research Methods

For correct modeling of heat and mass transfer and evaporation in the interaction of
droplets, data on the instantaneous velocity fields inside droplets are required. In recent years,
optical non-contact methods have been rapidly developing, and their resolution and accuracy have
been increasing. The following methods are now widely used for the diagnostics of multiphase flows:
Particle Image Velocimetry (PIV) [31–33], Particle Tracking Velocimetry (PTV) [34], and Laser-Induced
Phosphorescence (LIP) [35]. The main features of specified methods application in drops and thin films
are considered in [36–39].

Thus, the literature analysis has shown that most of the experimental studies of droplet falling
on film or on the liquid layer are associated with the measurements of the following key parameters:
the geometry of crown splashing (rim crown wall, cavity below film surface, crown diameter and
height, crown shape, crown height evolution), ejecta sheet and multi-drop impact, and the rates of



Appl. Sci. 2020, 10, 4414 3 of 25

droplet scatter at crown formation [40] with the use of PIV. In modeling the interaction of droplets, as a
rule, the effects of buoyancy and Marangoni forces on convection generation inside the liquid are not
taken into account. It is also unclear how the inertia forces affect the velocity field inside a droplet.
Basically, the thermal and dynamic aspects concern the interaction of the droplet with the wall when
the dynamic and thermal time ratio is considered. In the study of the properties of solutions with
surfactants, the emphasis is placed on the study of wettability, contact angle dynamics and mapping
the droplet evaporation modes. The effect of wettability with a high temperature is considered in [41].
High-temperature non-isothermal desorption was considered in [42]. The amalgamation and separation
of droplets of different liquids leads to different flow regimes in mini- and microchannels [43–45].
A change in component concentrations during the amalgamation leads to free convection in the liquid.

1.4. Research Objectives

An analysis of the literature has shown that previous research was aimed at studying the drop
shape behavior after the drop fell on a solid wall. The fall of drops on the liquid layer led to the
formation of crowns and splashes. There are practically no experimental data on the effect of an
instantaneous local temperature jump on the free surface of a drop on the convection inside the
drop. The question remains how the interaction of droplets and the indicated short-term temperature
inhomogeneity affect the intensity and duration of convection, as well as what characteristic convective
structures occur inside the drop.

The first objective is to identify the roles of the dynamic factor (inertia forces) and the thermal
factor (thermocapillary forces) in the generation of convection in the liquid when the small drop falls
on the large sessile drop, located on a hot wall.

The second objective is to study the effect of surfactants on heat and mass transfer in the drop.
In this case, the role of the droplet shape, contact angle and evaporation on convection inside the
droplet is not considered due to the short-term interaction of two droplets. This formulation of the
problem allows for clearly identifying the factors that control convection, as well as answering the
question of how the surfactant affects the instantaneous velocity field after the drop falls on a thin
layer of liquid.

2. Experimental Setup and Procedure

The scheme of the experimental setup for measuring the instantaneous velocity field inside drop 2
and the temperature field Ts on the surface of the sessile drop is shown in Figure 1.

During the experiment, the external pressure of 1 bar, relative humidity of 35–36%, and temperature
of the external air of 21–22 ◦C were constant in the specified ranges throughout the experiment. Drop 2
with initial volume V02 = 40 µL (initial diameter of drop 2 was D02 = 7–7.5 mm, and the initial height
h02 = 2.6 mm) was placed on a horizontal heated wall. Drops 1 and 2 were applied by dispensers,
positioned perpendicular to the wall surface (Figure 1) (using a single-channel electronic pipette
Finnpipette Novus (Thermo Fisher, Vantaa/Joensuu, Finland) with a step of the volume change of
0.1 µL). All the experiments were repeated four times, and the ranges of h02 and D02 are given taking
into account repeated measurements of the geometric parameters of droplet 1.

Droplet 1 (V01 = 2.5 µL, d01 = 0.8 mm) fell on drop 2 (Figure 1) (V02 = 40 µL). The height of the
droplet 1 fall (H) measured from the edge of the dispenser to the top of the large drop 2 was 4–5 mm.
The Weber number was We = (ρU01

2d01)/σ = 1–1.3, where ρ is the density of water and σ is the surface
tension coefficient for water-air. The rate of droplet 1 falling just before the contact with the top surface
of the sessile drop 2 was U01 = 0.32 m/s. This velocity was determined by high-speed shooting. Neither
drop broke up, and at an impact on the liquid surface there was no spray.
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Figure 1. (a) Scheme of measuring Ts and the instantaneous velocity field inside drop 2 using PIV.
PIV—Particle Image Velocimetry; TI—Thermal Imager. (b) The measurement scheme of drop 2 static
contact angle: (1) the video camera; (2) the source of plane-parallel light; (3) the camera Nikon D750
(with micro lens); (4) drop 2; (5) a thermocouple for measuring the wall temperature (Tw).

Droplet 1’s impact did not lead to the formation of the crown, which was confirmed by the
measurements by the high-speed camera. After droplet 1’s fall, the diameter of the base of large drop 2
D02 did not change. After the interaction of droplets, a thermal wake remained on the free surface of
drop 2. The substrate was made of copper (the substrate thickness was 5 mm and its diameter was
50 mm). After each experiment, the substrate was treated several times with alcohol and water, and
then thoroughly dried. In addition, the wall roughness was periodically monitored by a profilometer,
which showed the invariance of the mean square value of wall roughness. The substrate was placed on
a hard table, located on a base that excluded vibrations of the table and the substrate. Squeezing out a
large sessile drop was implemented rather slowly to maintain the constancy of the drop geometry for
different experiments. The drop diameter and height for repeated experiments differed by no more
than 3%.

The static contact angle (θ0) for the sessile water drop 2 was 87–90◦ at a wall temperature under
the sessile drop Tw = 79–81 ◦C. The optical system of plane-parallel light generation was used to
provide a shadow image of drop 2 (Figure 1b). To obtain such light, the source (MI-150) and the
telecentric backlight illuminator (62-760, Edmund Optics) were used together with the glass fiber
optics cable (BX4 type Dolan-Jenner) and video camera (FastVideo 500 M) with the macro lens Sigma
105 mm f/2.8 G IF-ED AF-S. The initial static contact angles were determined using a tangential method.
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To minimize the measurement error of the contact angle, the experiments were repeated three times
(under the same conditions). The average value of the contact angle was determined by the results of
three experiments. The maximum measurement error of the initial static contact angle of the sessile
drop did not exceed 3–5%.

To measure the temperature field on the surface of the sessile droplet, a thermal imager with
multiple image magnification was applied. The interfacial temperature of drop 2 was determined
with the help of thermal imager NEC R500EX-Pro (NEC Avio Infrared Technologies, Yokohama,
Japan) (spectral range of 8–14 µm, frame frequency of 30 frame/s, measurement accuracy of ±1 ◦C,
and thermogram resolution of 640 × 480). The spectral bandwidth of infrared camera in short wave
range (SW) was 3–5 µm.

The substrate with drop 2 was located on the surface of the heating plate (the plate was heated
by electric current and tungsten wire). The wall temperature Tw was adjusted automatically with an
accuracy of ±1 ◦C. To measure the temperature Tw, a low-inertia platinum-rhodium thermocouple
with inertia of 0.1 s (the junction diameter of 0.05 mm) was used. The relative error of Tw temperature
measurement did not exceed ±0.5 ◦C. This measurement error was within the adjustment accuracy Tw

(±1 ◦C). The thermocouple was fixed on the substrate surface by means of thermal paste with high
thermal conductivity. The thermocouple practically did not overhang the wall surface and did not
distort the velocity field in drop 2.

In different experiments, the drop 2 consisted only of the distillate, and the composition of the
droplet 1 changed: (1) 100% water; (2) water + surfactant “AF 9-12” (NEONOL AF 9-12 oxyethylated
monoalkyl phenol) with mass concentration of 4%; (3) water + surfactant “OP-10” (auxiliary material
OP-10 product of treatment of a mixture of mono-and dialkylphenols with ethylene oxide) with mass
concentration of 1%; (4) water + surfactant “Sodium DS” (sodium dodecyl sulfate) (0.1% mass). For all
aqueous solutions, surfactant concentrations exceeded the critical concentration at which micelles are
formed. These concentrations were taken to avoid a study on the effects of concentrations in this article
due to the large amount of experimental data. The effect of concentrations will be presented in the
next work.

For measuring the velocity field in a horizontal section of the droplet, the Particle Image Velocimetry
method was used. All measurements using PIV were carried out only in the horizontal section of the
sessile drop (Figure 1). The horizontal measurement section of drop 2 was at a distance of 0.15–0.2 mm
from the substrate surface. To measure the instantaneous velocity fields, a double solid-state Nd:YAG
laser Quantel EverGreen 70 was used, which had the following main parameters: wavelength—532 nm,
repetition frequency—4 Hz, and pulse energy—70 mJ. For the formation of the laser sheet, cylindrical
lenses with an opening angle of 22◦ were used. For the purposes of the laser sheet positioning,
an optical mirror was used. Registering images of drops required the camera ImperX IGV-B2020M with
basic settings: image resolution—2048 × 2048 pix, frequency of shooting—4 fps, and bit width—8 bit.
Nikon macro lens (200 mm f/4 AF-D Macro) was also used. To process experimental data on the velocity
field inside drop 2, the software Actual Flow with software packages PIV was used. The plane of the
laser sheet was parallel to the wall and was at a height of 0.15–0.2 mm from the wall surface. Since the
contact angle of the drop was close to the right angle, the value of the angle α corresponded to 85–87◦.
As a result, the error of the drop’s curvature practically did not influence the results of measuring the
instantaneous velocity field. The maximum error in measuring the average velocity of the liquid in a
given horizontal section of the drop, taking into account the above-mentioned measurement features,
did not exceed 15–20%.

When processing experimental data on instantaneous velocity fields inside drop 2, three types of
velocity were determined:

(1) Umax—absolute maximum value;
(2) Umax(20)—maximum value resulting from averaging over 20 maximum values;
(3) Uaver—average absolute value.
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3. Results and Discussion

3.1. Velocity Field in Sessile Water Drop, Located on a Heated Wall

Drop 2 evaporated in the mode of constant contact radius (CCR). The fall of the second small
droplet 1 did not lead to a change in the radius R02 of sessile drop 2 (R02 = const). Figure 2a presents
experimental data for velocities in the water drop 2 (initial volume of drop 2 (V02) is 40 µL; and the
wall temperature Tw = 80 ◦C).
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Figure 2. (a) Change of characteristic velocities Umax, Umax(20), and Uaver in the horizontal section
of the water drop 2 (V02 = 40 µL; Tw = 80 ◦C); (b) change of characteristic velocities Umax, Umax(20),
and Uaver in the horizontal section of sessile drop 2 at droplet 1 falling (V02 = 40 µL; V01 = 2.5 µL;
TW = 80 ◦C).

The velocities Umax, Umax(20), and Uaver were measured by PIV. The time t = 0 corresponds to
that when drop 2 spread along the hot wall, and the radius of the base of drop 2 R02 was established
constant. The experimental data in Figure 2a were obtained without the small droplet 1 falling.
The maximum value of the average velocity Uaver is 7.2–7.5 mm/s and corresponds to the time close
to t = 0.2–0.5 s (the initial time of placing the cold drop 2 with a temperature of 20 ◦C on a hot wall).
The maximum value Uaver was recorded at the initial moment, since this time corresponded to the
maximum temperature difference (∆Ts) on the free surface of the drop (∆Ts = Tw − T0 = 80 − 20 = 60 ◦C,
where Tw is the wall temperature, and T0 is the initial temperature of droplet 1). The thermal Marangoni
number (Equation (1)) is:

MaT = (∆Tsh/µa)·(dσ/dTs), (1)

where ∆Ts is the temperature gradient on the liquid, σ is the surface tension coefficient for water-air,
h is the drop 2 height (h = h02 = 2.6 mm), µ is the dynamic viscosity of water, and a is the thermal
diffusivity of water. The Rayleigh number (Equation (2)) is:

Ra = gβ∆Ts(h)3/νa, (2)

where ν is the kinematic viscosity of the water, β is the coefficient of thermal expansion, and g is
the gravity acceleration. Indeed, the equation of motion is nonlinear. The convection introduces
nonlinearity. However, within the limits of the experimental error it is possible to carry out a qualitative
assessment in a linear approximation. Let us consider the total convective velocity as a sum of
individual components. Let us make an approximate estimate for Uaver [32,33,46] between the average
velocity in drop 2 and the Marangoni and Rayleigh numbers (Equation (3)):

Uaver = UMT + URa = kT(MaT + Ra) (3)
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where the empirical constant kT determined from experimental data is 0.15·10−7 (m/s).
This linear approximation is quite justified, since the Rayleigh number is much less than the Ma

number, and the nonlinear velocity term must be significantly less than the total value of Uaver.
Quasi-linearity also follows from quasi-stationarity and linear superposition of forces. This does

not take into account the shape of the drop, the contact angle, or the number of vortices in the drop.
However, it is currently impossible to accurately model the convection field inside the drop, since the
noticeable suppression of free convection due to surfactant on the liquid surface is not taken into
account. The influence of surfactant leads to a tens of times underestimation of the theoretical value
of the free convection velocity in the water drop, compared to the experiment [21,22]. A decrease in
the convection velocity is also observed at low concentrations of alcohol [3]. The empirical constant
kT is obtained by generalizing experimental data and indirectly takes into account the influence of
surfactant, which allows applying Equation (3) to approximate the value of the average convection
velocity not only in the drop, but also in a thin layer of a single-component liquid. For the case of
solution, an additional term associated with the action the solutal Marangoni number appears.

The velocity value drops rapidly and already in the first 3–5 s enters the quasi-stationary level.
Such a rapid decay would be impossible if the nonlinear member was comparable with the average total
value. This velocity field would be extremely unstable, which does not correspond to the experimental
data. However, it is impossible to estimate experimentally the nonlinearity because the total error in
determining the calibration coefficient kT will exceed 10–15%. In addition, nonlinearity can play a
significant role in the theoretical solution of the differential equation. The considered approach applies
an estimate based on experimental data, rather than the theoretical solution. In this case, the UMT value
includes the effect of Ra, since the buoyancy in drop 2 is always present along with the thermocapillary
convection. Thus, the kT coefficient and the Uaver include nonlinearity. Since kT is determined at a
significant temperature difference, this nonlinearity is close to the maximum, and the decrease of ∆Ts

will only lead to a decrease in the role of nonlinearity.
Taking into account the linear approximation (Equation (3)), we obtain the value

Uaver = kT(MaT + Ra) = 0.15·10−7(410,000 + 57,000) = 0.007 m/s = 7 mm/s (to calculate the MaT and
Ra numbers (Equations (1) and (2)) we use the following values: h = 2.6 mm, ∆Ts = 60 ◦C,
dσ/dT = 0.17·10−3 (Nm−1K−1), a = 16.3·10−8 (m2

·s−1), µ = 0.4·10−3 (Pa·s), β = 0.35·10−3 (K−1).
The experimental value of maximum Uaver is 7.2–7.5 mm/s (Figure 2b), which closely corresponds to the
calculated value (7 mm/s). Some discrepancy may be due to inaccuracy of measurement of drop 2 height
and the error of determining the coefficient in the formula for Marangoni. In addition, the velocity
value in a particular section is not exactly equal to the average volume velocity. Therefore, the velocity
will be slightly different in different sections. It is also difficult to determine with high accuracy the
average temperature difference ∆Ts for the initial time moment (t = 0–2 s), since during this time period
the temperature distribution Ts on the drop surface is highly uneven. In addition, the wall temperature
Tw under drop 2 also has a highly unsteady character for t = 0–2 s.

As you can see from Figure 2a, the velocities Umax, Umax(20), and Uaver are greatly reduced during
the first 5 s because of the liquid heating. After positioning the drop on the heated wall during the first
3–5 s, the temperature of the drop surface Ts increases from temperature of the external air of 20 ◦C to
52–55 ◦C (Figure 3). Further, the temperature of drop 2 surface Ts varies moderately, i.e., Ts values
continuously increase, and the difference ∆Ts (Figure 4) on the contrary, continuously decreases.
These changes are slow. Therefore, the problem can be considered for t > 5–10 s as quasi-isothermal
and quasi-stationary.
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3.2. Velocity and Temperature Field for Sessile Water Drop after the Fall of Another Droplet of Water

Figure 2b shows experimental data for the case when the small cold droplet 1 of water falls
vertically on the sessile drop 2 of water located on a heated wall. The fall of droplets in all experiments
occurs approximately in 6–7 s after placing the large drop 2 on the heated wall. For the time t = 6–7 s,
the velocity is approximately constant, and the temperature difference before falling between the wall
and the interface is approximately ∆Ts = 12–14 ◦C. As the graph shows, the interaction of the two drops
has led to a sharp jump of the average velocity up to 7.2 mm/s. After about 2.5 s after the small droplet
1 falls, Uaver takes a value corresponding to the velocity before the fall, i.e., about 1–1.2 mm/s. Usually,
estimates in calculations and experiments are given for the maximum velocity. From Figure 2b it can
be seen that the maximum velocity Umax is several times higher than the average Uaver. The value
of the maximum velocity strongly depends on the method of its determination, i.e., there can be no
clearly defined method for calculating the extremum due to significant unsteadiness of the process and
random behavior for the instantaneous velocity vector. In these studies, the main focus is on Uaver,
since this velocity is used for qualitative and quantitative approximations (a relationship is established
for free convection velocity, buoyancy and thermocapillary forces). However, the empirical coefficient
has been obtained earlier for the average velocity in the drop Uaver.

To describe the Marangoni flow, it is important to know the change in the drop surface temperature
Ts and the temperature difference ∆Ts with time t. Figure 3 shows experimental data on the change in
the average temperature for the entire drop surface, which was determined over the entire thermal
field at the time under consideration. The average temperature was determined by ten different
circles drawn inside the drop interface. This algorithm corresponded to the software. The circles
were drawn at a certain distance from the contact line of the drop to exclude the influence of the wall.



Appl. Sci. 2020, 10, 4414 9 of 25

The average temperature was determined for each circle. The average surface temperature of the drop
was calculated as the average value for ten circles. The error of averaging using this method was less
than the measuring error of the thermal imager. The graph of changes in temperature Ts consists of
two modes: rapid growth of Ts over time during the first 5–7 s after placing the drop on the hot wall,
and a slow increase in the temperature of the free liquid surface for t > 7 s (quasi-stationary thermal
mode). The fall of the cold small droplet 1 on the sessile hot drop 2 is realized at the very beginning
of the quasi-stationary mode. Based on experimental data for the Ts field, a graph of the change in
∆Ts over time is constructed (Figure 4). There the temperature difference ∆Ts = Tw − Ts is defined
as the average value of the temperature difference for the entire surface of drop 2 (the Ts values are
taken from the graph in Figure 3). It is obvious that the modes of change of ∆Ts coincide with Figure 3.
Thus, based on the data in Figure 4, the maximum values of thermocapillary forces and buoyancy
forces will correspond to the first few seconds after placing drop 2 on the wall. The excess of ∆Ts almost
three times for the initial period, in comparison with the quasi-stationary thermal regime, leads to a
three-fold increase in the convection velocity for the initial period of time in contrast to t > 7 s.

Figure 5a gives the temperature field of the surface of drop 2 using the thermal imager. On the
basis of the thermal images (Figure 5a), the hottest area of drop 2 surface is in its center, and when
moving towards the contact line Ts decreases (except for a very narrow area near the contact line).
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Figure 5. (a) Thermal image of water drop 2 interface (MaT—the thermal Marangoni number, t = 5 s);
(b) the direction of characteristic velocities for the two limiting cases of interaction of drops (the joint
influence of dynamic and thermal factors); (c) velocities in the horizontal section of sessile drop 2
(V02 = 40 µL; V01 = 2.5 µL; Tw = 20 ◦C).

The direction of the temperature gradient cannot be related to the measurement error of the
thermal imager, i.e., to the effect of the wall. The drop 2 height of 2–3 mm is much higher than the
lowest possible height, when there is an effect of the wall on the infrared radiation for the water
layer [47] (the water layer thickness should be no less than 0.3–0.5 mm). Even for the specified small
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height of the liquid, the effect will also be negligible. The direction of rotation of the liquid in the drop
and the value of the average velocity depend on the ratio of forces: buoyancy (Ra), surface force due to
the temperature gradient on the free surface of the drop (MaT) and the friction force. The direction of
rotation will be determined by the value and the direction of Ra and MaT. Then, the thermal Marangoni
flow (MaT) will be directed from the center of drop 2 to the contact line (towards the greater surface
tension of water σ) (Figure 5a).

It is important to note that in this work the direction of the temperature gradient on the interface
and of the Ma do not coincide with the generally accepted ones, i.e., from edge to center. The flow
direction towards the center of drop 2 occurs with weak convection, i.e., when the conductive heat
transfer plays a determining role. In this case, the coldest point on the surface of the sessile drop 2
will correspond to its center. Then the maximum surface tension will also take place in the central
part of drop 2 surface. In the present work, convection significantly exceeds the conductive transfer
and determines the direction of the liquid rotation. At the initial moment of stretching drop 2 on the
surface of the hot wall, buoyancy determines a certain direction of rotation, which afterwards remains.
This direction of circulation is not caused by the error of the thermal imager, as indicated above.

Figure 5b shows a diagram of velocity directions for the following options: U02 and UMT. The pulse
from the falling droplet 1 (mU01) is completely transmitted to the sessile drop 2 on a hot wall.

Let us consider the factors that can lead to free convection in the sessile heated drop after the
small cold drop falls. After falling, a pressure jump occurs in the bottom surface of the sessile drop [48].
The duration of the pressure surge is microseconds. In the present work, measurements of the pressure
inside the drop were not performed. Further, a transition process is implemented, when an excess of
pressure leads to convection inside the drop and to a change in its shape, as well as to fluctuations in
the free surface of the sessile drop. These factors are called dynamic. Since the pressure jump and
interaction of elastic waves inside the droplet last for microseconds, the action of viscosity forces can
be neglected during this time. Changes in the shape of the large drop when two drops interact can be
neglected as well, since the contact line of the drop remains stationary, and the volume of the small
falling drop is much smaller than the volume of the sessile drop. One can also neglect changes in
temperature due to deformation of the free surface of the drop caused by fluctuations. One dynamic
factor remains: the change in the static pressure field and the organization of liquid rotation in the
sessile drop 2 after droplet 1 falls. To date, there are no analytical and numerical solutions that would
allow modeling all these factors. In addition, one can also add another factor: the organization of many
vortices inside the drop due to the instability of free convection inside the drop 2. In connection with
the above, experimental data on convection, as well as simple estimates that would allow assessing the
role of key factors in the transfer of heat and momentum in the sessile drop, are of interest. It should
be noted that this work is not theoretical and does not aim to obtain strict estimates. The basic idea of
estimates is quite simple. As a result of the interaction of two drops, convective motion is realized due
to the dynamic factor (discussed above) and the thermal factor: the appearance of a short-term local
temperature difference on the surface of the large drop. If simplified simulation of convection due to a
temperature jump in accordance with Equation (3) corresponds satisfactorily to the experimental data,
then we can assume that the dynamic factor has a negligible influence at a set falling height of droplet
1 and the volume of the falling drop.

Figure 5c provides characteristic velocities for the specified isothermal case (T02 = T01 = Tw = 20 ◦C).
As can be seen from the graph, after the fall of the small droplet 1, in large drop 2 there was a jump of
Uaver (UD) only by 0.4 mm/s.

The direction of the Marangoni force (MaT) in Figure 5b is shown before the droplet 1 impact.
After the droplet impact, the direction of the MaT will change to the opposite direction (the coldest
place of Ts will correspond to the center of drop 2). Then, the direction velocities from the dynamic
and thermal factors will be the same. Thus, the total influence of thermal and dynamic factors leads to
the velocity Uaver = UMT + UD = 7 + 0.4 = 7.4 mm/s. The obtained calculated value coincides with the
experimental one (7.2–7.5 mm/s in Figure 2b). At that, the role of the dynamic factor is only 5–6%.
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Since the predominant effect is exerted by the thermal factor, it is important to consider the features
of the thermal field change on the surface of sessile drop 2 immediately after the fall of the second
droplet 1. For this purpose, the thermal imaging measurements were carried out. It was important
to determine how quickly the temperature gradient on the surface of the large drop 2 falls with time
(after the fall of droplet 1). The maximum gradient ∆Ts = 60 ◦C should appear immediately after the
interaction of drops.

Figure 6a shows the velocity fields (PIV measurement) at the interaction of two drops in isothermal
conditions (t = 0 s corresponds to droplet 1 falling time). The non-circular horizontal section of drop 2
(Figure 6a,b) is caused by the appearance of “blind spots” due to the focusing of the laser sheet by
the drop. Such zones were “disguised” in order to avoid the appearance of erroneous vectors in
the final velocity field. As a result, the velocity field is asymmetric. The cross-correlation algorithm
for calculating the velocity used in this work implies splitting the image into elementary regions
(64 × 64 pix regions were used) and finding the maximum of the correlation function in each region.
At the same time, small local peaks of luminosity appeared periodically in the image of drop 2 due to the
reflection of the laser from a large group of tracers. There were local peaks of velocity. When analyzing
the results of experiments, such peaks were not taken into consideration. Figure 6b shows images of
drop 2 before and after lightening the image in the image editor. In Figure 6b, the outline of drop 2 is
clearly visible (highlighted with a red line).

Figure 7 presents the magnified thermal pictures of the drop 2 interface after the fall of droplet 1.
At time t = 0 s there is a symmetrical temperature field (droplet 1 did not contact the surface of drop
2, droplet 1’s temperature was 20 ◦C, and for drop 2 Ts = 67–70 ◦C. The purpose of thermal imaging
measurements is to show the time of thermal relaxation (tT) after the interaction of cold and hot
drops. Already in t = 0.05 s after the merging of drops, the temperature on the free surface becomes
quasi-stationary, i.e., the time of thermal relaxation is less than 0.1 s. From the contact line of the drop to
the center of the drop, the distance on the free surface is approximately equal to lS = 5.5 mm/s. You can
estimate the velocity of the liquid on a free surface as Us = lS/tT = 5.5 (mm/s)/0.05 (s) = 110 mm/s.
The maximum value for the average velocity in drop 2 (Uaver, Figure 2b) is 7.2 mm/s. Thus, Us exceeds
Uaver approximately 16 times. This strong velocity suppression is due to the vortex formation inside
the droplet, as well as due to the viscosity. Estimating how many times the velocity on the liquid
surface (Us) at the moment of the thermal jump exceeds the thermal front velocity (Ua) due to the
molecular temperature conductivity a. Ua = a/lS = 0.03 mm/s. Then, Us/Ua = 3700. These estimates
demonstrate that the surface thermocapillary forces play a large role in comparison with molecular
transport when the thermal boundary conditions on the free surface of the liquid change sharply.
An abrupt local change in surface tension due to the temperature Ts or due to the surfactant will result
in a sharp velocity jump (Us), which will quickly attenuate in an extremely short period of time.

This conclusion is extremely important for the correct modeling of a large number of fast-flowing
phase transition processes when there is a phase boundary (liquid–gas). One of them is the plasma
spraying of the nanosurface. Temperature inhomogeneities on the surface of the melt during
crystallization will lead to high velocities on the surface of the melt (liquid). In this case, to estimate
this velocity, it is necessary to take into account the thickness of the liquid layer for calculating the
friction force.
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Figure 6. (a) Instantaneous velocity fields at the interaction of two drops (PIV measurement, starting
point t = 0 s corresponds to droplet 1 falling time, V02 = 40 µL; V01 = 2.5 µL; Tw = 20 ◦C); (b) image of
drop 2 before (left) and after (right) image lightening in the image editor (the red line indicates the
contour of drop 2).
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of droplet 1 (water).

As it is seen from Figure 7, already after 0.05–0.1 s additional cooling of drop 2, the surface will
be only by 3–5 ◦C lower than for t = 0 s. The temperature difference on drop 2’s surface in 0.05 s
will be ∆Ts = 14 + 4 = 18 ◦C, rather than 60 ◦C. According to Equation (3), an increase of ∆Ts by
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20–30% will result in a value of Uaver = 1.6 mm/s. This value is about 5 times lower than the maximum
experimental value for Uaver = 7.2–7.5 mm/s. Thus, a short-term temperature gradient for the interval
∆t = 0.01 s has led to a four-fold increase in the velocity due to thermocapillary convection. Figure 7
also shows a dotted line for the drop. After this line, the thickness of the water layer becomes less
than 0.3–0.5 mm and the Ts measurement is incorrect due to the influence of the substrate on the
temperature measurement, i.e., the Ts values are underestimated.

3.3. The Effect of Surfactants on the Velocity Field Inside Sessile Drop after an Impact of Another Small Droplet

Theoretical predictions [3,49–51] for the free convection velocity inside sessile drop 2 of water or
an aqueous solution with a low concentration of another liquid show that the numerical calculation
overestimates the velocity value tens of times compared to the experiment [3,52]. Multiple velocity
reduction in the experiment is associated with the presence of contaminants in water, which cannot
be eliminated [51,53]. The exception is an aqueous solution of alcohol with a high concentration of
alcohol [3,50]. The suppression of a coffee-ring occurs at a certain form of micron-sized particles as a
result of capillary forces [54]. It is assumed that the impurities reduce the surface tension gradient σ on
drop 2 surface dσ/dl, where l is the distance on the free surface of drop 2. Thus, even without adding
the surfactant to the liquid, there is a significant impact of natural surfactants.

There are many technical problems when the use of surfactants contributes to both the growth
and reduction of the reaction rate. For example, the addition of low-concentration methanol to oil
contributes to the control of hydrate plugs in pipelines [55–57] by lowering the hydrate formation
temperature. Surfactants in the form of SDS (sodium dodecyl sulfate) significantly increase the rate of
hydrate formation. The formation of micelles from surfactant molecules can increase the rate of hydrate
formation 700 times [58] since micelles are active centers of hydrate formation. A small concentration
of surfactants in the liquid suspension in droplet-gas suspension allows achieving small droplet sizes
and prevents the merger of droplets and the growth of their diameters.

To date, there is very little experimental data on the effect of surfactants on the velocity field inside
drop 2. Most of the works are devoted to the study of physical and chemical properties and wettability,
as well as the evaporation mode when adding surfactants [23,24]. It is extremely difficult to study the
hydrodynamics of two colliding droplets in a moving gas flow using PIV. This process can be studied
by the example of falling of small droplet with surfactant additives on the sessile drop, located on a
hot wall.

Figure 8a–c present experimental data on the effect of surfactants of the following types: AF 9-12;
4% mass; OP-10; 1% mass; and Sodium DS; 0.1% mass. The falling droplet 1 consisted of a
water + surfactant solution. Sessile drop 2 consisted of distillate. The surface MaT flow was directed
from the center of drop 2 to its edge (Figure 5b,c), sinceσ increases in the direction of the edge. In 2.0–2.5 s
after droplet 1 falling, the average velocity in the section of drop 2 enters the quasi-stationary mode, i.e.,
the velocities before and after the drop are equal. The surfaces of AF 9-12 and OP-10 did not change
the contact radius of drop 2 (the contact line of drop 2 did not shift). The surfaces of SDS led to a jump
in the contact line.

An arrow in Figure 8c indicates the time at which the diameter of the contact line increased
abruptly (approximately for 1 s) by 10–20%. The use of all three types of surfactants has shown a
significant decrease in the average velocity jump. The use of AF 9-12 and OP-10 has led to about
1.8–1.9 times decrease in Uaver(max) (for pure water Uaver(max) = 7.5 mm/s (Figure 2b), and for AF 9-12
and OP-10 Uaver(max) = 4.0 mm/s (Figure 8a,b). The use of SDS has led to the maximum suppression
of the convection velocity (the maximum jump of the average velocity Uaver(max) is 2.5 mm/s), i.e.,
Uaver(max) decreases about 3 times. A stronger decrease of σ for water + SDS (Figure 8c) has led to a
non-equilibrium of the contact line of drop 2.
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Figure 8. (a) The behavior of Umax, Umax(20), and Uaver at falling of droplet 1 (V01 = 2.5 µL;
water + surfactant AF 9-12; 4% mass) on sessile drop 2 (V02 = 40 µL; Tw = 80 ◦C; water); (b) the
behavior of Umax, Umax(20), and Uaver at falling of droplet 1 (V01 = 2.5 µL; water + surfactant OP-10;
1% mass) on sessile drop 2 (V02 = 40 µL; Tw = 80 ◦C; water); (c) the behavior of Umax, Umax(20), and Uaver

at falling of droplet 1 (V01 = 2.5 µL; water + surfactant Sodium DS; 0.1% mass) on sessile drop 2
(V02 = 40 µL; Tw = 80 ◦C; water).

3.4. Instantaneous Velocity Fields in a Horizontal Section of Sessile Drop

It is quite difficult to measure the velocity field directly at the moment of the fall (for example,
at t = 0.01–0.1 s) because of the extremely fast change in the direction of the vectors in time and because
of the rapid change in the velocity in time. In Figure 9, time t = 0 s corresponds to the time of drops’
contact. Accordingly, when t is less than zero, there is no drop impact, and for t > 0, the image after the
interaction of drops is given.
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water (droplet 1) + water (drop 2).

After the fall of the droplet, on the surface a predominant direction of velocity appears, resulting
in a single main vortex (t = 0.75 s), the size and energy of which substantially exceed those of other
smaller vortices (t = 0.25–0.5 s). In the vicinity of the wall (t = 0.75 s), the velocity vectors (in the
horizontal plane) have the same direction (parallel to each other). In this case, the diameter of the
vortex coincides with the diameter of the drop. It is obvious that near the free surface of the drop,
the direction of the liquid rotation will change to the opposite. This flow pattern is fundamentally
different from Figure 6a, when even a very small value of We leads to unstable rotation of the liquid and
to fragmentation of the vortices. Already in 0.25 s, several smaller vortices are formed. It is obvious
that a significant increase in the value of We will lead to an increase in the number of small vortices.
Thus, thermocapillary forces (Figure 9) lead, on the contrary, to stable rotation. This conclusion is very
important, as the Marangoni forces will lead to the maximum convection velocity. The thermal factor
has a much greater effect (compared to the dynamic factor) due to the stability of the surface flow in
the presence of thermocapillary forces.

It is important to emphasize some limitations related to stability. The aqueous solution of alcohol
leads to instability of the surface flow and to chaotic behavior [3], i.e., in this case, surfactant in the
form of alcohol forms an uneven field of concentrations on the drop surface. Below we will focus on
this property, which is very important for correct modeling.

In Figures 10–12, sessile drop 2 consisted of water and the falling droplet 1 consisted of an aqueous
solution (water + surfactant). As can be seen from Figures 10–12, the velocity field, after the droplet
fall, becomes uneven. Against the background of the main direction of motion there are individual
vortexes that change their position and direction of rotation. The absence of a symmetrical toroid in
the drop and the presence of many small vortices, as well as a rapidly changing pattern of the velocity
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field in the drop section is probably due to the nonuniform distribution of surfactant concentrations on
the drop 2 surface, which leads to different surface tension gradients dσ/dl (uneven distribution of σ on
the free surface will result in gradients ∆σ/∆l).
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For approximately 2 s after the droplet fall, the average velocity in the section continuously
decreases. After t = 1.75 s (Figure 11) the velocity increases slightly since the amplitude of the average
value is commensurate with the random pulsation value. The flow inside drop 2 is unstable, and the
vortex is continuously redistributed from one area to another.
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Figure 11. Velocity field in horizontal section of drop 2; V01 = 2.5 µL; V02 = 40 µL; Tw = 80 ◦C;
T01 = 20 ◦C; water (drop 2), water + surfactant AF 9-12 (NEONOL AF 9-12: oxyethylated monoalkyl
phenol) (droplet 1).

Let us estimate the time for the spread of surfactant molecules over the surface of sessile
drop 2. The diffusion coefficient Ds on drop 2 surface for water–SDS is assumed to be the same
as in the volume ~ 10−10 [59]. The characteristic diffusion time on drop 2 surface (diffusion time
of relaxation) tD = l2/Ds = (5.5·10−3m)2/10−10 = 30·104 s (l—distance on drop 2 surface). Based on
the estimates of the diffusion time, it turns out that the rate of spread of surfactant molecules on
drop 2 surface is determined not by diffusion, but by the surface flow of Marangoni, which causes
convection inside drop 2. Then, the convective relaxation time tc(s) when using surfactant will be
tc(s) = l/Uaver= 5.5 mm/1.5 mm/s = 2.8 s (where the average velocity Uaver (Figure 8c) for the time interval
∆t = 4–5 s corresponds to 1.4–1.5 mm/s. Thus, already in 2 s after the fall of droplet of water with
surfactant, a surface layer of surfactant should be formed near the contact line of the sessile drop
2. The contact line should move in 2–3 s, and in reality, the increase in the contact radius occurs
approximately 7 s after the fall, i.e., with a noticeable delay (the characteristic time tm is 2–2.5 times
more than tc(s)).
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Figure 12. Velocity field in horizontal section of drop 2; V01 = 2.5 µL; V02 = 40 µL; Tw = 80 ◦C;
T01 = 20 ◦C; water (drop 2), water + surfactant SDS (sodium dodecyl sulfate) (droplet 1).

To explain such a noticeable delay, an additional experiment was conducted. Several metal
particles with a diameter d = 0.1–0.2 mm were placed on a surface of a water drop after its positioning
on a hot wall (Tw = 80 ◦C). The surface Marangoni flow and the capillary forces led to the displacement
of the particles that were monitored using video cameras at multiple magnification of the image.
Figure 13a shows the trajectory of the particle in time.

In the presence of a toroid inside the drop, the motion of the particle must be realized along
the trajectory 1 (red line). The real trajectory of motion according to experimental measurements
corresponds to trajectory 2 (blue line). The direction of the velocity vector has a general tendency
towards the center of the toroid. As noted earlier, the Marangoni flow is directed from the center of
the toroid to the edge of the drop. Thus, the particle motion due to capillary forces is impeded by
Marangoni forces and the friction force of the liquid. Therefore, the capillary force exceeds the sum of
Marangoni forces and friction.

For points of trajectory 2, the velocity values are given in mm/s. When the particle moves
from the drop edge to the center and along the quasi-straight line, the acceleration occurs, and the
particle reaches the maximum velocity (2.9 mm/s). As a result of the turn, the velocity decreases
almost three times. When moving in a direction parallel to the contact line, the velocity is almost
constant (1.2 mm/s). When approaching the center of the toroid, the velocity is reduced to a minimum
value (less than 0.5 mm/s). The average particle velocity for the entire trajectory is 1.5–2.0 mm/s,
which closely corresponds to the velocity value in the drop cross section Uever = 1–1.2 mm/s (Figure 2,
t > 5 s). The velocity on the drop surface according to numerical calculations) is about 2 times
higher than the velocity in the horizontal section, which is close to the wall. The results of the
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trajectory measurement have shown an amazing result. The real trajectory is curved and has a
random character. Indeed, there is a general tendency of particle displacement to the center of the
drop. However, the particle motion is superimposed with random oscillations, which are caused by
three-dimensional vortices inside the drop. These vortices move from one place to another, change the
direction of rotation and interact with each other. As a result of such chaotic trajectory, the length of
the entire trajectory from the contact line of the drop to its center will be 2–3 times longer than for the
shortest line on the curved surface. As a result, the time tm = 3tc(s) = 6 s, which corresponds well to
the experiment.
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Figure 13. (a,b) Trajectory of the particle on the drop surface: 1, 2—particle trajectory; 3—the area
of the toroid center; (c) particle velocity on the drop surface: 1, 2—experiment; 3—modeling by (4);
(d) forces acting on the particle.

Figure 13b illustrates the trajectories of the other two particles. The initial position of the particles
was in the vicinity of the contact line. The particles moved to region 3, where the toroid has its center.
In region 3, the liquid velocity is close to zero, since the flow lines turn around, and the velocity changes
direction by 90◦ (the velocity is directed inside the drop). Figure 13c provides experimental data for the
particle velocity on the drop surface (curves 1 and 2). The distance l corresponds to the drop surface
(l/R = 0 refers to the contact line of the drop, l/R = 1 for the center of the toroid, where the liquid velocity
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is zero, l is the projection on a straight line (for example, on line 1 in Figure 13a), i.e., l is not the length
of the particle trajectory).

The movement of the salt crystal near the contact line under the action of capillary force is
considered in [60]. To date, there is only an empirical expression describing the movement of a
micron-sized particle on the surface of the drop [61].

Let us consider the equation of motion of a particle in a simple model approximation, taking into
account basic forces applied to a particle (Figure 13d (the Stokes force (Fst) and the capillary force (Fca)).
The acceleration of a particle is determined by the equality of forces in accordance with (4):

mdVp/dt = Fca − Fst = 2σS1((R2 − R1)/R2R1) − 6πrµ(Vp − Vl), (4)

where m is a particle mass; Vp is the velocity of a particle; σ is the water surface tension; R1 and R2 are
the radii of curvature of the meniscus; S1 is the area of a particle, corresponding to the meniscus; r is
the radius of the Al2O3 particle (r = 0.1 mm); µ is dynamic viscosity; and Vl is the fluid velocity at the
drop surface. The boundary conditions of Equation (4) are at l = 0 (the location on the contact line)
∆R = R1 − R2 = max, Vl = 0; at l/lmax = 1 (the center of the toroid), the difference ∆R = R1 − R2 = 0,
Vl = 0. The liquid velocity from zero value reaches the maximum (Vl = 3.5 mm/s in accordance with
the experimental data) and then tends to zero when approaching the center of the toroid). The curve of
velocity change Vl (from zero to maximum value of 3.5 mm/s and from maximum to zero value) was
set as a cosine dependence, which closely corresponds to the known theoretical calculations for the
velocity on the surface of the drop [21,22]. Estimates show that the thermocapillary force is several
orders of magnitude greater than buoyancy and gravity due to the smallness of the particle size. Thus,
to describe the particle motion on the free liquid surface, it is sufficient to consider the movement due
to curvature, changes in σ over the surface, and also due to the Marangoni flow (taking into account
the change in ∆Ts over the surface of drop 2). Changes in ∆Ts were taken from the experimental data
of the thermal imager, and taking into account that on the edges of drop 2 the temperature of the free
surface of the liquid is approximately equal to a predetermined wall temperature (Tw).

In approximate calculations, it is assumed that the value of ∆R varies depending on the cosine.
The surface flow of the liquid, in accordance with the experimental data, is directed against a particle
motion, i.e., from the center of drop towards the drop contact line (Vl < 0). Curve (3) in Figure 13c is
calculated according to Equation (4). Theoretical calculation was performed along the trajectory of the
particle 1 (Figure 13a), i.e., on the shortest distance on the drop surface from the edge of the contact
line to the center of drop. Since it was extremely difficult to experimentally measure the difference ∆R
due to its low value, it was necessary to base the calculation on such a value of the curvature radii
difference that corresponded to the maximum particle velocity of 3–4 mm/s. The simulation shows
that the agreement with the experiment is achieved when the relative difference between the values of
the radii ∆R1 = (R2 − R1)/R1 is only a fraction of a percent.

Thus, the solution is very sensitive to changes in wettability and small surfactant additives can
lead to a noticeable change in the particle velocity.

As it is seen in Figure 13c the theoretical curve reflects the qualitative behavior of the experimental
curve. The maximum value of the calculated velocity is close to the experimental values. The segment
on the abscissa axis l/R, corresponding to the velocity extremum and plotted from the coordinate
origin, is approximately l/R = 0.3, the derivative dVp/dt = max at l/R = 0, since ∆R = max; the derivative
dVp/dt = 0 at l/R = 1, since ∆R = 0. The difference between experiment and simulation for the section
of 0.3 < l/R < 0.8 is quite obvious. The real trajectory of the drop is very different from a straight line.
At the time of the trajectory half turn, the drop velocity falls several times. The specified interval has
several points of turning. As a result, the velocity in this interval will be significantly less. To describe
the trajectory rotation, it is necessary to take into account the three-dimensional unsteady flow inside
the drop. The toroid is imposed by random circular movement. The vortices in the water drop change
position and direction, thereby changing the direction of the particle.
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The proposed calculation model also describes the experimental data of [61], in which the velocity
of a particle with a diameter of 20 µm at a distance from the contact line of 250 µm is approximately
(2–3)·10−4 mm/s. The calculation by Equation (4), taking into account the area S1 for the specified
diameter (20 µm) and neglecting the Marangoni forces, also gives the maximum velocity value of
(2–3)·10−4 mm/s. In fact, the Marangoni flow without such particles develops the liquid velocity on
the drop surface of 0.001–0.01 mm/s. This velocity exceeds by 10–100 times that of capillary motion.
Obviously, the particles have suppressed the Marangoni flow in [61].

Figure 14 illustrates experimental data for the average velocity Uaver in horizontal section of drop
2 (V02 = 40 µL; Tw = 80 ◦C).
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velocity in drops at different heating schemes (in particular, in [62] the conditions of convective 
heating were considered, and this work studies the conductive heating, but taking into account the 
fall of the second droplet 1). The research on the influence of heating conditions is deemed to be 
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4. Conclusions 

Figure 14. Velocity Uaver in the horizontal section of sessile drop 2 (V02 = 40 µL; Tw = 80 ◦C);
(1 and 2)—without the fall of small droplet 1; (3–8)—in 3 s after the fall of small droplet 1 with
temperature of 20 ◦C (sessile drop 2 consists of water). Composition of drops: 1—sessile drop 2 (water);
2—sessile drop 2 (water with graphite particles); 3—droplet 1 (surfactant AF 9-12 (4%), V01 = 5 µL);
4—droplet 1 (surfactant AF 9-12 (4%), V01 = 2.5 µL); 5—droplet 1 (surfactant OP-10 (1%), V01 = 2.5 µL);
6—droplet 1 (surfactant OP-10 (1%), V01 = 5 µL); 7—droplet 1 (surfactant SDS (0.1%), V01 = 5 µL);
8—droplet 1 (surfactant SDS (0.1%), V01 = 2.5 µL); I is the interval of measurement errors and I is the
interval of measurement errors relative to the dotted horizontal line (average velocity value over four
repeated experiments).

For each specific type of mixture, four repeated experiments have been carried out. The time of
measuring Uaver in 3 s after droplet 1 falls corresponds to the quasi-stationary regime, i.e., when Uaver

does not change over time. Previous experiments have investigated the behavior of Uaver immediately
after the fall of droplet 1 (within the first two seconds after the fall). The purpose of these experiments
is to study the influence of dynamic and thermal factors. Three seconds after the drops’ interaction,
only the surfactant effect remains on the surface of the sessile drop 2. Experiments with drops of
different compositions in Figure 14 are compared with drop 2, which consists of pure water (1). Adding
of graphite particles has led to insignificant decrease in Uaver (2). The strongest effect of suppression of
the average convection velocity is specific when applying surfactant AF 9-12 (3 and 4 in Figure 14).
Surfactant SDS also decreases free convection in drop 2 (7 and 8 in Figure 14). The use of surfactant
OP-10 had almost no action on Uaver (5 and 6 in Figure 14). Falling droplet 1 (water + surfactant)
passed the surfactant molecules to sessile drop 2. As a result of the fall, dσ/dT decreased with respective
decrease in the rate of convection inside drop 2.

It should be added that the performed experiments complement the previously developed ideas
about the influence of a group of factors (thermal, dynamic, geometric) on the convection velocity in
drops at different heating schemes (in particular, in [62] the conditions of convective heating were
considered, and this work studies the conductive heating, but taking into account the fall of the second
droplet 1). The research on the influence of heating conditions is deemed to be promising, for example,
heat transfer (convective, conductive, radiative, and mixed) on the scales of the impact of these factors.
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4. Conclusions

Experimental studies on the interaction of the falling droplet 1 and sessile drop 2 on a hot wall
have been conducted. The temperature of the falling droplet 1 was 20 ◦C and the wall temperature
was 80 ◦C.

The simultaneous influence of several key factors, dynamic and thermal, as well as the influence
of surfactants, has been considered for the first time. The dynamic factor was related to the inertial
forces and the pressure jump inside drop 2. The heat factor was associated with an increase in the
surface temperature gradient after droplet 1 fall.

The novelty of the work is that a large influence of local temperature and concentration
nonuniformity on the generation of intense convection inside the droplet is demonstrated. It has been
shown that in the moment of interaction of drops there was a 7–8 times growth of velocity Uaver inside
drop 2, even with a very low velocity of droplet 1 falling (0.32 m/s) and when the Weber number
We = 1.3. At that the influence of the dynamic factor was negligible. The use of SDS has led to a
four-fold decrease in the maximum of the average velocity inside sessile drop 2.

Experimental studies of the instantaneous velocity fields inside sessile drop 2 have been conducted
using Particle Image Velocimetry. The instantaneous velocity field changes significantly after the
droplet 1 falls. Due to the use of surfactants, larger vortices become unstable and break up into smaller
ones, which randomly rotate inside drop 2. The use of graphite particles of micron size has led to
a decrease in drop 2 heating period and to a slight increase in the velocity at the initial moment of
interaction of drops (velocity increase by 10–20%).

Measurement of the velocity field for a quasi-stationary regime, where the velocity in drop 2 has
practically ceased to change with time (i.e., for a time greater than that of dynamic relaxation after the
fall of small droplet 1), has shown that a significant velocity suppression (approximately two times) is
observed only when using the surfactant (AF 9-12).

The studies have important practical applications. To intensify heat and mass transfer in a sessile
or suspended drop, local heating or cooling of the free surface can be used. To suppress convection
in a liquid during the interaction of two drops, a surfactant can be used for one of the drops. Thus,
depending on the specific task, it is possible to both intensify and suppress heat and mass transfer in
a drop.
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