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Featured Application: Battery Management System.

Abstract: This research proposes a power loss analysis and a control strategy of an active cell balancing
system based on a bidirectional flyback converter. The system aims to achieve an energy storage
application with cells connected in 6 series and 1 parrarel (6S1P) design. To reduce the structural
complexity, Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) array commonly used in
balancing system is replaced with the photovoltaic Metal-Oxide-Semiconductor (photoMOS) array.
Power loss analysis is utilized for the system operating in the proper current to reach higher efficiency.
The proposed loss models are divided into conduction loss, switching loss, and copper and core loss
of the transformer. Besides, the models are used to estimate the loss of converter operating in different
balance conditions to evaluate the system efficiency and verified by the implemented balancing
circuit. By way of the loss models, the balancing current can be determined to reach higher efficiency
of the proposed system. For further improvement of the balancing process, the system has also
applied a control strategy to enhance the balancing performance that reduces 50% maximum voltage
difference than traditional cell-to-pack architecture, and 47% balancing duration than traditional
pack-to-cell architecture.

Keywords: power loss analysis; control strategy; active cell balancing; bidirectional flyback converter

1. Introduction

In recent years, with the development of science and technology, the issue of energy shortages in
island countries and outlying islands has been expanding. Based on energy shortage and environmental
awareness, a microgrid with an energy storage system (ESS) has become one of the main projects
for the development of science and technology [1]. Usually, ESS utilizes battery modules as energy
storage devices, but the battery modules are not only expensive but also account for a relatively high
proportion of the overall cost of ESS. Therefore, it is even more important to extend battery life. Battery
modules are usually composed of cells in series and parallel. However, even the same batch of cells
produced from the same manufactory have different characteristics from each other. These differences
will become more apparent over time and reduce the life and safety of battery modules. To figure
out this problem, it is essential to develop the technology of the battery management system (BMS).
The BMS technology can increase the maximum capacity of the battery module and extend the life
of the battery module. The principal function of BMS is to monitor, protect, and balance the battery
module [2,3]. The BMS monitors various parameters such as voltage, current, and temperature of each
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cell in the battery module to ensure that the battery module works in a stable condition; the protection
function provides over-voltage, under-voltage, over-current, over-temperature, and under-temperature
prevention. Thus, appropriate protection ensures that the battery module operates safely and normally;
the balancing function is mainly to improve the imbalance problem in the battery module due to the
different characteristics of each cell. The balance circuit rearranges the energy among cells until the
power of each cell reaches equilibrium to maximize the energy capacity and prolong the lifetime of the
battery module.

So far, many researchers have proposed various kinds of balance circuit architectures [4–12]. Amin
employed a passive balancing BMS that combines the power resistor and Metal-Oxide-Semiconductor
Field Effect Transistor (MOSFET) internal resistance as a balancing resistor to save the space [4].
Antonio Manenti proposed a BMS architecture based on cell redundancy [5]. These two studies
belong to passive balancing methods. Passive balancing methods have the least system cost but must
take into account the heat issue. The balancing current is usually limited to less than 50 mA. If the
current is set too large, the heat generated by the power consumed by the resistor may damage the
battery module. On the other hand, if the current is low, the balancing time will significantly increase.
Kyung-Min Lee introduced an inductance-capacitance (LC) series resonant circuit as an energy carrier,
which transfers the balancing energy directly from the highest charged cell to the lowest charge cell [6].
However, the LC series resonant method needs to control the switches rapidly to achieve the balancing
process. Ming Liu utilized megahertz multiple-receiver wireless power transfer to achieve battery
cell equalization [7]. However, wireless power transfer has low efficiency and it is unable to control
the balancing current for each cell. Federico Baronti described the design and safety verification of a
novel charge equalizer with a fully distributed architecture, which not only perfectly fits the typical
partitioning of a battery into modules, but also achieves the system with a simple circuit structure [8].
Whereas this cell equalizer cannot reach the adjustable balancing current. Federico Baronti also
designed a high-efficiency digitally controlled charge equalizer for series-connected cells based on
switching converter and super-capacitor [9]. This equalizer he proposed is similar to capacitive shuttle
cell balancing, which has energy recycling and the system cost is still low but it still needs an amount
of time to complete the balancing process.

Wangxin Huang presented an energy sharing state-of-charge (SOC) balancing control scheme
based on a distributed BMS architecture where the dc bus voltage regulation system and the cell
balancing system are combined into a single system [10]. Cells in the pack are separated by the converter,
and the converters’ output is connected in series so that the system should apply current-sharing
control to maintain the stability of the direct current (DC) bus. Mohammad Abdul Hannan achieved
cell-balancing by a bidirectional flyback dc-dc converter [11]. The bidirectional flyback dc-dc converter
proposed by the researcher is conposed of two traditional flyback dc-dc converters that each one takes
charge of one power direction. It will cost more than using a bidirectional flyback dc-dc converter
instead which is one of the most important elements in the solution adopted in this work. Sang-Won LEE
raised a modularized design of active cell-to-cell/module-to-module charge equalizer [12]. Compared
with the equalizer implemented by Kyung-Min Lee [6], the design has removed the capacitor of the LC
circuit to further reduce the system cost. Nevertheless, the problem has to be solved that the design
must deal with the inrush current when the two balancing batteries have a large voltage difference.

There are more active cell balancing systems which have not been mentioned above. According to
the balancing patterns, active cell balancing systems can be divided into three categories: capacitive
shuttle cell balancing [13–16], inductive shuttle cell balancing [12,17–21], and individual charging cell
balancing [6,9,22–26]. The capacitor shuttle system has less loss, but it takes a longer time to complete
the balancing process. The inductance shuttle system also has a low loss. Nevertheless, the cost is
more than the capacitor shuttle method because of its complicated switch structure. The individual
charging system works the most efficiently but at a greater expense.

However, most of the capacitive shuttle system and the inductive shuttle system can only transfer
energy to adjacent cells, which will increase the time required to reach equilibrium in the battery
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module and reduce the efficiency of energy transfer. In contrast, the individual charging system
performs more effectively than the other. It can reduce the balance time and increase the efficiency
of energy transfer. The individual charging system has the following forms: buck-boost converter,
quasi-resonant buck-boost converter, and flyback converter. Each type of individual method benefits
from its structure, such as balancing duration, balancing times, the complexity of architecture, or cost.
Taking all the factors into consideration, this research implements an active cell balancing circuit based
on a bidirectional flyback converter. The proposed system further improves the system by applying a
control strategy which is able to reduce the balancing duration. Moreover, this research also proposes
loss models to estimate the bidirectional flyback converter to discuss how to determine the proper
balancing current of the proposed circuit to achieve the highest efficiency of the bidirectional flyback
converter and reduce the losses in the balancing process.

2. Hardware Description of the Proposed Cell Balancing System

In this research, the proposed system is developed for a cells connected in 6 series and 1 parrarel
(6S1P) battery pack. The reason why the system is only for a small pack is that it can be series-connected
to reach a higher voltages, such as 48 V or 400 V. The specification can be obtained in Section 4. Figure 1
shows the block diagram of the proposed cell balancing system, which consists of a bidirectional flyback
converter, a microcontroller unit (MCU:dsPIC33FJ64GS606) manufactured by Microchip Technology in
Chandler, Arizona, United States, a photoMOS array, an auxiliary power circuit, a differential voltage
circuit, and driver circuits. In this research, the bidirectional flyback is the key part of the system,
which can realize energy transfer in both directions, to achieve the balancing function with a simpler
structure. The microcontroller unit (MCU) shown in Figure 1 not only provides the control signal
for the photoMOS and bidirectional flyback converter but also receives all the voltage of cells by the
differential voltage circuit, then applies the control strategy via the signal captured to complete the
balancing process more efficiently. Its control strategy can be observed in Figure 2, where VBn is the
voltage of each cell, ∆VBn is the voltage difference between each cell and the average voltage of all the
cells, Ver is the parameter of the minimum voltage error to activate the balancing process, and T1 is the
time duration for a single balancing process. The MCU will gather the voltages of the cells through a
differential voltage circuit. By calculating the ∆VBn of each cell, the system will decide which cell needs
to be balanced. If the chosen cell has the highest voltage, the cell-to-pack solution will be carried out,
and the balancing system will be operated in boost mode until the timer counts up to T1. If the chosen
cell has the lowest voltage, the pack-to-cell solution will be carried out, and the balancing system will
be operated in buck mode until the timer counts up to T1.

The common individual charge battery balance architecture can only realize energy transfer in
one direction. For example, the pack-to-cell architecture has the ability to effectively charge the cell
which capacity is low, but it cannot efficiently transfer the energy of the cell which capacity is high to
the pack; the cell-to-pack architecture is able to transfer the energy from the cell which has a higher
capacity to the pack effectually, but it is unable to charge the low capacity cell with the pack very
efficaciously. The implemented cell balancing system has the most important feature that the energy
can be extracted not only from pack to cell but also from cell to pack. To achieve the bidirectional
balancing behavior, the implemented system replaces the rectifier diode in the traditional flyback
converter with synchronous rectification MOSFET and simultaneously reduces the losses caused by
the output rectifier diode. Compared with the system using a multi-winding transformer or multiple
flyback converters [26], it simplifies the structure by applying a bidirectional flyback converter with
a switch array instead and reduces the cost further by replacing MOSFET with photoMOS in the
switch array. Furthermore, the commonly used converter in balancing systems operates with a low
constant current, while the proposed solution can implement an adjustable balancing current not
only for various control strategies, but also for efficiency measurement of the system operating in
different curents.
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Figure 1. Block diagram of active cell balancing system based on bidirectional flyback converter. 
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Figure 2. Power loss analysis of the cell balancing system. 
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Figure 2. Power loss analysis of the cell balancing system. Figure 2. Power loss analysis of the cell balancing system.
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3. Power Loss Analysis of the Cell Balancing System

The proposed cell balancing system, as shown in Figure 3, is realized through the bidirectional
flyback converter topology where VBn is the voltage of nth cell, Sn is the photoMOS array, Lm is the
field inductor of the transformer, N is the turn ratio of the transformer, and Q1 and Q2 are the MOSFET
for switching. The designed cell balancing system utilizes a 6S1P lithium ternary battery module.
The cells’ state of charge will determine the operation mode of the photoMOS relay and the MOSFETs.
Figure 4 shows that the proposed has two operation modes, where I1 is the balancing current, and I2 is
the current at high side. Mode A is a boost mode. For example, when the voltage VB1 of the first cell
is higher than the voltage of other cells in the module, the photoMOS S1 will be turned on, and the
MOSFET Q1 will work as the main switch to control the circuit. The field inductor Lm of the transformer
will store the energy of the cell, and transfer it to the battery module. The MOSFET Q2 will be operated
with synchronous rectification control to reduce the conduction loss of the rectifier diode, as shown in
Figure 4a; When the voltage VB1 of the first cell is less than the voltage of other cells in the module,
the proposed system will operate in mode B. The photoMOS S1 will turn on, and the MOSFET Q2 will
work as the main switch to control the circuit. The field inductor Lm of the transformer will store the
energy of the battery module, and then transfer it to the cell. At this time, the MOSFET Q1 will be
operated with synchronous rectification control to reduce the conduction loss of the rectifier diode,
as shown in Figure 4b. By operating in these two modes alternately, after multiple balancing actions,
the balancing system can achieve the equilibrium of the battery module.
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To determine the best balance current to achieve the highest efficiency and the least losses of the
proposed system, it is necessary to estimate the losses caused by each component of the balancing
architecture during the energy transfer. In the cell balancing situation, to implement the bidirectional
flyback converter, the designed converter will only operate in continuous conduction mode (CCM) to
prevent the energy inversion. Therefore, all the losses are considered in CCM. The losses caused by gate
drivers, differential voltage sensors, or photoMOS relays will not be taken into account either because
the power loss analysis proposed by this research attempts to find the relation between operating
current and the bidirectional flyback converter’s efficiency. In this case, the auxiliary power of those
components is supplied by DC power manufactured by Gwinstek Company. The losses are mainly
composed of the conduction and switching losses of the power switch, the copper and iron loss of the
transformer, and the line loss. This research discusses the loss model of the proposed circuit operating
in buck mode. As shown in Figure 5, this loss model replaces the battery module with the ideal voltage
source Vpack. The cell is replaced by the ideal voltage source VBn. Rs is the wire resistance, RL is the
resistance of the transformer, Rds1(on) is the on-resistance of MOSFET Q1, Rds2(on) is the on-resistance of
MOSFET Q2, and Lm is the field inductor of the transformer. The main voltage and current waveforms
of the bidirectional flyback converter operating in buck mode can be obtained in Figure 6, where vgs1 is
the MOSFET Q1 gate signal, vgs2 is the MOSFET Q2 gate signal, vds1 is the voltage across the MOSFET
Q1 from drain to source, vds2 is the voltage across the MOSFET Q2 from drain to source, iL is the current
passing through the Lm, and iD is the current flowing through the MOSFET Q2.
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First, the switching loss is loss caused by the current-voltage overlap region during the switching.
Because this loss is very difficult to calculate accurately, this research uses the estimation method in
the analysis of the MOSFET switching loss proposed by Z. John Shen to switch loss estimation [27],
as shown in Figure 7 and Equation (1)
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where IDS is the current on the MOSFET when turning on, VDS is the voltage across the drain-source of
the MOSFET, ton and toff are the time required for the MOSFET to switch on and off, fsw is the frequency
of the MOSFET operation, and Coss is the parasitic capacitor of the MOSFET. In buck mode, due to the
synchronous rectification technology in the bidirectional flyback converter, only the MOSFET Q1 will
generate switching losses.Appl. Sci. 2020, 10, 4380 8 of 17 
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Secondly, the conduction loss is caused by the energy transferring through the transformer,
the wire resistance, and the switch’s on-resistance. The followings are two operating modes in a cycle.
Utilizing the switching of MOSFET Q1 and Q2, these two modes will estimate the conduction loss
caused by the energy transfer, as shown in Figure 6.

Interval I [t0–t1]:
In Interval I, the MOSFET Q1 is on, and the field inductor Lm of the transformer stores energy

from battery module Vpack via the current iL. Since the current iL rises linearly, in the loss calculation
in this mode, the current iL is averaged. As shown in Figure 5a, the current will pass through the
wire resistance Rs and the on-resistance Rds1(on) of the MOSFET Q1. The loss formula is given in
Equations (2) and (3)

WRs = i2LRs(t− t0) (2)

WRds1(on) = i2LRds1(on) ∗ (t− t0) (3)

when t = t1, the MOSFET Q1 turns off, and the MOSFET Q2 turns on. This mode ends.
Interval II [t1–t2]:
In Interval II, the MOSFET Q2 is on, and the field inductor Lm of the transformer charges the

cell VBn via the current iL. Since the current iL decreases linearly, in the loss calculation in this mode,
the current iL is averaged. As shown in Figure 5b, the current will pass through the on-resistance
Rds2(on) of the MOSFET Q2. The loss formula is given in Equation (4).

WRds2(on) =
( iL

N

)2
∗Rds2(on) ∗ (t− t1) (4)

when t = t2, the MOSFET Q2 turns off, and the MOSFET Q1 turns on. This mode ends.
Through the analysis above, the conduction loss in a cycle can be calculated as follows:

D =
t1 − t0

Tsw
(5)

1−D =
t2 − t1

Tsw
(6)

PRs =
WRs

Tsw
= i2L ∗Rs ∗D (7)

PRds1(on) =
WRds1(on)

Tsw
= i2L ∗Rds1(on) ∗D (8)

PRds2(on) =
WRds2(on)

Tsw
=

( iL
N

)2
∗Rds2(on) ∗ (1−D) (9)

Besides, the loss of the transformer is divided into the copper loss (Pcopper) and the iron loss (Pcore).
The copper loss is mainly caused by the current passing through the AC impedance RL(AC) of the
transformer. However, RL(AC) is hard to estimate with a simple mathematical model because it is
affected by the skin effect and the proximity effect. Moreover, these two effects are also influenced by
the thickness, stacking, and coupling coefficient of the wire. While the transformer DC impedance
RL(DC) is relatively easy to measure, to simplify the calculation of RL(AC), using the transformer AC
impedance factor λ represents the relationship between RL(AC) and RL(DC) [28], as shown in Equation
(10), and the copper loss is calculated as in Equation (11). The transformer iron loss calculation needs
to query the corresponding transformer material, frequency, temperature, excitation current, etc. In the
research, it is hard to obtain relevant parameters of the transformer used in the system, so the research
takes the material of PC40 as an example, the iron loss formula provided by the manufacturer is as
Equation (12) shown where 4B is the magnetic induction intensity variation of the transformer, and the
Ve is the effective volume of the transformer core.
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RL(AC) = λRL(DC) (10)

Pcopper = i2L(rms)RL(AC) (11)

Pcore = 1.31210−6 f 1.404
sw

(∆B
2

)2.286
Ve (12)

The total loss of the system in a cycle can be obtained by summing up all the losses parts estimated
above as

Ptotal = Psw + PRs + PRds1(on) + PRds2(on) + Pcopper + Pcore (13)

The loss model of the proposed circuit operating in boost mode is similar to the proposed operating
in buck mode. The only difference is the current direction and parameters. Therefore, the loss model of
the proposed circuit operating in boost mode will not be discussed in this research.

4. Design Considerations

The key parameters of the bidirectional flyback converter in the proposed cell balancing system are
listed in Table 1, where the lithium-ion battery module has a 6S1P configuration with a rated capacity
of 2500 mAH and a voltage range of 2.5 V–4.2 V for each cell. To achieve the desired bidirectional
flyback converter with adjustable current, some component values should be selected or determined,
such as operating voltage, balancing current which refers to the current I1 of the low side and is limited
by the specification of the phototMOS (40 V, 2.5 A) for the safety, operating frequency, and duty cycle.
The related design considerations are described below.

Table 1. Related parameters of the bidirectional flyback converter.

Items Specifications

High-side voltage 15–25.2 V
Low-side voltage 2.5–4.2 V
Balancing current 500–2000 mA

Switching frequency fs 100 kHz
Duty cycle 20–80%

(1) Determine the turn ratio N of the transformer

The proposed system considers that it has a worse case in boost mode than in buck mode.
According to the high-side voltage and low-side voltage, the turn ratio N from high side to low side
will be designed in the worst case for operating in boost mode when high-side voltage Vpack(max) is
25.2 V and low-side Voltage VBn(max) is 2.5 V. Therefore, in the case of the maximum duty cycle DLmax
of the boost mode as 0.8, we can calculate the turn ratio as

N =
VBn(max)(1−DLmax)

Vpack(max)DLmax
=

2.5V ∗ 0.8
25.2V ∗ (1− 0.8)

= 0.396 (14)

The turn ratio N as 0.396 means if the low side has one turn, the high side will have about 2.5 turns.
In the practical design, the turn ratio N will be selected as 0.333 to make the high side have more turns
to overcome the worse case and convenient for implementation.

(2) Determine the inductance of the field inductor in the transformer

The designed bidirectional converter set the crossing power Pcritical between DCM and CCM in
the condition as 20% load. The equation is shown as

β =
Pcritical

PBn(max)
= 0.2 (15)
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PBn(max) = VBn(max)I1(max) = 4.2V ∗ 2A = 8.4W (16)

Lcritical =
V2

pack(min)D
2
Hmax

2r fswPBn(critical)
=

15V2
∗ 0.452

2 ∗ 0.2 ∗ 100kHz ∗ 10W
= 108.4µH (17)

where β represents the ratio of the power Pcritical to maximum low-side power PBn(max), the low-side
maximum voltage VBn(max) is 4.2 V, the maximum balancing current I1(max) is 2 A, the high-side
minimum voltage Vpack(min) is 15 V, the maximum duty cycle DHmax of the buck mode is 0.45, and the
operation frequency is 100 kHz. The actual inductance of the implemented field inductor of the
transformer is 111.7 µH.

5. Experimental Verification

As shown in Figure 8, the photo of the implemented cell balancing system is used to verify the
loss model proposed in this study through the test results. This research measures the efficiency of the
bidirectional flyback converter by adjusting the operating current. The type of cell used in this study is
the lithium ternary cell UR18650NSX produced by Panasonic, with a rated capacity of 2500 mAH and
a voltage range of 2.5 V–4.2 V. Through the test of the 6S1P battery module, which is composed of the
series connection of these kinds of cells, the voltage Vpack range at high side is 15 V~25.2 V, and the
voltage VBn range at low side is 2.5 V–4.2 V. In the experiment, the efficiency test is carried out under
the condition that the voltage Vpack is 20.9V and the voltage VBn is 4.2 V at the low side. The balance
current I1 changes from 0.5 A to 2.0 A to observe the variety of efficiency. 0 shows the parameters and
specifications of the model, where the model of MOSFET Q1 and Q2 is CSD18510KCS manufactured
by TI company. It is worth mentioning that the parameter Rds(on) of MOSFET will change in different
situations. In this research, the temperature of MOSFETs does not change much because the converter’s
power is just about 8.4. W and the losses caused by MOSFETs is only about 0.05 W which will not
increase the temperature of MOSFETs during operation. According to the datasheet of CSD18510KCS,
this research estimates Rds(on) as 1.4 mΩ based on MOSFETs’ temperature as 25 ◦C and vgs as 15 V.
The balancing system is implemented by utilizing TLP250H as gate drivers, LM358 as operational
amplifier to achieve the voltage sensing, and LT318 as photoMOS relays. The loss analysis formula
is shown in Equations (7)–(13). The results are shown in Figure 9 and compared with the hardware
measurement which using the DC Power (62100H-600S) and DC Load (63204A-600-280) manufactured
by Chroma Company to acquire the system efficiency in the different operating currents. It can be
obtained that the balance current of the designed bidirectional flyback converter is proportional to the
operation efficiency under the test conditions shown in Table 2.

Table 2. Electrical parameters in the balancing system.

Parameter Value

MOSFET Q1 parasitic capacitance Coss 2 nF
MOSFET Q1 internal resistance Rds1(on) 1.4 mΩ

MOSFET Q1 rise time ton 1 ns
MOSFET Q1 fall time toff 29 ns

MOSFET Q2 internal resistance Rds2(on) 1.4 mΩ
Wire resistance Rs 135 mΩ

Operation period Tsw 10 µs
Operation frequency fsw 100 kHz

Transformer’s turn ratio N 0.3333
Primary field inductor Lm 117 µH

Transformer’s DC internal resistance RL(dc) 0.1 mΩ
Transformer AC impedance factor λ 1.4

Transformer’s volume Ve 15.305 cm3

Magnetic induction intensity variation 4B 0.225 T
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Figure 9 shows the hardware waveforms of the developed prototype operating in buck mode
with Vpack as 15 V and balancing current I1 as 1 A and is aimed to verify the veracity of the system,
where vgs1 is the gate signal voltage of MOSFET Q1, vgs2 is the gate signal voltage of MOSFET Q2,
vds1 is the voltage across the MOSFET Q1 from drain to source, vds2 is the voltage across the MOSFET
Q2 from drain to source, iL is the current passing through the Lm, and iD is the current flowing through
the MOSFET Q2, and i1 is the current at low side output and regards as the balancing current. Then,
the prediction and actual measurement results are processed by the mean absolute error (MAE).
The formula is shown in Equation (18), where n is the number of comparisons, ηrea_i is the measured
efficiency, and ηest_i is the estimated efficiency. In Figure 10, it can be observed that the maximum error
is 5.06%, the minimum error is 0.02%, and the average absolute error is 1.48%.

MAE =
1
n

n∑
i=1

∣∣∣∣(ηesti − ηreai

)∣∣∣∣ (18)
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Figure 10. Comparison between the measured results of the balancing system and estimated results of
the loss model.

The efficiency distribution of the proposed can be obtained in Figure 9. In the literature, there
is hardly any discussion about the relationship between balancing current and operation efficiency.
Therefore, this research still collects the efficiency of the system mentioned in Section 1. The comparison
is shown in Table 3, although they are all operated in different situations. The capacitor shuttle system
like Wangxin Huang’s design will have the highest efficiency, the system proposed by Ming Liu has
a lower efficiency in his test condition, and the individual charging cell balancing systems in all the
research mentioned own the system efficiency from 70% to 90%. Therefore, the purpose of the power
loss analysis in this research is highly necessary to achieve higher efficiency in the system.

Table 3. Cell voltage of the unbalanced 6S1P battery module for the testing condition.

System Designer Efficiency (%)

Kyung-Min Lee [6] 60–98%
Ming Liu [7] 71.5–74.5%

Federico Baronti [8] 70–90%
Federico Baronti [9] 83–90%
Wangxin Huang [10] 95–97%

Mohammad Abdul Hannan [11] 90%
Sang-Won Lee [12] 80%

This work 54.5–83.1%

Another important purpose of this research is to improve the performance of the proposed
cell balancing system by applying the control strategy. To verify the effect of the control strategy,
the experiments will be conducted under the conditions shown in Table 4. During the testing, Ver will
be set as 50 mV, I1 as 1 A, and T1 as 30 s. To compare among the pack-to-cell, the cell-to-pack, and the
bidirectional architecture, the proposed cell balancing system will operate in three diverse control
strategies. First of all, the system will complete the balancing process the same as the pack-to-cell
architecture by only carrying out the pack-to-cell procedure. Secondly, the proposed system will merely
operate with the cell-to-pack program to reach battery module equilibrium in a similar way as the
cell-to-pack architecture. The last one, implemented in this research, is that the system combines the
cell-to-pack and the pack-to-cell functions, including both of the advantages, to get the battery module
balanced. The experimental results will be shown in Figures 11–13, where Figures 11a, 12a and 13a
are the actual hardware measurements of each cell’s voltage by the differential voltage circuit shown
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in Figure 1 for three different balancing processes. To obtain the trend of the voltage varieties in the
battery module, Figures 11b, 12b and 13b show the processed results for the significant changes.

Table 4. Cells’ voltage of the unbalanced 6S1P battery module for the testing condition.

VB1 VB2 VB3 VB4 VB5 VB6

3.56 V 3.63 V 3.27 V 3.24 V 3.33 V 3.59 V

VBn – the voltage of nth cell.
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After the collation of the data shown above, this research gives a table, as shown in Table 5,
to compare the balancing duration and maximum error among three balancing processes. The maximum
voltage error is the voltage difference between the cell with the highest voltage and the cell with the
lowest voltage. The cell-to-pack control takes 2783 s to complete the balancing process with a 100 mV
voltage difference left. The pack-to-cell control spends 5175 s to balance the battery module, but its
maximum voltage error can not be reduced anymore at 130 mV. The bidirectional control has the least
balancing duration as 2727 s and it is able to decrease the maximum voltage error to 50 mV. It can be
obtained that the implemented bidirectional control strategy, which will always balance the cell having
the most voltage difference to the average cell voltage Vavg in the battery module, has a less balancing
duration than the pack-to-cell and a less maximum voltage error between the cell with the highest
voltage and the one with the lowest voltage.

Table 5. Comparison among three measured results of balancing processes.

Control Strategy Balancing Duration Maximum Voltage Error

Cell-to-pack 2783 s 100 mV
Pack-to-cell 5175 s 130 mV
Bidirectional 2727 s 50 mV

6. Conclusions

In this paper, a power loss analysis and a control strategy of an active balancing circuit based on a
bidirectional flyback converter are proposed and evaluated. From the analysis of the experimental data,
the maximum error between the loss model and the measured results is 5.06%, the minimum error is
0.02%, and the average absolute error is 1.48%. Moreover, the designed bidirectional flyback converter
has the highest efficiency when the balancing current reaches 2 A, and it can also reduce the time
required for completing the balancing process. Therefore, we can derive the most important parameter
in the balancing process by the proposed power loss model according to the desired conditions, such
as balancing speed or system efficiency. Finally, the system applies a bidirectional control strategy,
compared with the cell-to-pack and the pack-to-cell control, which has a less balancing duration as
2727 s and a less maximum voltage error 50 mV in the case of the balancing current as 1 A, to improve
the efficiency of the balancing process.
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