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Abstract: The electrical losses in power systems are divided into non-technical losses (NTLs) and
technical losses (TLs). NTL is more harmful than TL because it includes electricity theft, faulty meters
and billing errors. It is one of the major concerns in the power system worldwide and incurs a
huge revenue loss for utility companies. Electricity theft detection (ETD) is the mechanism used
by industry and academia to detect electricity theft. However, due to imbalanced data, overfitting
issues and the handling of high-dimensional data, the ETD cannot be applied efficiently. Therefore,
this paper proposes a solution to address the above limitations. A long short-term memory (LSTM)
technique is applied to detect abnormal patterns in electricity consumption data along with the
bat-based random under-sampling boosting (RUSBoost) technique for parameter optimization.
Our proposed system model uses the normalization and interpolation methods to pre-process the
electricity data. Afterwards, the pre-processed data are fed into the LSTM module for feature
extraction. Finally, the selected features are passed to the RUSBoost module for classification.
The simulation results show that the proposed solution resolves the issues of data imbalancing,
overfitting and the handling of massive time series data. Additionally, the proposed method
outperforms the state-of-the-art techniques; i.e., support vector machine (SVM), convolutional neural
network (CNN) and logistic regression (LR). Moreover, the F1-score, precision, recall and receiver
operating characteristics (ROC) curve metrics are used for the comparative analysis.

Keywords: non-technical losses; electricity theft; smart meter; random under-sampling; imbalanced
data; parameter tuning

1. Introduction

Electricity theft is defined as the consumed amount of energy that is not billed by the consumers.
This incurs major revenue losses for electric utility companies [1]. All over the world, electric utility
companies lose $96 billion every year due to electricity theft [2]. This phenomenon affects all
nations, whether rich or poor. For instance, Pakistan suffers 0.89 billion rupees of loss yearly due to
non-technical losses (NTLs) [3] and in India, the electricity loss exceeds 4.8 billion rupees annually [4].
Electricity theft is also a threat to countries with strong economies; i.e., in the U.S., the loss due to
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electricity theft is approximately $6 billion, and in the UK, it is up to £175 million per annum [5].
In addition, electricity theft causes a voltage imbalance and can affect power system operations by
overloading the transformers [6]. Moreover, the rising electricity prices increase the burden on honest
customers when the utility asks them also to pay for the theft of energy. It also increases unemployment,
the inflation rate and decreases revenue and energy efficiency, which has adverse effects on a country’s
economical state.

NTL occurs as a result of meter modifications, meter tampering, direct hooking and unregistered
connections [7]. The categorization of the NTL is shown in Figure 1. Meter tampering causes the
meter either to stop functioning or to stop registering the amount of electricity consumed. In contrast,
meter modification is done in the internal settings of a meter to alter its readings. In the direct hooking
approach, the consumer taps into a power line from a point ahead of the energy meter, whereas in an
unregistered connection, the utility has no record of consumers.

Meter 

Modification

Non Technical 

Losses

Meter 

Tampering

Direct 

Hooking 

Unregistered 

Connection

Figure 1. Types of non-technical loss (NTL).

Traditionally, electricity theft has been detected manually by on-field inspections. The inspection
teams take meter readings and identify faulty meters for the efficient recovery of the NTL. However, this
inspection is time-consuming and requires a separate cost for hiring the inspection teams. In addition,
the state-based methods also required hardware installation in the distribution network to detect
electricity thefts. With the transitioning of traditional grids into smart grids, smart meters have
evolved and their data-driven techniques have contributed to effective energy management [8–10].
The data-driven techniques include machine learning and deep learning algorithms. These algorithms
use the procedure of detecting abnormal electricity consumption patterns based on the study of the
customers. The machine learning techniques used in the literature are discussed in Section 2. However,
most of these approaches have several shortcomings, which are given below.

• Most machine learning techniques require manual feature extraction; as a result, their
performance is limited to low-dimensional data and they are not satisfactory for large time
series data.

• The problem of class imbalance is a serious concern in electricity theft detection (ETD). In the
literature, very little attention has been paid to solving the class imbalance problem.

• The existing machine learning algorithms—i.e., support vector machine (SVM) and logistic
regression (LR)—are inefficient in ETD and have a high false positive rate (FPR).

• The state-based solution requires specific hardware devices and has a high cost of installation.
• In most cases, the available dataset has an enormous number of missing values and outliers,

which may lead the to the overfitting of the classifier.
• The hyper-parameters of the algorithms are not tuned for optimal classification.

In this paper, we propose a model to address the problems of ETD; i.e., the class imbalanced
problem, overfitting, the handling of bigger time series data and the parameter optimization of
classifiers. The mapping of the problems addressed and the proposed solution is given in Table 1.
The proposed model consists of long short term memory (LSTM) and bat-based random under
sampling boosting (RUSBoost) techniques. This work is an extended version of our work in [11].
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Conventional models such as the recurrent neural network are hard to train on large electricity
consumption data and fail to capture long-term temporal correlations. For this reason, in this
paper, we use the LSTM model because it is a sequential model with the long short term memory
concept, which shows great significance in the learning of sequential temporal correlations. Moreover,
the RUSBoost technique effectively handles the class imbalanced problem and avoids the classifier
being biased. In addition, the bat algorithm is used for parameter tuning, finding an optimal learning
rate for RUSBoost; this further enhances the performance of the model. This model is efficient at
detecting electricity thieves. For validation, the proposed model is compared with state-of-the-art
techniques. The simulation results validate the performance of our proposed model. The key
contributions of this paper are as follows:

• The smart meter data collected from the State Grid Corporation of China (SGCC) [12] have
missing values and outliers. In this paper, we perform data pre-processing using interpolation
and normalization methods. These methods help to get the dataset on a common scale and
compute the missing values.

• In order to better extract and memorize features from large time series data, we utilize the LSTM
block, which efficiently extracts useful information to truly represent electricity theft cases.

• In order to tackle the imbalanced data, RUSBoost is employed to handle the class imbalance
problem and performs better than existing data balancing techniques. It performs two operations:
RUS first under-samples the data, then Adaboost predicts final classification. This technique
improves its performance by learning from previous mistakes, which shows the effectiveness of
the model.

• Along with RUSBoost, a metaheuristic method—the bat algorithm—is utilized for the efficient
parameter optimization of a classifier.

• Moreover, for comparative analysis, the precision, recall, F1-score and receiver operating
characteristics (ROC) curve are used to compute the accuracy of the model.

Table 1. Mapping of problems addressed and proposed solution. RUSBoost: bat-based random
under-sampling boosting; LSTM: long short term memory; ROC: receiver operating characteristics.

Limitation Number Limitation Identified Solution Number Proposed Solution

L.1 Imbalanced data S.1 RUSBoost

L.2 Missing values and outliers S.2 Interpolation and normalization

L.3 Overfitting S.3 LSTM and RUSBoost

L.4 High-dimensional data S.4 LSTM

L.5 Parameter optimization S.5 Bat optimization

L.6 Reliable Evaluation S.6 Precision, Recall, F1-Score, ROC

The rest of the work is organized as follows. In Section 2, we present a detailed overview of the
literature. In Section 3, the proposed model is described. The experimental results are discussed in
Section 4. Finally, the conclusion and future work are given in Section 5 .

2. Literature Review

The existing work related to ETD is classified into three categories: state-based solutions, game
theory and machine learning [13]. In particular, the state-based solutions focus on designing specific
metering devices and distribution transformers to detect electricity theft [14]. Through the state-based
solution, a high detection accuracy can be achieved. However, these methods require additional
hardware tools such as meter sensors and distribution transformers, which have a high cost.

The game theory-based solutions [15,16] assume that there is a game between the energy thief and
electric utilities. The electricity theft is detected according to the difference between the distribution of
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electricity consumption that is derived from a game outcome. The game theory-based solutions have a
low cost to detect electricity theft. However, it is necessary to define the utility functions for all players
in a game, which is time consuming.

The machine learning-based solutions use electricity consumption data to analyze the load profiles
of the consumers in order to find benign users. The approaches are further categorized into clustering,
semi-supervised and supervised techniques. The clustering techniques can be applied to an unlabelled
dataset and rely solely on outlier detection. The authors in [17] presented an unsupervised learning
method based on K-nearest neighbors (KNN) to separate anomalous consumption from normal
patterns. In semi-supervised learning, both labelled and unlabelled datasets are used for the detection
of electricity theft. The authors in [18] proposed a semi-supervised learning technique called the
stacked sparse auto-encoder (SSAE) for the detection of NTL in a smart grid. The contributions and
drawbacks of the existing techniques are mentioned in Table 2.

Table 2. Contributions and limitations of defense techniques against electricity theft.

Methods Contributions Limitations

State-based [14]
State-based solution has achieved a
high detection accuracy for
electricity theft

High cost of hardware installation

Game theory [15,16] Game theory-based solutions have a
low cost for finding electricity theft

It is necessary to define the utility
function for all players in a game,
which is time-consuming

Machine learning
[17–28]

A data-driven approach is used to
effectively detect anomalous
consumption behavior

Performance degrades with
imbalanced data

The aforementioned methods are related to state-based, game theory and unsupervised machine
learning techniques. Our approach proposes a solution based on supervised learning. Therefore,
we will study the recent advances made in this area in detail. Some recent studies [19,20] have been
based on SVM and LR. The main idea of these methods is to classify honest customers and electricity
thieves. The authors in [21] addressed NTL detection in a power distribution system using maximum
overlap packet transform (MODWPT) and RUSBoost techniques. The MODWPT method is utilized to
extract the relevant features from input data while RUSBoost performs the final classification. In [22],
the authors proposed a model based on DT and SVM to detect malicious consumers that intentionally
steal electricity; however, no reliable performance metric was used.

In recent times, deep learning approaches have been used in areas such as natural language
processing and image recognition. Deep learning techniques are also used to build models to work
with the massive data arising from smart meters. They have the ability to learn from huge amounts of
data and perform better feature extraction and classification processes. The summary of the existing
literature related to supervised machine learning techniques for ETD is presented in Table 3.

Madalina et al. [23] proposed a hybrid neural network composed of LSTM and the multi-layer
perceptron (MLP) for ETD. The MLP is used to integrate auxiliary information, while LSTM is used to
extract relevant information from the sequential data. The authors in [24] detected electricity theft by
extracting the local and global features through a wide and deep CNN. The wide component was used
to capture the global features from 1D data, while the deep component was used to capture periodicity
from 2D data. Md et al. [25] contributed to the detection of electricity theft by proposing a hybrid
model composed of CNN and LSTM. To counter imbalanced datasets, the authors used the synthetic
minority over-sampling technique (SMOTE). However, SMOTE generates synthetic data, which causes
overfitting and deviates from realistic theft cases. Li et al. [26] developed a hybrid model composed of
CNN and random forest (RF) for fraud detection in smart grids; CNN was used to automatically extract
features from customers’ consumption data, while RF was used to perform the final classification.
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The CNN–RF model exhibited very good performance on several performance metrics; i.e., it achieved
an area under the curve (AUC) of 97.1% and recall of 96.9%. In [27], an auto encoder was proposed
for the detection of anomalies in electricity consumption data using one-dimensional time series data.
However, an auto encoder requires hyper-parameters tuning for training.

Ding et al. [28] presented a real-time theft detection approach based on the Gaussian mixture
model (GMM) and LSTM. The authors used time series data and enhanced the internal structure of
LSTM. The technique was validated in a low-dimensional space and achieved excellent results in terms
of the F1-score.

Table 3. Performance of supervised machine learning techniques in the literature. SVM: support vector
machine; LR: logistic regression; MODWPT: maximum overlap packet transform; MLP: multi-layer
perceptron; AUC: area under the curve; CNN: convolutional neural network; SGCC: State Grid
Corporation of China; SMOTE: synthetic minority over-sampling technique; RF: random forest; GMM:
Gaussian mixture model.

Techniques Dataset Contributions Validation
Metrics Limitations

SVM, DT and
LR [19,20] Smart meter data

To detect the malicious
consumers that
intentionally steal
electricity

Accuracy
No reliable
performance
metric is used

MODWPT,
RUSBoost [21] Honduras

Achieved better
performance when
detecting NTL

MCC, F1-score No parameter
tuning

LSTM, MLP [23] Endesa

Integrate auxiliary
information and
sequential data
effectively to detect
electricity theft

ROC, PR AUC Data
imbalance

Wide and deep
CNN [24] SGCC

Capture electricity theft
by extracting local and
global features from data

AUC, MAP Data
imbalance

SMOTE, CNN
and LSTM [25] SGCC

Improved performance
at detecting fraudulent
customers

F1-score, MCC Overfitting

CNN, RF and
SMOTE [26] EISA

Local optima are avoided
by using RF in the final
layer of CNN

F1-score
High
execution
time

Auto-encoder [27] 2015 data of Hong
Kong

Auto-encoder improves
anomaly detection for
commercial buildings

Accuracy Overfitting

LSTM, GMM [28] Numenta Anomaly
Benchmark (NAB)

The internal architecture
of LSTM is improved,
which enhances the
performance compared
to the traditional LSTM

F1-score Not robust

Further research is needed to adequately solve the problems of ETD and overcome the challenges
of the poor detection of theft due to imbalanced data and the limited capability of ML algorithms.
From the existing literature, we have found that only a few papers have considered the effects of
imbalanced data in their system models. The authors in the literature addressed the class imbalance
problem by utilizing SMOTE; however, this causes overfitting and replicates the nearest neighbor’s
samples, which do not reflect real world theft cases. In this paper, we used the RUSBoost method to
deal with the imbalanced data. In addition, the traditional machine learning algorithms are used for
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the classification of ETD; i.e., SVM and LR. However, these methods fail to capture the consumption
pattern of large time series data and result in overfitting. Moreover, deep learning techniques have
become dominant for capturing real theft cases and have performed better with high-dimensional data.
This encouraged us to exploit an LSTM technique to to achieve generalized performance. Additionally,
it is necessary to optimize the parameters of classifiers for optimal classification. The authors in the
literature have not paid sufficient attention to parameter tuning in their classification; in this regard,
we exploit the bat optimization algorithm, which improves the classification of our model.

3. Proposed System Model

The proposed system model for ETD is shown in Figure 2. Our proposed model is mainly
composed of three parts: (1) data pre-processing, using interpolation to compute the missing values
in the dataset—the data are then normalized and passed to the next model for feature extraction;
(2) the LSTM is utilized to extract the relevant features; and (3) the refined features are given to
the bat-based RUSBoost algorithm for classification. For comparative analysis, various performance
metrics are used—i.e., F1-score, precision, recall and the ROC curve—to validate the effectiveness of
our proposed model.

L.2, L,3
L.4 L.6L.1, L.5 

Limitations Addressed

L.1 Imbalanced data

L.2 Missing values and outliers

L.3 Overfitting

L.4 High dimensional data

L.5 Parameter optimization

L.6 Reliable Evaluation

Data normalization

Data Interpolation

Extract relevant

features by LSTM

Bat

Optimization

based RUSBoost

Precision

Recall

F1-score

Data Pre-processing Feature Exrtraction Performance EvaluationClassification

SGCC Data

ROC-AUC

Figure 2. Proposed system model for ETD.

The proposed methodology for ETD is shown in Figure 3 and described in the
following subsections.

3.1. Data Pre-Processing

Data pre-processing is relatively important because the real electricity consumption data are
inconsistent and often contain missing values. Data pre-processing enhances the performance of the
classifier because the performance of the machine learning algorithms depends on the quality of input
data. The raw data collected from the SGCC contain many missing and erroneous values, which occur
due to the usage of faulty measuring instruments, such as smart meter equipment, or unreliable
transmission. The missing values in the dataset mislead the classifier into identifying fraudulent
consumers. Additionally, when the data are scattered over a large scale, it makes the analysis difficult
and increases the execution time.



Appl. Sci. 2020, 10, 4378 7 of 21

We perform two operations in the data pre-processing stage: data interpolation and data
normalization. In data interpolation, the missing values are computed and filled using Equation (1),
mentioned in [29], as follows:

f (xi) =


( xi+1+xi−1)

2 if xi ∈ NaN, xi−1 and xi+1 /∈ NaN

0 if xi ∈ NaN, xi−1 or xi+1 ∈ NaN

xi if xi /∈ NaN,

(1)

where xi is the attribute of the electricity consumption data and NaN represents the non-numeric value.
If both xi−1 and xi+1 are non-numeric values in the dataset, then they are replaced by zero; otherwise,
missing values are replaced by taking the average of the previous and the next values in the dataset.

Afterwards, we use the normalization method to assign a common scale because neural networks
are sensitive to diverse data. In the normalization process, the data are scaled in the range from 0 to 1.
The values are normalized using Equation (2), mentioned in [30], as follows:

A
′
=

A−Min(A)

Max(A)−Min(A)
× ((B− C) + C), (2)

where A’ is the normalized value while B and C are the maximum and minimum values, respectively.
The data normalization facilitates the analysis of data and reduces the model execution time. When A
is maximum, then A’ = 1. This means that, in the data set, the minimum value is mapped to 0, while
the maximum value is mapped to 1.

Feature extraction 

using LSTM 

Performance 

validation

End

Start

Bat based 

RUSBoost 

classification

Data splitting to training and testing

Data pre-

processing

Model selection and 

validation

Is loss minimize?

Yes

No

Figure 3. Methodology for ETD.



Appl. Sci. 2020, 10, 4378 8 of 21

3.2. Feature Extraction

After the pre-processing stage, the input features are fed into the LSTM module. To get the refined
features, the LSTM cell has been used [31]. Since a large amount of data is collected from SGCC,
a traditional recurrent neural network (RNN) cannot be adopted. LSTM is a variant of RNN that solves
the problems of gradient vanishing and gradient exploding. During the training of RNN, it uses past
information and captures a temporal correlation between the previous state and the current input
to predict the output. Due to its short memory, RNN fails to regain past information for large time
series data.

The LSTM has the ability to capture temporal correlations and classify large time series data.
It has been used in many applications as it achieves significant results in speech recognition and image
classification problems.

The architecture of the LSTM is shown in Figure 4. It has a special type of memory cells in its
architecture that use previous information and memorize the important features from large time series
data. The property of the cell state is to keep this information.

+

σ

tanh

σ σtanh

×

×

×

Ct-1 Ct

htht-1

xt

ht

Figure 4. Architecture of LSTM.

The LSTM has three gates: the input gate it, the forget gate ft and the output gate ot. The forget
gate takes the previous hidden state information ht−1 and current input xt through a pointwise
multiplication operation and decides either to retain or remove the information from the cell state.
This gate uses the sigmoid activation function and predicts an output of either 0 or 1. A value of
1 shows that the relevant information should be kept in the cell state, while 0 represents irrelevant
information, which is discarded from the cell state. The forget gate, input gate and output gate are
described in Equations (3)–(8), which are mentioned in [25]:

ft = σ(W f [ht−1, xt]) + b f . (3)

where W f represents the weight and b f is the bias of the forget gate ft. The σ is applied as the activation
function on the forget gate.

The input gate decides what information is going to be stored in the cell state Ct. It takes the input
xt and previous hidden state ht−1 and applies ft and tanh activation functions through a pointwise
multiplication operation as follows:

it = σ(Wi[ht−1, xt]) + bi, (4)
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Ct = tanh(Wc[ht−1, xt]) + bo. (5)

where Wi and Wc represent the weights of the input gate it and output gate ot, respectively. The bi and
bc are the biases of the network, and Ct is the previous hidden cell state information. To update the
information of the current cell state C

′
t, Equations (4) and (5) are summed through pointwise addition

operation, given by Equation (6):

C
′
t = ( ft × (Ct)) + (it × (Ct)). (6)

Finally, in Equation (7), the output gate is determined. The output gate takes the current input xt

and previous hidden state ht−1 with the implication of the activation function σ. The bo is added as a
bias to the output network.

ot = σ(Wo[ht−1, xt]) + bo. (7)

The updated output gate ot and the information from cell state Ct are used to perform the
pointwise multiplication operation to get the next hidden state ht, given by Equation (8):

ht = σ(Ot × tanh(C
′
t)). (8)

The optimal values are used to obtain better performance for the LSTM. These parameters play
an important role in the performance of feature extraction. For better training, we set 50 neurons in
each layer except the dense layer, which is a fully connected layer. The dropout is set to 20% in order
to avoid the overfitting problem. The hyper-parameter values are shown in Table 4.

Table 4. Hyper-parameter values of LSTM.

Hyper-Parameters Values

Batch size 50

Drop out 0.2

Optimizer Adam

Epochs 20

UNITS 50

3.3. Bat Algorithm

Classification accuracy is normally improved through the parameter tunning of the model [32].
We use an optimization technique—the bat algorithm [33]—to choose the best parameter values for
RUSBoost. The technique is inspired by the echolocation behavior of bats. During model validation,
the hyper-parameters of RUSBoost are tuned to find the optimal values. The hyper-parameters are the
learning rate, estimator and sampling strategy. The learning rate is the step size that adjusts the weights
of each learner during training abd the estimator is the number of weak learners, which generates the
final output.

To find an optimum solution, the bats fly randomly at velocity vi, frequency fi and loudness
Ai [30]. They utilize an echo system to sense the distance from their prey and find the parameter
values for the classifier. The range of frequency is set to [0, fmax] for simplicity. The high frequencies
cover shorter distances and have shorter wavelengths. Depending on the targets, all the bats adjust
their pulse rate in the range [0,1], where 0 means no pulse emission and 1 means the maximum rate of
pulse emission.

fi, vt and xt are the updated values of frequency, velocity and position, respectively. The updated
fi, vt and xt are shown in Equations (9)–(11), which are mentioned in [34]:

fi = fmin + ( fmax − fmin)β, (9)
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vt
i = vt−1

i + (xi − x∗) fi, (10)

xt
i = xt−1

i + vt
i . (11)

where β is a random number ranging between [0,1], while fmin is the minimum value of frequency
and fmax is the maximum value of frequency. In Equation (10), x∗ is the best solution in the current
population and xi shows the position of a bat at the updated frequency fi. To find the local position,
a solution is selected from the previous best position xt−1

i and by the random flying of a bat at the
updated velocity vt

i . The pseudo-code of the bat algorithm is given in Algorithm 1.

Algorithm 1: Bat algorithm.

1: Initialize bat population by Xi (i = 1, 2, 3...n)
2: Initialize velocity Vi, loudness Ai and pulse rate ri
3: Define the frequency fi, at position Xi
4: Maximum number of iterations is s, and t is the current iteration
5: while (t < s)
6: Adjust the fi, vt

i and xt
i to find new solutions

7: Update the fi, vt
i and xt

i as given in Equations (9), (10) and (11)
8: if (rand> ri)
9: Choose the best solution
10: Find the local solution among the selected best solutions
11: end if
12: Go for new solution
13: if (rand<Ai and fi < f∗)
14: Select the solution
15: Change the loudness Ai and pulse rate ri
16: end if
17: Rank the bats on the basis of minimum cost function
18: end if
19: Generate a final result

3.4. Classification of ETD

For the classification of fraudulent and honest consumers, we utilize the RUSBoost technique.
As shown in Section 2, the existing models have problems in classifying the ETD. Various random
under-sampling (RUS) and random over-sampling (ROS) techniques are used to solve the data
imbalance problem. In the RUS technique, data samples from the majority class are discarded to make
it equal to the minority class in order to handle the data imbalance issue. However, this technique loses
important information from the dataset, which results in a high FPR. Similarly, in the ROS technique,
the samples of the minority class are increased by using duplicate information. Therefore, this gives
rise to the overfitting problem, and more execution time is required to run the process.

In this paper, we use the RUSBoost method [35], which achieves the benefits of RUS and adaptive
boosting techniques. It is efficient for dealing with data imbalance problems. The RUSBoost method
first takes random samples from the input data. Then, an ensemble of decision trees is employed,
which are weak classifiers. During the training, samples from the majority class are made equal to
the minority class. In each iteration, the classification rate of each learner is computed. The instances
of theft that are misclassified by the learner have more weight assigned to them. Giving the higher
weight to the misclassified instances in the boosting method ameliorates the loss of information in the
RUS technique. The final output is obtained through the ensemble of majority learners.

4. Simulation Results and Discussion

The simulation results are explained in this Section. In Section 4.1, we show the dataset
information. Section 4.2 shows the simulation environment. Sections 4.3 and 4.4 describe the
performance metrics and configuration of benchmark models, respectively. Sections 4.5 and 4.6
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present the results of our proposed model and benchmark schemes, respectively. The results are
further analyzed in Section 4.7.

4.1. Dataset Information

The electricity theft data are collected from SGCC, which is the largest utility in China. The data
are based on electricity consumption data. In this dataset, the data are labeled as either honest or theft.
The distribution of classes is imbalanced, and samples are scattered on a large scale. The data also
contain missing and erroneous values, which require preprocessing techniques. The released data also
provide information about the ground truth, from which 9% of total customers were found to have
committed theft, meaning that electricity theft is a severe problem in China. A description of the data
is shown in Table 5.

Table 5. Description of data.

Description Values

Duration of data collection 2014–2016

Number of fraudulent customers 1592

Number of honest customers 8560

Total customers 10,152

Ground truth 9%

4.2. Simulation Environment

We performed the simulations in Python. All the algorithms were trained and built in Keras [36].
The simulations were performed on a platform with an Intel Core i5 with 4 GB RAM. We conducted
the simulations on the preprocessed data set, which was pre-processed through the normalization and
interpolation methods. The proposed model was trained on the dataset of the SGCC. Firstly, the data
were split into groups of 75% and 25% of the data; i.e., 75% of the data was used for training the model
and 25% for testing it. For the training of the LSTM model, we passed 20 epochs initially, maintaining
a dropout of 0.2 with a batch size of 50 using the Adam optimizer. We used the bat optimization
technique to select the optimal hyper-parameters of the RUSBoost model. The configuration of the
benchmark models is also given in Section 4.4.

4.3. Performance Metrics

As mentioned in Section 1, the binary classification problems used for detecting electricity theft
involve imbalanced data. To evaluate the imbalanced data, the precision, recall and F1-score are quite
effective. The metrics used for the evaluation of the proposed model are shown as follows.

4.3.1. F1-Score

The F1-score is widely used for the evaluation of imbalanced datasets. It gives more reliable
results than the accuracy score. The F1-score is calculated from the precision and recall. The precision
shows the relevancy to the total number of actual results. The precision can be calculated as the number
of true positives divided by the sum of true positives and false positives. It is given in Equation (12),
which is mentioned in [37]:

Precision =
TruePositives

TruePositives + FalsePositives
. (12)

where True Positives is the number of dishonest consumers accurately predicted by the classifier,
while False Positives is the number of honest consumers predicted by the model as thieves.
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Recall means how many true positives were found over the predicted result. The recall can be
calculated as the number of true positives divided by the sum of true positives and false negatives.
This is given by Equation (13), described in [37]:

Recall =
TruePositives

TruePositives + FalseNegatives
. (13)

where False Negatives is the number of dishonest consumers predicted by the model as honest
consumers. The F1-score uses both the precision and recall to evaluate the performance of a model.
It shows the actual outcome of a model. It can be calculated using Equation (14), which is mentioned
in [38,39]:

F1− score = 2 ∗ Precision× Recall
Precision + Recall

. (14)

4.3.2. ROC Curve

The ROC curve is effective for evaluating an imbalanced dataset. It is obtained by plotting the FPR
against the true positive rate (TPR=. In terms of ETD, the TPR is the count of thefts that are actually
found to be suspect, while the FPR is the number of honest consumers counted as theft. The value of
the ROC curve ranges from 0 to 1. A classifier that obtains an ROC curve value near to 1 is considered
to be a good classifier. The AUC can be calculated using Equation (15), which is mentioned in [40]:

AUC =
∑ Ranki∈positive class −

M(1+M)
2

M× N
. (15)

where Ranki represents the rank value of each sample. M shows the number of positive class samples
and N shows the number of negative class samples. The AUC is also called the area under the
ROC curve.

4.4. Benchmark Models and Their Configurations

In this section, we describe the conventional models which are widely used as classifiers for ETD.
The range of hyper-parameter values is applied, and we select optimal values for each base model.

4.4.1. SVM Model

This is a popular classifier, and it was widely used for the ETD in [19,22]. The SVM finds an
optimal hyperplane, which maximizes the margin between different classes. The γ and regularization
parameters given in Table 6 are important for the selection of an optimal hyperplane to distinguish
classes. We choose optimal hyper-parameter values to select the best model of SVM.

Table 6. Hyper-parameter values of SVM.

Hyper-Parameters Range of Values Values

γ 2,5,8 2

C 0.001, 0.01, 0.1 0.1

4.4.2. LR Model

This is a supervised learning algorithm which has been widely used for classification in the
existing literature [20]. The LR utilizes the same principles as neural networks. The LR for binary
classification task is similar to the single hidden layer-based neural network with either a tangent or
sigmoid activation function. The tangent activation function value ranges between −1 and 1, while the
sigmoid function value ranges between 0 and 1. In the tangent function, a value near to 1 is classified
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as theft, and a value near to −1 is classified as honest. The hyper-parameters are given in Table 7.
During the implementation, we choose optimal values for accurate classification.

Table 7. Hyper-parameter values of LR.

Hyper-Parameters Range of Values Values

C 0.001, 0.01, 0.1 0.1

R l1 norm, l2 norm l2 norm

4.4.3. Hybrid CNN–LSTM Model

Along with the conventional machine learning algorithms, we have also used a hybrid
CNN–LSTM model [25] as a deep learning technique for comparison. The deep learning techniques
are used to build models in order to work with the massive data of smart meters. These models have
the ability to learn from time series data and extract the relevant features for accurate classification.
The CNN is a feed forward neural network, which is mostly used for complex classification problems.
In a hybrid CNN-LSTM model, the CNN is used to capture the global features from 1D data, while the
LSTM is used to capture periodicity from 2D data. We choose the best values during model validation,
which are given in Table 8.

Table 8. Hyper-parameter values of CNN and LSTM.

Hyper-Parameters LSTM Values CNN Values

Batch size 50 130

Dropout 0.2 0.01

Optimizer Adam Adam

Epochs 20 40

4.5. Performance of LSTM–RUSBoost Model for ETD

In this section, we describe the problems of the conventional models described in Section 2; i.e.,
the class imbalance problem, overfitting issue, the handling of missing values in the dataset and lack
of parameter optimization during classification. Firstly, we present the performance of our proposed
model on raw data. Initially, the missing values in the dataset are filled with the interpolation method.
Additionally, the data are normalized using the min–max scaling method. The visualization of the
data in Figure 5 shows the imbalanced distribution of labels; i.e., the number of thieving users is
represented by “1”, while “0” shows honest customers.

The consequences of using imbalanced data are that it trains the classifier on a majority dataset,
which results in the classifier being biased towards identifying fraudulent electricity consumers. In this
regard, the RUSBoost method is effective, as already described in Section 3.4. It achieves the benefits of
RUS and adaptive boosting techniques. It is efficient in dealing with data imbalance problems. In order
to show the effects of imbalanced data, we also implement SMOTE along with the SVM technique.
The authors in [22,23] used SMOTE to solve the data imbalance problem. In the SMOTE technique,
the samples of the minority class are increased by taking the information from their nearest neighbor.
This gives rise to the overfitting problem, and more execution time is required to run the process.

The training complexity of SVM is highly dependent on the input data. Figure 6 shows that,
due to training with imbalanced data, the performance of SVM is poor and it fails to classify the fraud
users successfully. The model is trained on a balanced dataset after SMOTE is applied to generate
synthetic data. Although the SMOTE–SVM method shows better results in comparison with SVM only,
SMOTE adds synthetic data samples to the minority class, and the synthetic data do not represent real
theft cases. Comparatively, our proposed method performs better for the imbalanced dataset in terms
of all performance metrics.
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During model validation, the hyper-parameters of RUSBoost are tuned to find optimal values.
The hyper-parameters are the learning rate, estimator and sampling strategy. We optimize the learning
rate of RUSBoost. Setting the hyper-parameters manually is a time-consuming task. The bat algorithm
is efficient for finding the optimal value of the learning rate. The results in Figure 7 show that parameter
tuning enhanced the performance of our proposed model in terms of all performance metrics.
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Figure 5. Visualization of unbalanced data.
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Figure 6. Performance comparison of balanced and unbalanced datasets.

Table 9 shows the confusion matrix of the true negative (TN), true positive (TP), false negative
(FN) and false positive (FP) rates of our proposed technique. Our goal in ETD is to maximize the TPR
and minimize the FPR. The confusion matrix shows good results for our proposed model. It achieves a
high percentage of TPR with a low FPR.

In order to perform a reliable evaluation, we also evaluate our model wit the ROC curve. The ROC
curve for our proposed model is shown in Figure 8. It is obtained by plotting the TPR against the
FPR. To train and test data, ROC covers a large area under the curve, which shows that the model has
accurately predicted the theft cases. Moreover, as mentioned in Section 3, the existing models [19–25]
tend to overfit when dealing with imbalanced data. In our proposed model, the results obtained for
both training and testing data are good, which means that the model does not overfit out-of-sample
data. The mapping of the problems addressed and validation results are given in Table 10.
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Figure 7. Performance comparison of parameter tuning.

Table 9. Confusion matrix values of the proposed model. TN: true negative; FP: false positive; FN:
false negative; TP: true positive.

Confusion Matrix Predicted No Predicted Yes

Actual No TN = 496 FP = 117

Actual Yes FN = 92 TP = 535
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Figure 8. ROC-AUC of proposed model.

Table 10. Mapping of problems addressed and validation results.

Limitation Number Limitation Identified Proposed Solution Validation Results

L.1 Imbalanced data S.1 RUSBoost classifier effectively
handles the imbalanced data as
shown in Figure 6

L.2 Missing values and outliers S.2 No direct validation

L.3 Overfitting S.3 Our proposed LSTM and bat-
based RUSBoost approach obtain
generalized performance, as shown
in Figure 8

L.4 High-dimensional data S.4 No direct validation

L.5 Parameter optimization S.5 The bat algorithm enhances the
performance of RUSBoost
as shown in Figure 7

L.6 Reliable evaluation S.6 We obtain a reliable
evaluation of our model
as indicated in Figures 7 and 8



Appl. Sci. 2020, 10, 4378 16 of 21

4.6. Performance Comparison

For comparison, the proposed model is compared with SVM [16], LR [17] and the hybrid
CNN–LSTM [22] model, which are the state-of-the-art benchmark models. The details and
configurations of these models are given in Section 4.4.

4.6.1. SVM Model Results

The SVM is a popular method used for the classification of ETD. However, it fails to achieve
generalized performance. The SVM gives better results for training data. However, for out-of-sample
data, the model tends to overfit. The overfitting in SVM for high-dimensional data is evident from
Figure 9; i.e., the AUC for the training data is 73.4%, and the AUC for out-of-sample data is only 57.3%.
Thus, due to the generalization problem, its performance degrades. The confusion matrix for this
model also shows a high FPR, which means that it falsely rejects the theft cases during classification.
Table 11 shows the TP, TN, FP, and FN values for SVM. Furthermore, SVM covers less area under
the ROC curve than our proposed method. This model has poor performance compared to the
other benchmark schemes. Thus, SVM is not suitable for the class imbalance problem considering
high-dimensional data.
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Figure 9. ROC-AUC of the SVM model.

Table 11. Confusion matrix values of the SVM model.

Confusion Matrix Predicted No Predicted Yes

Actual No TN = 97 FP = 516

Actual Yes FN = 8 TP = 619

4.6.2. LR Model Results

LR uses the principle of neural networks and the logistic sigmoid function to return the value
of the variable. It is used for binary classification problems, as already discussed in Section 2.
The configuration of the LR model is given in Section 4.4. We implement this model using the
SGCC data. Moreover, we have investigated the effects of highly imbalanced data on the performance
of the supervised learning LR model. The performance of LR without any class balancing technique is
the worst of the models used. We utilized SMOTE for balancing the data and then implemented the
LR. The confusion matrix for the LR model is shown in Table 12. This gives the information regarding
how accurately the model predicts electricity theft. The algorithm is efficient in predicting the number
of honest consumers; however, the FNR is still high, which means that it misses real theft cases and has
poor results in detecting the electricity theft. This implies that the LR has poor performance. Figure 10
shows the ROC-AUC of LR model.
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Figure 10. ROC-AUC of LR model.

Table 12. Confusion matrix values of LR model.

Confusion Matrix Predicted No Predicted Yes

Actual No TN 518 FP 95

Actual Yes FN 237 TP 390

4.6.3. Hybrid CNN-LSTM Model Results

In a hybrid CNN–LSTM model, the CNN is used to capture the global features from
one-dimensional data, while the LSTM is used to capture periodicity from two-dimensional data.
The hybrid model has the ability to learn from huge amounts of data and perform better for feature
extraction and tje classification of electricity theft. To evaluate the CNN–LSTM model, we use the
ROC curve, precision, recall and F1-score. The CNN–LSTM model exhibits better results, as shown in
Table 13. The CNN–LSTM model performs better as compared to the other two models; i.e., SVM and
LR. The small bias in the test dataset in Figure 11 shows that the CNN–LSTM can learn features with a
large amount of electricity consumption data. During hyper-parameter tuning, increasing the number
of epochs decreases the training and testing loss for the this model. However, this model has a high
execution time.
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Figure 11. ROC-AUC of CNN–LSTM model.
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4.7. Summary of Results

The summary of results is given in Figure 12 and Table 13. In order to validate the performance
of the proposed system model, it is compared with the state-of-art benchmark schemes. We use
reliable performance metrics such as the precision, recall, F1-score and ROC curve. For comparison,
the benchmark models used in this paper are LR, SVM and CNN–LSTM models. The results prove
that SVM performs worst compared to the other benchmark schemes. This is due to the fact that SVM
does not handle large time series data; for massive data, it causes overfitting. We see from Figure 9
that, for testing data, the result of SVM is shown to be the worst: i.e., it achieves an ROC curve of
57.2%. The CNN–LSTM model shows better performance compared to SVM and LR; i.e., the value of
the ROC curve is 81% and recall is 85%. It is considered to be the best model among the benchmark
schemes. The CNN–LSTM model performs better because it is a deep learning model and can handle
large time series data well.
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Figure 12. Performance comparison.

The proposed LSTM–RUSBoost model is reliable and beats the given benchmark schemes in terms
of all performance metrics. Our proposed model shows superiority to other models for many reasons;
firstly, it can effectively handle imbalanced data well by the random under-sampling operation and
then by using the adaptive boosting technique for classification. Secondly, the LSTM block efficiently
extracts the relevant features during feature refinement. Finally, the optimization by the bat algorithm
further improves the performance of our proposed system model.

Table 13. Summary of results.

Models Accuracy Precision Recall F1-Score ROC

CNN–LSTM 0.742 0.725 0.851 0.779 0.817

SVM 0.577 0.545 0.70 0.702 0.572

LR 0.732 0.804 0.622 0.701 0.645

Proposed Model 0.879 0.889 0.9109 0.961 0.879

5. Conclusions and Future Work

In this paper, a model for ETD is proposed and evaluated on a real-time series dataset. In the
proposed system, the electricity data are pre-processed to remove null and undefined values using
the normalization and interpolation methods. Afterwards, the LSTM is used for feature refinement,
which extracts the relevant features from the pre-processed data. Finally, the RUSBoost method is
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applied to balance the data efficiently; i.e., to classify the data into honest and dishonest customers.
To enhance the performance of the RUSBoost method, a bat algorithm is used for parameter
optimization. For the evaluation of the proposed model, it is compared with SVM, LR and CNN–LSTM
models. The simulation results from the evaluation show the superiority of the proposed model over
the existing models in terms of handling imbalanced data, parameter optimization and overfitting.
Furthermore, using the performance metrics, the proposed model achieves 96.1% for F1-score, 88.9%
for precision, 91.09% for recall and 87.9% for ROC-AUC. However, despite the proposed model
outperforming alternative techniques, it is overly sensitive to changes in the input data. In future,
electricity datasets for both residential and commercial buildings will be considered.
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