
applied  
sciences

Article

Precise Channel Estimation Approach for a mmWave
MIMO System

Prateek Saurabh Srivastav 1,2 , Lan Chen 1,* and Arfan Haider Wahla 1,2

1 Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China;
prateek@ime.ac.cn (P.S.S.); irfan.hayd@gmail.com (A.H.W.)

2 School of Electronic, Electrical and Communication, University of Chinese Academy of Sciences,
Beijing 100049, China

* Correspondence: chenlan@ime.ac.cn; Tel.: +86-010-82995754

Received: 7 May 2020; Accepted: 24 June 2020; Published: 26 June 2020
����������
�������

Abstract: Channel estimation is a formidable challenge in mmWave Multiple Input Multiple Output
(MIMO) systems due to the large number of antennas. Therefore, compressed sensing (CS) techniques
are used to exploit channel sparsity at mmWave frequencies to calculate fewer dominant paths in
mmWave channels. However, conventional CS techniques require a higher training overhead for
efficient recovery. In this paper, an efficient extended alternation direction method of multipliers
(Ex-ADMM) is proposed for mmWave channel estimation. In the proposed scheme, a joint optimization
problem is formulated to exploit low rank and channel sparsity individually in the antenna domain.
Moreover, a relaxation factor is introduced which improves the proposed algorithm’s convergence.
Simulation experiments illustrate that the proposed algorithm converges at lower Normalized Mean
Squared Error (NMSE) with improved spectral efficiency. The proposed algorithm also ameliorates
NMSE performance at low, mid and high Signal to Noise (SNR) ranges.

Keywords: millimeter wave; Ex-ADMM; channel estimation; beamforming; sparsity; low rank
approximations; matrix calculations

1. Introduction

In accordance with recent research trends, millimeter-wave (mmWave) communication has been
found to be a potential candidate for next-generation Wireless Local Area Network (WLAN) and
5G cellular systems [1]. mmWave has a large amount of unused bandwidth, which can provide
higher frequencies, higher spectral efficiency, and a relevant rise in channel capacity and support to
connect millions of devices with high reliability and low latency [2–7]. However, the poor scattering
nature of the mmWave channel causes path loss problems; as a result, fewer dominant paths remain
in the mmWave channel [8–10]. Therefore, the channel matrix can be reconstructed by exploiting
information from the remaining paths. In order to reconstruct the mmWave channel, the few dominant
paths remaining in the channel matrix have to be estimated at the receiver’s end. Conventional
channel estimators, such as least-square (LS) estimators and maximum likelihood (ML) estimators,
require a higher training overhead, which is not possible for any hybrid mmWave MIMO system.
Considering the hardware architecture complexities of mmWave MIMO systems, channel estimation
becomes a difficult task. In the literature, two types of approaches are used for mmWave channel
estimation. In the first approach, the mmWave channel is estimated by exploiting the sparsity of the
channel matrix in the virtual beamspace domain, whereas, in the second approach, the estimation
is performed by exploiting the low rank properties of the channel matrix in the antenna domain.
In [11–14], a compressive sensing (CS)-based channel estimation approach was used for a mmWave
MIMO system. The basic idea behind this approach is based on the technique in which estimators have
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to search for a pair angle in a predefined dictionary matrix, which further depends upon the training
information. Such estimators exploit sparsity in a predefined dictionary matrix. For high resolution,
another asymmetric approach was proposed in [15]. Under this method, atomic norm is used to
formulate the angles of arrival (AoAs)/angles of departure (AoDs), finding problems. A beam codebook
design-based approach was proposed in [16], in which, based on the information in static dictionaries,
a codebook is designed. All the aforementioned techniques are CS-based approaches. For the case
of high-dimensional training information, CS-based estimators suffer from high computational load,
which can further reduce the spectral efficiency. A matrix completion (MC)-based approach was
proposed in [17,18], in which the estimator exploits sparsity and low-rank properties of mmWave
channels by two independent procedures.

In this paper, an extended alternating direction method of multipliers (Ex-ADMM) mmWave
massive MIMO channel estimation technique is proposed for more accurate estimation rates. mmWave
exhibits some important and peculiar effects over the wireless channel, i.e., the channel experiences an
unspecified amount of spread over the angular domain due to its easy scattering nature [19]. As a result,
a jointly sparse and low-rank channel matrix in the angular domain can be obtained. This the main
motivation behind the formulation of a joint optimization problem for efficient recovery of the channel
matrix proposed in this paper. ADMM was recently proposed in [20], has received attention for its
easy implementation. Fundamentally, ADMM can exploit both the sparsity and low rank properties of
any data matrix. Researchers have found that, in many real-world applications, additional information
in a data matrix (known as side information) helps complete the matrix with few entries to obtain more
accurate estimations. Therefore, the use of side information for matrix completion and factorization
has been introduced in various research areas, like statistical signal processing, image processing,
statistical learning, computer vision and so on [21–24]. Side information is very useful to describe
the row and column entries of any matrix, and it has been further shown to reduce the complexity
of completing a matrix [25,26]. In this work, side information theory is used to obtain the optimal
solution for a joint optimization problem. The main contributions of this work are as follows:

1. A joint optimization estimation problem for a mmWave massive MIMO system based on the
Ex-ADMM algorithm is formulated. With the help of side information in matrix completion
theory, a training procedure compatible with the hybrid beamforming (HBF) structure, leveraging
the low rank and sparsity in angular domains, is designed. In Ex-ADMM, the joint optimization
problem is further divided into several subproblems, which are then solved individually.

2. An Ex-ADMM is proposed for better estimation of the channel matrix. This algorithm is originally
derived from [18,26–28], and it is more efficient than the other iterative algorithms described in
the results section. In the proposed Ex-ADMM algorithm, a nuclear norm is used for the low-rank
approximations of the channel matrix, and l1 − norm is used to enforce the sparsity, consecutively.
In addition, a relaxation factor is introduced to enhance the system performance.

Simulation results demonstrate the performance of the proposed Ex-ADMM algorithm, along
with orthogonal matching pursuit (OMP) [16], two-stage sparse representation (TSSR) [29], vector
approximate message passing (VAMP) [30] and the alternating direction method of multipliers
(ADMM) [18] in terms of normalized mean squared error (NMSE), achievable spectral efficiency (ASE)
and convergence.

This paper is organized as follows. The mmWave channel model is presented in Section 2.
In Section 3, a mmWave channel estimation problem based on Ex-ADMM is formulated. Section 4
provides the training procedure details for the proposed Ex-ADMM. A detailed description of the
proposed algorithm is provided in Section 5. Section 6 illustrates the computational complexities of
proposed algorithm with respect to OMP, TSSR, VAMP and ADMM. Simulation results and discussion,
describing the superiority of proposed algorithm over the benchmark algorithms in terms of NMSE,
ASE and convergence, are provided in Section 7. Finally, the conclusion is presented in Section 8.

Notation: We use the following notation throughout the paper. α, a, and A denote a scalar,
a vector and a matrix, respectively. AT, AH and A∗ indicate A’s transpose, conjugate transpose and
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conjugate, respectively. ‖(.)‖F, ‖(.)‖
∗

and ‖(.)‖1 indicate the Frobenius norm, nuclear norm (sum of all
singular values), and l1 − norm, respectively. The operands ◦ and ⊗ represent matrix Hadamard and
Kronecker products. vec(.) and unvec(.) represent the concatenation of columns of the matrix into
vectors and the reverse operation, respectively. Expected value is represented by E{.}. A ∈ {0, 1}M×N

indicates that A’s elements are taken independently with equal probability from the binary set {0,1}.

2. mmWave Channel Model

Let us consider a NR ×NT mmWave massive MIMO system based on the recent models described
in [5–7]. This system is equipped with NT transmitters at the base station (BS) and NR receivers
at the mobile station (MS), NS parallel data streams, and radio frequency (RF) chains, such that
NRF ≤ min(NT, NR) at the transmitter and receiver. At the transmitter, NRF chains are present,
such that NS < NRF < NT. The mmWave MIMO system shown in Figure 1 is a combination of
two consecutive joint segments: a digital MIMO baseband FBB ∈ CNRF×NS and analog RF precoder
FRF ∈ CNT×NRF . Similarly, at the receiver, the signal is processed by the consecutive joint segments
of the RF combiner WRF ∈ CNR×NRF and baseband combiner WBB ∈ CNRF×NS , respectively. In order
to get the closest estimation, the transmitter employs NBeam

T ≤ NT pilot beam patterns, denoted as
{fa ∈ CNT×1 : ‖fa‖

2
2 = 1}. Meanwhile, at the receiver end, the receiver employs NBeam

R ≤ NR pilot beam
patterns, denoted as {wb ∈ CNR×1 : ‖wb‖

2
2 = 1} [16], where a and b are the transmitter’s training

precoding vector and receiver’s training combining vector, respectively. For enabling communication,
an analog HBF [11] is used, which opens a path for the transmitter to apply a baseband precoder
by steering the beam to the receiver. The b-th received vector for the a-th transmitted beam is
determined by

yb,a = wH
b Hfaxa + wH

b ṽ (1)
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Here, xa is the pilot vector symbol emitted from the transmitter, ṽ is the observation noise,
with zero mean and σ2

ṽ
KNR variance, i.e., CN

(
0,σ2

ṽ
KNR

)
, and H ∈ CNR×NT is the channel matrix

of the mmWave MIMO system. The received vector y in Equation (1), which is expressed as

y ,
[
y1,b . . . yNBeam

T ,b

]T
∈ CNBeam

R ×1], can be written in generalized form as follows:

y = wHHfx + q (2)

Here, the combiner noise vector q = wH
b ṽ ∈ CNBeam

R ×1.
Therefore, the received signal matrix Y can be expressed as

Y = WHHFX + Q (3)

Here, the received signal matrix Y ,
[
y1, . . . , yNBeam

T

]
∈ CNBeam

R ×NBeam
T , complex combining matrix

W ,
[
w1, . . . , wNBeam

R

]
∈ CNR×NBeam

R , and precoding matrix F ,
[
f1, . . . , fNBeam

T

]
∈ CNT×NBeam

T . X ∈
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CNBeam
T ×NBeam

T and Q ∈ CNBeam
R ×NBeam

T are independent and identically distributed (I.I.D) complex
additive white gaussian noise (AWGN), with zero mean and σ2

q variance CN
(
0,σ2

q

)
. In this paper,

we assume pilot symbols are identical, so X =
√

PtKNBeam
T

, where Pt is the average transmitted pilot
power [12,16].

According to the hybrid mmWave MIMO structure, the transmitted and received matrices are
decomposed at the transmitter and receiver ends, such that F = FBBFRF, and W = WRFWBB, respectively.

Hence, Equation (3) of the received signal matrices Y can be re-written as

Y ,
√

Pt WBB
HWRF

HHFBBFRF + Q
Y ,

√
Pt WHHF + Q

(4)

Here, FRF ∈ CNT×NT and WRF ∈ CNR×NR are the transmitted and received beamforming matrices,

respectively. FBB ∈ CNT×NBeam
T and WBB ∈ CNR×NBeam

R are the transmitted and received baseband
processing matrices, respectively. W is the combiner, such that W ∈ {0, 1}NR , and F is the precoder, such
that F ∈ {0, 1}NT .

We adopted the geometric virtual model (GV) of mmWave MIMO system described in [12,17].
According to the GV model, channel H is described as

H ,
Lp∑
l=1

αl aR(Φ
(l)
R , θ(l)R )aH

T (Φ
(l)
T , θ(l)T ) (5)

Here, Lp is the total number of propagation paths, αl is the complex channel gain of the
l-th path, which can be obtained from the random complex gaussian distributions, and CN

(
0,1
2

)
.

aH
T

(
Φ(l)

T , θ(l)T

)
∈ CNT and aR

(
Φ(l)

R , θ(l)R

)
∈ CNR are the array response vectors (ARV) at the transmitters

and receivers, respectively. Φ(l)
T , θ(l)T and Φ(l)

R , θ(l)R are the elevation and azimuth AoA and AoD angles
at the transmitters and receivers, respectively. These angles are generated by Laplacian distributions,
whose means are uniformly distributed over (0,2π). The ARV of a uniform linear array (ULA) [31,32]

is described by a(θ) = 1
√

N

[
1, e−j 2π

λ dcos(θ), . . . e−j 2π
λ (N−1)dcos(θ)

]T
. Here, λ is the wavelength, d is the

antenna spacing and θ is the even function of the ARV. The channel model described in Equation (5)
can be further written in matrix form (described in a virtual beamspace representation model [33,34])
as follows:

H = ARZAH
T (6)

Here, AR ∈ CNR×NR and AT ∈ CNT×NT are the unitary matrices with the ARV of the receivers
and transmitters [33], respectively, where AR ,

[
aR (Φ1, θ1), aR(Φ2, θ2) . . . aR

(
ΦLp , θLp

)]
and AT ,[

aT(Φ1, θ1), aT(Φ2, θ2) . . . aT

(
ΦLp , θLp

)]
. By using matrix properties, we can say that AH

R AR = KNR and

AH
T AT = KNT , with IN being the N × N identity matrix. In Equation (6), Z is the sparse matrix (which

contains few virtual channel gains of greater amplitude) with dimensions Z ∈ CNR×NT .

3. mmWave Channel Estimation Problem Formulation

In this section, a channel estimation problem for a mmWave MIMO system is formulated. Without
loss of generality, matrix decomposition methods are used for the completion of a low-rank matrix
with the help of partially observed data [35,36]. By following the given conditions, Equation (6) can be
written in decomposed form as H = ARDAH

T , where D is the submatrix of Z. The optimization problem
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for the joint recovery of channel state information (CSI) matrix H and the decomposed beamspace for
the unknown sparse matrix D thereof can be described as

minmize
H,D

ΓH‖H‖∗ + ΓD‖D‖1

Subject to Ψ ◦H = HΨ and H = ARDAH
T

(7)

Here, the side information of AT and AR is used to find the missing values of matrix H. Originally,
H = ARDAH

T is the decomposed form of Equation (6). Here, the sum of the singular values of a matrix
is obtained by imposing a nuclear norm, which also represents the tightest convex lower bound for
any matrix. In this way, the low rank property of matrix H is exhibited by the nuclear norm, however,
l1 − norm bounds D to enforce the sparsity. In contrast, the weighting factors ΓH and ΓD, which depend
upon the number of propagation paths, are always considered as positive integers [35].

The positions of non-zero-unit values, which are distributed uniformly, such that Ψ =

{1, 2, 3, . . .NRNT} [28,37] in matrix Ψ of Equation (7), are chosen in a random fashion. In this way, one
can say that the matrix Ψ has M ones and (NRNT −M) zeros. The position of non-zero values in HΨ is
the same as the position of non-zero values in matrix Ψ, where matrix HΨ is the subsampled estimated
matrix, followed by matrix Ψ. The estimation error of H depends upon the estimation accuracy of
HΨ’s elements and the M non-zero values of HΨ.

4. Proposed Extended ADMM (Ex-ADMM)-Based Channel Estimation Scheme

In the following section, the proposed Ex-ADMM is described in detail. From Section 3, Equation (7)
is clearly a convex function with two objectives. Therefore, there are many possible ways to get the
global optimal solution. However, the best ways to solve the convex problem are first-order methods,
which only require the first-order information of the optimization problem. Since these methods
are computationally expensive, alternating optimization techniques (AOTs) [26] are used to obtain
the optimal solution to a convex optimization problem, due to their less complex structure and easy
handling. ADMM [20] is one very popular and efficient AOT. To solve the convex optimization problem
described in Equation (7), an extension of ADMM [28] known as extended ADMM (Ex-ADMM) is
proposed for the channel estimation of a mmWave MIMO system.

In order to solve the optimization problem described in Equation (7) by Ex-ADMM, we reformulate
the optimization problem, and two auxiliary matrices, I ∈ CNR×NT and J , I−ARDAH

T , are introduced.
As a result, the reformulated optimization problem can be re-written as,

minmize
H,I,D,J

ΓH‖H‖∗ + ΓD‖D‖1 + 1
2‖J‖

2
F +

1
2‖Ψ ◦ I−HΨ‖

2
F

Subject to H = I and J = I−ARDAH
T

(8)

The first term in the optimization problem described in Equation (8) is the side information
of the matrix, i.e., AR and AT, along with the virtual channel gain in matrix Z. The second term is
the information on subsampled virtual channel gain. The third term in the optimization problem is
described by Equation (8), and considers the discretization error, and the fourth term is the AWGN
noise. Afterwards, Equation (8) can be re-written with consideration of the augmented Lagrangian
function (ALF) as follows:

LA(H, I, D, J, P1, P2)

, ΓH‖H‖∗ + ΓD‖D‖1 + 1
2‖J‖

2
F +

1
2‖Ψ ◦ I−HΨ‖

2
F + tr

(
PH

1 (H− I)
)

+β2 ‖H− I‖2F + tr
(
PH

2

(
I−ARDAH

T − J
))
+ β

2 ‖I−ARDAH
T − J‖2F

(9)
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Here, P1 and P2 ∈ CNR×NT are Lagrange multipliers. β is the step size of Ex-ADMM and β > 0.
For the next iteration, the Ex-ADMM can split Equation (9) into six sub-equations and solve it
alternatively, i.e.,

H(l+1) = argmin
H

LA

(
H, P(l)

1 , P(l)
2 , I(l), D(l), J(l)

)
(10)

P(l+1)
1 = P(l)

1 + β
(
H(l+1)

− I(l)
)

(11)

P(l+1)
2 = P(l)

2 + β
(
I(l) −ARD(l)AH

T − J(l)
)

(12)

I(l+1) = argmin
I
LA

(
H(l+1), P(l+1)

1 , P(l+1)
2 , I, D(l), J(l)

)
(13)

D(l+1) = argmin
D

LA

(
H(l+1), P(l+1)

1 , P(l+1)
2 , I(l+1), D, J(l)

)
(14)

J(l+1) = argmin
J
LA

(
H(l+1), P(l+1)

1 , P(l+1)
2 , I(l+1), Dl+1, J

)
(15)

In Equations (10)–(15), H(l+1) is involved in every step; henceforth, H(l+1) is known as an
intermediate variable. In contrast, variables I, D and J are known as essential variables, and Lagrange
multipliers P1 and P2 are recognized as dual variables. Another ADMM algorithm mentioned in [18]
is also able to solve the optimization problem in (9) but the proposed Ex-ADMM algorithm converges
at a lower NMSE as compared to the ADMM and provides better ASE performance as well.

Basically, the Ex-ADMM algorithm is a combination of cyclical ADMM and a
relaxation factor [28,38–40]. In general, ADMM updates its order in an arbitrary way,
i.e., H→ I→ D→ J→ P1 → P2 . In contrast, the Ex-ADMM updates its order in a cyclical way,
i.e., H→ P1 → P2 → I→ D→ J . In the proposed Ex-ADMM, reordering of the ADMM is only
done to ensure the channel matrix H satisfies the first-order optimality conditions [39]; therefore,
right after the updating of H(l+1), dual variables P1 and P2 are updated and then, at last,
the essential variables I, D and J are updated. A relaxation technique, along with a relaxation
parameter, is used to relax the essential variables [41,42]. Consequently, for the relaxation of
the essential variables, we can assume that the cyclical order of dual and essential variables in

Equations (11)–(15) is a block variable, i.e., z̃(l) =
(
P̃
(l)
1 , P̃

(l)
2 , Ĩ

(l)
, D̃

(l)
, J̃
(l)

,
)
. Thus, the final relaxed

variable, z(l+1) =
(
P1

(l+1), P2
(l+1), I(l+1), D(l+1), J(l+1)

)
, can be generated as

z(l+1) = zl
− γ(zl

− z̃(l))

Here, roughly speaking, the tilde (∼) variables (i.e., P̃1
(l+1), P̃2

(l+1), Ĩ
(l+1)

, D̃
(l+1)

and J̃
(l+1)

)

are auxiliary variables, and they can be updated using the main variables
(i.e., P(l+1)

1 , P(l+1)
2 , I(l+1), D(l+1)and J(l+1)), and these variables can be obtained using the Equations

(11)–(15) as follows:
P̃1

(l+1) = P(l)
1 + β

(
H(l+1)

− I(l)
)

(16)

P̃2
(l+1) = P(l)

2 + β
(
I(l) −ARDlAH

T − Jl
)

(17)

Ĩ
(l+1)

= argmin
I
LA

(
H(l+1), P(l+1)

1 , P(l+1)
2 , I, D(l), J(l)

)
(18)

D̃
(l+1)

= argmin
D

LA

(
H(l+1), P(l+1)

1 , P(l+1)
2 , I(l+1), D, J(l)

)
(19)

J̃
(l+1)

= argmin
J
LA

(
H(l+1), P(l+1)

1 , P(l+1)
2 , I(l+1), Dl+1, J

)
(20)
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Therefore, the final relaxed variable can be expressed as



P(l+1)
1

P(l+1)
2

I(l+1)

D(l+1)

J(l+1)


=



P(l)
1

P(l)
2

I(l)

D(l)

J(l)


− γ





P(l)
1

P(l)
2

I(l)

D(l)

J(l)


−



P̃1
(l)

P̃2
(l)

Ĩ
(l)

D̃
(l)

J̃
(l)




(21)

From the above discussion, it is clear that the Equations (10) and (21) have several advantages:
i.e., the optimization problem described in Equation (9) turns into six individual subproblems, and
these can be solved further without any strict conditions. Hence, the global optimal solution can be
derived effortlessly. This helps reduce the computational complexity and storage requirements. For the
next iteration, the values of the subproblems described in Equations (10) and (21) have to be updated.
In order to do so, first of all, the closed-form solutions of Equations (10)–(15) need to be obtained.
The advantages of Ex-ADMM over ADMM are described further in Section 5.

4.1. Procedure for Updating H(l+1)

In order to obtain the closed-form solution for H, reformulate LA to L1 and consider all terms
with respect to H in Equation (9). Keeping only the terms that are related to it,

L1 , argmin
H

ΓH‖H‖∗ + tr
(
PH

1 (H− I)
)
+ β

2 ‖H− I‖2F

= ΓH‖H‖∗ +
β
2 ‖H−

(
I(l) − 1

βP(l)
1

)
‖

2

F

(22)

Here, Equation (22) is the solution of Equation (10). To get the closed-form solution, a singular
value thresholding (SVT) operator [43] is implemented on Equation (22):

H(l+1) = Udiag(
{
sign(hi)max(hi, 0)

}
1≤i≤r)V

H (23)

Here, U ∈ CNr×r and V ∈ CNr×r are the side singular vector matrices of the matrices (I(l) − 1
βP(l)

1 )

and hi , µi −
Γ
β , respectively, where Γ is the SVT threshold operator and µi denotes the r singular values.

4.2. Procedure for Updating I(l+1)

To update I(l+1), reformulate LA to L2, and, to get the closed-form solutions for I, consider all
terms of I in Equation (9) and differentiate with respect to I:

L2 , arg min
I

1
2‖Ψ ◦ I−HΨ‖

2
F + tr

(
PH

1 (H− I)
)
+ β

2 ‖H− I‖2F

+tr
(
PH

2

(
I−ARDAH

T − J
))
+ β

2 ‖I−ARDAH
T − J‖2F

(24)

L2 = ∂LA
∂I = ∂

∂I (
1
2‖Ψ ◦ I−HΨ‖

2
F + tr

(
PH

1 (H− I)
)
+ β

2 ‖H− I‖2F
+tr

(
PH

2

(
I−ARDAH

T − J
))
+ β

2 ‖I−ARDAH
T − J‖2F)

L2 = Ψ ◦ I−HΨ − P1 −β(H− I) − P2 −β
(
J− I + ARDAH

T

)
Setting L2(I) to zero, i.e., L2 = 0,

Ψ ◦ I−HΨ − P1 −β(H− I) − P2 −β(J− I + ARDAH
T ) = 0

Ψ ◦ I + 2βI = HΨ + P1 + β(H) + P2 + βJ + ARDAH
T
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I = (A + 2 βK)−1(P1 +β(H)+P2 + βJ + βBD) (25)

where K is the identity matrix, A ,
∑NR

i=1 diag([Ψ]k)
T
⊗Ekk [Ψ]i exhibits the k-th row, and Ekk is derived

by inserting unit values in the NR ×NR zero matrix at its (k,k)-th position and B , A∗T ⊗AR.
Therefore, the closed-form solution of i for the (l + 1) iteration is

i(l+1) = (AHA + 2βK)
−1

(
p(l)

1 + βh(l+1) + AHhΨ + p(l)
2 + βj(l) + βBd(l)

)
(26)

To get the final solution, unvectorized i(l+1), i.e.,

I(l+1) = unvec(i(l+1) (27)

4.3. Procedure for Updating D(l+1)

To get the solution for D, reformulate LA to L3 and consider all terms corresponding to D in
Equation (9). Keeping only the terms that are related to it,

L3 , argmin
D

ΓD‖D‖1 + tr
(
PH

2

(
I−ARDAH

T − J
))
+ β

2 ‖I−ARDAH
T − J‖2F

= ΓD‖D‖1 +
β
2 ‖A

H
R

(
1
βP(l+1)

2 − J(l) + I(l+1)
)
AT‖

2

F

(28)

Here, AR and AT are the unitary matrices. To get the closed-form solution of L3, Equation (28) is
transformed into the standard least absolute shrinkage and selection operator (LASSO) problem [44].
In order to do this, vectorization is performed on Equation (28):

argmin
D

ΓD‖D‖1 +
β

2
‖AH

R

(
1
β

P(l+1)
2 − J(l) + I(l+1)

)
AT‖

2

F
(29)

Let us assume V(l+1) = AH
R AT

(
1
β (P

(l+1)
2 − J(l+1) + I(l+1)

)
and v(l+1) = vec

(
V(l+1)

)
. Therefore,

Equation (29) can be written as

argmin
d

Γd‖d‖1 +
β

2
‖d− v(l+1)

‖
2
F (30)

Thus, to obtain the estimate of d in Equation (30), a soft thresholding operator is imposed for
(l + 1) iterations:

d(l+1) = sign
(
Re

(
v(l+1)

))
◦max

(∣∣∣Re(v(l+1)
∣∣∣− Γ′d, 0

)
+sign

(
Im

(
v(l+1)

))
◦max

(∣∣∣Im(v(l+1)
∣∣∣− Γ′d, 0

) (31)

Γ′d is the scaled version of Γd and Γ′d ,
Γd
β . Hence, the value of D(l+1) is obtained by

D(l+1)= unvec (d(l+1)) (32)

4.4. Procedure for Updating J(l+1)

To update J(l+1), reformulateLA to L4, and, to obtain the closed-form solution for J, take all terms
corresponding to J in Equation (9) and differentiate with respect to J:

L4 , argmin
J

1
2
‖J‖2F +

(
PH

2

(
I−ARDAH

T − J
))
+

β

2
‖I−ARDAH

T − J‖2F

L4 =
∂LA

∂J
=
∂
∂J

(1
2
‖J‖2F +

(
PH

2

(
I−ARDAH

T − J
))
+

β

2
‖I−ARDAH

T − J‖2F

)
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L4 = (1 + β)J−β(I−ARDAH
T +

PH
2

β
)

By setting L4 to zero, i.e., L4 = 0,

J =
β

1 + β
( I−ARDAH

T +
PH

2

β
) (33)

Hence, for iteration (l + 1),

J(l+1) =
β

β+ 1

(
I(l+1)

−ARD(l+1)AH
T +

1
β

P(l)
2

)
(34)

The dual variables P1 and P2 can be directly updated using the H, I, D and J variables.

5. Algorithm Description

Algorithm 1 demonstrates the proposed Ex-ADMM-based mmWave channel estimation scheme,
which is originally derived from the ADMM described in [18,28]. In the proposed Ex-ADMM algorithm,

first of all, the parameters H(0) = P(0)
1 = P(0)

2 = I(0) = D(0) = J(0) = P̃1
(0) = P̃2

(0) = Ĩ
(0)

=

D̃
(0)

= J̃
(0)

= 0 are initialized [18].
The main objective of the proposed algorithm is to update H(l+1) (in step 2). This step is the

most crucial task, which is done by deriving the Lagrangian LA to L1, and then implementing the
SVT operator on Equation (22). In order to efficiently update H(l+1), the SVT operator computes the
µi singular values of hi. At every instant, the proposed algorithm is required to run the subsampled
version of H as an input, which is known as HΨ. For the training procedure, the mmWave MIMO
model detailed in Section 2, inspired from [12,45], has been adopted. For the general case, let us
assume that only a single set of transmitter and receiver antennas are operational at each illustration
of t. According to the adopted hardware structure described in Section 2, the transmitter’s training
precoding vectors and the receiver’s training combining vectors have non-zero (unit) values at their
respective ij-th position in matrix Ψ. At any t-th training illustration, followed by the matrix Ψ, the
subsampled matrix HΨ also has the estimated non-zero values in the ij-th positions. In contrast,
the length of the training symbols is equal to the position of the non-zero elements, i.e., T = M
and M � NRNT. This factor is the stopping criterion of the proposed Ex-ADMM algorithm.
In step (3) of the proposed Ex-ADMM algorithm, to maintain the cyclical order, dual variables
P̃1

(l+1) and P̃2
(l+1) are updated first, with the help of Equations (16) and (17). The values of

the dual variables P1 and P2 can be directly calculated using Equations (23), (26), (31) and (34).

In step (4), the first subproblem, Ĩ
(l+1)

, has been updated using Equation (18). Steps (5) and (6) are

used to update the second and third subproblems, D̃
(l+1)

and J̃
(l+1)

, using Equations (19) and (20),
respectively. ( P(l+1)

1 , P(l+1)
2 I(l+1), D(l+1) and J(l+1)) have been updated in step (7) using Equation (21)).

The relaxation factor γ provides better NMSE performance and a slightly improved convergence rate
for all training lengths. Although Ex-ADMM is better than the other benchmark algorithms described
in this paper, there is a major drawback regarding the knowledge produced during its implementation.
When the proposed Ex-ADMM algorithm is implemented to solve sparse optimization problems on
I(l+1), D(l+1), J(l+1), P(l+1)

1 and P(l+1)
2 , these parameters start losing their sparse nature. The reason

behind this problem is that I(l+1), D(l+1), J(l+1), P(l+1)
1 and P(l+1)

2 are the algebraic combinations of

(I(l) and Ĩ
(l)
), (D(l) and D̃

(l)
), (J(l) and J̃

(l)
), (P(l)

1 and P̃1
(l)) and (P(l)

2 and P̃2
(l)), respectively. The most

expedient way to overcome this problem is, when the proposed algorithm reaches stopping criterion,
to run only the cyclical part of the algorithm for one final iteration to ensure the sparsity (i.e., step 8).
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Algorithm 1. Ex-ADMM based mmWave MIMO Channel Estimation Scheme

Require : Subsampled matrix HΨ, side information matrices AR and AT, and the set of indices of observed
entries in Ψ

Input : HΨ, Ψ, AR, AT, ρ, γ, ΓH, ΓZ and Imax

Output : Estimated output channel matrix Ĥ = H(Imax)

Initialization:
H(0) = P(0)

1 = P(0)
2 = I(0) = D(0) = J(0) = P̃1

(0) = P̃2
(0) = Ĩ

(0)
= D̃

(0)
= J̃

(0)
= 0

Step 1 : for l = 0,1,2 . . . Imax − 1 do
Step 2 : Update H(l+1) by using Equation (23).
Step 3 : Update P̃1

(l+1) and P̃2
(l+1) by using Equations (16) and (17).

Step 4 : Update Ĩ
(l+1)

by using the Equation (18).

Step 5 : Update D̃
(l+1)

by using the Equation (19).

Step 6 : Update J̃
(l+1)

by using the Equation (20).

Step 7 : Update
(
P(l+1)

1 , P(l+1)
2 , I(l+1), D(l+1) and J(l+1)

)
by using Equation (21), where γ is the relaxation

factor.
Step 8 : meets stopping criterion do

i = l + 1
repeat step 2 to 6.

Step 9 : end do
Step10 : end for

6. Computational Complexity

In this section, four benchmark algorithms, namely, TSSR [46], VAMP [47], OMP [16] and
ADMM [18], are compared with the proposed Ex-ADMM algorithm in terms of complexity.

For the general case, TSSR is much faster than any one-stage method. The computational
complexity of TSSR is dependent upon the calculation of its maximum diagonal elements and the
smaller number of off-diagonal elements in its sparse matrix. The complexity order of the TSSR
algorithm is O(nlog(n)), [46], where n is the full column rank of the targeted sparse matrix.

In VAMP, the complexity is dominated by the matrix vector multiplication. The computational
complexity of VAMP is the order of O(NRNTLlog(NRNTL)) [47], where NR and NT is the number
of receivers and transmitters, respectively, and L is number of channel paths or the sparsity level of
the channel.

In OMP, the computational complexities depend upon the sparsity of the dictionary matrix and
the number of grids. Mathematically, this can be expressed as O

(
LlnG2

)
. Here, L is the number of

paths or the sparsity level of the channel and G is the grid of the dictionary matrix in which the AoAs
and AoDs are distributed uniformly [16]. The computational complexity of ADMM reflects the number
of iterations, Imax, and the number of transmitting and receiving antennas, i.e., NT and NR, respectively.
In ADMM, appropriately, matrix factorization can be performed offline, and only the matrix vector
product has to be calculated online. This reduces the computational complexities of the ADMM in
a significant way. The complexity of ADMM can be expressed as O

(
N2

RNT
)

[18], where NR and NT

are the numbers of receivers and transmitters, respectively. The proposed Ex-ADMM algorithm is
originally derived from ADMM. Therefore, the complexity of the proposed Ex-ADMM algorithm
remains the same as that of ADMM, i.e., O

(
N2

RNT

)
.

7. Simulation Results and Discussion

In this section, the numerical results are explained to showcase the accomplishment and
performance of the proposed algorithm (Ex-ADMM) with different standard algorithms.
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7.1. System Model

The HBF system architecture was adopted as described in [45]. A total of 64 transmitting and
receiving antennas, i.e., NT = NR = 64, were considered at the BS and MS. The antennas were assumed
to be in a ULA configuration. Laplacian distributions with 55◦ standard deviation were used to produce
the Azimuth angle of the AoAs and AoDs. Phase shifters had the quantized phase, whereas spacing
between antennas was determined by d = λ

2 .

7.2. Channel Model

A mmWave channel with two paths and two clusters is considered here. Over the range of [0,2π],
AoAs and AoDs were uniformly distributed. The noise is complex additive white gaussian noise
(AWGN), with zero mean and σ2

q variance. A signal-to-noise Ratio (SNR) of 30 dB, mathematically
defined as SNR , σ−2

q , was used for simulation. The frequency of the mmWave channel model used
for simulation was 90GHz.

7.3. Simulation Environment

In this section, we interpret the results of a comparison between the proposed Ex-ADMM algorithm
and the TSSR, OMP, VAMP and ADMM algorithms, in terms of ASE, NMSE, the convergence of
Ex-ADMM with respect to ADMM and SVT, and the effect of NMSE on the proposed Ex-ADMM, TSSR,
OMP, VAMP and ADMM algorithms for multiple paths. An average of 100 independent iterations and
100 Monte Carlo realizations were considered for the simulations [48]. Three different training symbol
lengths were considered for training purposes, i.e., T = 400, 800 and 1200.

7.4. Results and Discussions

OMP determines the sparsity of the channel or dictionary matrix; VAMP also uses this concept with
a few differences. On the other hand, TSSR individually exploits the low rank property of the channel
matrix along with the sparsity. At first, an SVT operator was implemented to recapture the channel
matrix H. The SVT threshold operator Γ = β‖Hψ‖, while β = 3M

NRNT
was fixed to exploit the low rank

property. Channel sparsity depends upon the number of paths in the mmWave channel, i.e., the
sparsity of the channel is fixed with the number of propagation paths. For the case of the Ex-ADMM
algorithm, the weighting factor of the channel matrix is ΓH = β‖Hψ‖, where β is set to be 0.005, and
the weighting factor with respect to the sparse matrix D is obtained by ΓD = 0.1

(1−10 log(σ2
q))

. Under the

aforementioned constraints, an analysis was conducted, and results are explained as follows.

7.4.1. Comparison of ASE

In Figure 2a–c, the ASE (in bits/sec/Hz) at the SNR points for OMP, TSSR, VAMP, ADMM and
the proposed Ex-ADMM algorithm with perfect CSI is shown. The following expression is used to
calculate the ASE [49,50],

ASE = E
{
log2 det(KNR +

(
NRNT

(
σ2

q + NMSE
)−1

HHH
)}

The performance of the OMP in terms of ASE at low-to-mid SNR points is moderate, and it gets
worse at mid-to-high SNR points as the training symbols’ length is increased, i.e., T < 400. As is
clear from Figure 2a, for all SNR points, VAMP performs very poorly for smaller training symbol
lengths; i.e., T < 400. When the training symbol length is increased, i.e., T ≥ 800, the performance of
VAMP increases significantly, as depicted in Figure 2b,c. It was found that, for different T values, the
performance of TSSR is very bad at almost every SNR point relative to OMP, TSSR, VAMP, ADMM
and Ex-ADMM. ADMM, at all SNR points, performed better than OMP, TSSR and VAMP for all
training symbol lengths. In the case of Ex-ADMM, for T = 400, Ex-ADMM outperformed the OMP,
TSSR, VAMP and ADMM algorithms at all SNR points. For T = 800 and 1200, at low-to-mid SNR
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points, ADMM and Ex-ADMM performed similarly, but, as the SNR range increased from mid to high,
Ex-ADMM outperformed ADMM. Moreover, for high training symbol lengths, Ex-ADMM was very
close to achieving the perfect CSI.

Appl. Sci. 2020, 10, 4397 11 of 18 

Ex-ADMM, TSSR, OMP, VAMP and ADMM algorithms for multiple paths. An average of 100 
independent iterations and 100 Monte Carlo realizations were considered for the simulations [48]. 
Three different training symbol lengths were considered for training purposes, i.e., T=400, 800 and 
1200. 

7.4. Results and Discussions 

OMP determines the sparsity of the channel or dictionary matrix; VAMP also uses this concept 
with a few differences. On the other hand, TSSR individually exploits the low rank property of the 
channel matrix along with the sparsity. At first, an SVT operator was implemented to recapture the 
channel matrix H. The SVT threshold operator Γ = βฮHநฮ, while β = ଷ୑୒౎୒౐ was fixed to exploit the 

low rank property. Channel sparsity depends upon the number of paths in the mmWave channel, 
i.e., the sparsity of the channel is fixed with the number of propagation paths. For the case of the Ex-
ADMM algorithm, the weighting factor of the channel matrix is Γு =βฮHநฮ, where β is set to be 0.005, and the weighting factor with respect to the sparse matrix D is
obtained by Γ஽ = ଴.ଵ(ଵିଵ଴୪୭୥ (஢౧మ )). Under the aforementioned constraints, an analysis was conducted, and

(a)
Appl. Sci. 2020, 10, 4397 12 of 18 

 
(b) 

 
(c) 

Figure 2. (a–c) ASE for different transmit SNRs for a 64 × 64 mmWave MIMO channel at T = 400, T = 
800 and T = 1200. 

The performance of the OMP in terms of ASE at low-to-mid SNR points is moderate, and it gets 
worse at mid-to-high SNR points as the training symbols’ length is increased, i.e., T < 400. As is clear 
from Figure 2a, for all SNR points, VAMP performs very poorly for smaller training symbol lengths; 
i.e., T< 400. When the training symbol length is increased, i.e., T ≥ 800, the performance of VAMP 
increases significantly, as depicted in Figure 2b,c. It was found that, for different T values, the 
performance of TSSR is very bad at almost every SNR point relative to OMP, TSSR, VAMP, ADMM 
and Ex-ADMM. ADMM, at all SNR points, performed better than OMP, TSSR and VAMP for all 
training symbol lengths. In the case of Ex-ADMM, for T=400, Ex-ADMM outperformed the OMP, 
TSSR, VAMP and ADMM algorithms at all SNR points. For T=800 and 1200, at low-to-mid SNR 
points, ADMM and Ex-ADMM performed similarly, but, as the SNR range increased from mid to 
high, Ex-ADMM outperformed ADMM. Moreover, for high training symbol lengths, Ex-ADMM was 
very close to achieving the perfect CSI. 

7.4.2. Comparison of NMSE 

Figure 2. (a–c) ASE for different transmit SNRs for a 64 × 64 mmWave MIMO channel at T = 400,
T = 800 and T = 1200.



Appl. Sci. 2020, 10, 4397 13 of 19

7.4.2. Comparison of NMSE

The performance of OMP, TSSR, VAMP, ADMM and the proposed Ex-ADMM algorithm in terms
of NMSE, at different SNR points with respect to different training symbol lengths T, is depicted in
Figure 3a–c. The following relation is used to calculate NMSE:

NMSE , E

10 log10

‖Ĥ−H‖2F
‖H‖2F


where Ĥ is the estimated channel matrix and H is the true channel matrix. Ĥ is determined by H(Imax).
The performance of OMP at different SNR points is almost constant for all training symbol lengths,
and, due to its huge dictionary matrix, does not change for any increment of T. Thus, OMP may suffer
from a discretization problem. One can therefore say that the OMP is not capable enough to recover
small training symbols.
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On the other side, it was found that VAMP exhibited poor performance at T < 800, but, as depicted
in Figure 3b,c, the performance of VAMP increases as the training symbol length increases. VAMP is
used to calculate statical information on sparse signals, which is impossible in case of small training
symbol lengths, but, at low-to-mid SNR points, as the training symbol length increases to T > 800,
it exhibits a significant improvement in NMSE performance compared to other algorithms. TSSR
is used for two-stage estimation. In the simulation results, TSSR is not capable of recovering the
estimated values for low and high training lengths. TSSR exploits the low rank and sparsity of any
channel matrix individually. In contrast, ADMM has the capacity to exploits low rank and sparsity
together, with the channel matrix for any training symbol length.

Estimation, in the proposed Ex-ADMM algorithm, is done by SVT implemented on H, which
exploits the low rank property of H and l1 − norm, enforced on the submatrix to ensure the sparsity.
Estimation of Hψ becomes noisier, as the proposed Ex-ADMM algorithm and ADMM lack array gain,
but the noise is not severe enough to cause a major effect on the estimated values. The proposed
Ex-ADMM algorithm performed better than OMP, TSSR, VAMP and ADMM in terms of NMSE at
different SNR points with respect to different training symbol lengths.

7.4.3. Comparison of Convergence

In Figure 4a–c, three values of γ, i.e., γ = 0.5, 1 and 1.5 are used for simulation to demonstrate
the effect of the relaxation factor on convergence with respect to the NMSE of the proposed Ex-ADMM
algorithm. As the value of γ increases from 0.5 to 1 and then to 1.5, the convergence of proposed
algorithm gets slightly better and converges to smaller NMSE values for all training symbol lengths
(i.e., T = 400, 800 and 1200) as compared to ADMM and SVT. Effects on NMSE for different algorithms of
multiple paths are shown in Figure 4d. Due to the poor scattering nature of mmWave, the performance
of all algorithms gets worse with escalation of the number of paths, LP. However, the performance of
the proposed algorithm is still better than that of the others.



Appl. Sci. 2020, 10, 4397 15 of 19

Appl. Sci. 2020, 10, 4397 14 of 18 

 
(c) 

Figure 3. (a–c) NMSE for different transmit SNRs for a 64 × 64 mmWave MIMO channel at T = 400, T 
= 800 and T = 1200. 
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Figure 4. (a–c) NMSE at a 30-db transmit SNR for a 64 × 64 mmWave MIMO channel at T = 400, T = 800
and T = 1200, with respect to algorithmic iteration for different γ values. (d) The effect of NMSE for
multiple paths Np at T = 2000.

8. Conclusions

In this paper, an extended version of ADMM (Ex-ADMM) was proposed for mmWave channel
estimation. In the proposed scheme, a joint optimization problem was formulated, exploiting the
sparsity and low rank properties of the channel matrix. The proposed Ex-ADMM algorithm exploits
both the properties of targeted optimization problems by breaking them into several subproblems.
These subproblems are then solved effortlessly, by acquiring their closed-form solutions independently.
A relaxation factor was introduced to converge the proposed algorithm to smaller NMSE values for
all training symbol lengths. Comprehensive simulation experiments were performed to validate
the performance of Ex-ADMM. The proposed Ex-ADMM algorithm outperformed other benchmark
algorithms in terms of ASE, NMSE and convergence rate.
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