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Abstract: Railway safety is a matter of importance as a single failure can involve risks associated with
economic and human losses. The early fault detection in railway axles and other railway parts represents
a broad field of research that is currently under study. In the present work, the problem of the early
crack detection in railway axles is addressed through condition-based monitoring, with the evaluation of
several condition indicators of vibration signals on time and frequency domains. To achieve this goal, we
applied two different approaches: in the first approach, we evaluate only the vibrations signals captured
by accelerometers placed along the longitudinal direction and, in the second approach, a data fusion
technique at the condition indicator level was conducted, evaluating six accelerometers by merging the
indicator conditions according to the sensor placement. In both cases, a total of 54 condition indicators per
vibration signal was calculated and selecting the best features by applying the Mean Decrease Accuracy
method of Random Forest. Finally, we test the best indicators with a K-Nearest Neighbor classifier. For
the data collection, a real bogie test bench has been used to simulate crack faults on the railway axles, and
vibration signals from both the left and right sides of the axle were measured. The results not only show
the performance of condition indicators in different domains, but also show that the fusion of condition
indicators works well together to detect a crack fault in railway axles.

Keywords: railway axles; crack detection; condition monitoring; time-domain features; frequency-domain
features; random forest classifier; feature extraction; feature selection

1. Introduction

The railway transportation has a rapid growth worldwide, railway safety is a subject of high interest
in the research field. Railway axles are one of the most critical elements in railway transportation systems,
and failures such as a cracked axle can lead to the derailment and probably human and economic losses.
Therefore, the early detection of faults in railway axles is crucial in railway safety [1,2].

The ultrasound technique can be used to perform condition monitoring over railway axles; however,
its disadvantage is that it does not provide continuous information between different tests; therefore,
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it is not possible to detect fast-growing faults [3]. Other techniques that involve variables, such as
temperature [4], acoustics [5], and acoustic emission [1], have been used for the continuous monitoring of
faults on railway axles. However, vibration signal monitoring has become the most common monitoring
technique due to its high reliability. Fault diagnosis based on vibration signals enables early fault detection,
online condition monitoring, and when combined with different signal processing methods and artificial
intelligence, better diagnostic results are obtained [6–8].

Fault diagnosis based on vibration signals with a data-driven approach is generally accomplished in
four phases: (a) acquisition and conditioning of the vibration signal, (b) extraction of features, also called
condition indicators, (c) selection of features, and (d) classification. After acquisition and conditioning
of the vibration signal, in the feature extraction phase, we study the change of the signal behavior that
can be an indicator of the fault condition. The study of these changes in the signal can be focused on the
time, frequency or time-frequency domains. From these domains, condition indicators (CIs) or features
can be extracted, which allows monitoring or detecting different faults [9]. The evaluation of the CIs has
been widely studied, leading to achieve good results in the detection of faults in the railway axles. In the
time-frequency domain, the energy calculated by means of Wavelet Packet Transform (WPT) has been
used, allowing crack detection with excellent results [10,11]. The above-mentioned works only measured
vibrations in the railway axle and bearings in insulation, without the bogie.

The work developed by Gómez et al. [7] (which is the same case of study of the present work), used
real railway axles installed in a real Y21 bogie, where the vibration signals from six accelerometers were
processed by means of the WPT energy. The feature selection stage was carried out by means of a visual
analysis, the energy packages were selected to increase their values with the depth of the crack, and the
packages varied with the change of speed. In the classification stage, a radial-basis function-based artificial
neural network was used with 32 inputs corresponding to the selected energy packets, the load and
speed values; the two possible outputs of the network were healthy or cracked conditions. This work
highlighted that the six accelerometers provide important information for detection and better results are
achieved at certain speeds. A recent work, over this same case, presented by Lucero at al. [12] evaluated
the signals from the six accelerometers; thirty features from the time-domain signal were extracted, then,
feature selection was applied, and finally the classification was implemented through a random forest
classifier. The best accuracy in the classification was found with ten features, extracted from vibration
signals measured with the accelerometers located in the longitudinal direction. The results in this work
also show that features such as Wilson Amplitude (WAMP), Wave length (WL), Zero crossing (ZC), Slope
Sign Change (SSC), mean, Energy Operator (EO), and the skewness are well-suitable to handle the fault
classification. On the other hand, vibrations signals by nature exhibit random behavior in a wide range of
applications. To reveal the strengths of different signal domains, the Fast Fourier Transform can be used
to switch from time to frequency domain, and it has been noticed changes in the vibration signature of
railway elements such as axle-boxes [13]. Moreover, if we want to understand how the strength of a signal
is distributed in the frequency domain, we can use the power spectral density (PSD), which describes
the power of the signal as a function per frequency unit. Therefore, the PSD can be used to infer normal
operation or fault conditions of railway vehicle [14,15].

Through an analysis of CIs, it is possible to obtain adequate information for the understanding and
interpretation of the machinery condition, such as the definition of limit values of certain indicators to
establish that the machinery is in normal or abnormal conditions. This would support the diagnosis
process and the maintenance decision-making [16,17]. On the other hand, the result of the diagnosis
from the analysis of CIs can be improved by having several sensors to monitor the machinery because it
would allow performing Data -Fusion [18,19]. The extraction of indicators in time and frequency domains
requires a lower computational cost than the required one for calculating indicators in the time-frequency
domain [20].



Appl. Sci. 2020, 10, 4367 3 of 19

Data Fusion refers to the combination of data from multiple sensors of either the same or different
types, and can be defined as the use of techniques that combine data from multiple sources. Thus, by using
data fusion, a more reliable and realistic inference, deduction or discrimination can be made by using data
from different isolated sources in data-driven approaches [21].

The goal of this work is the evaluation of the performance of condition indicators in time and frequency
domains for crack detection in railway axles through the use of vibration signals. Two approaches are
proposed: (1) the first one evaluates the indicators extracted from vibration signal of two accelerometers,
in time domain, frequency domain, and their combination, and (2) the second approach evaluates the
data fusion of the indicators of the six accelerometers. The rest of this paper is organized as follows.
Section 2 presents the condition indicators used in this work, the selection, and classification methods.
Section 3 contains the experimental set-up and data acquisition. In Section 4, the proposed methodology
for evaluating the condition indicators performance is detailed. Then, Section 5 shows the results and
discussion, and finally in Section 6, the conclusions are addressed.

2. Background

2.1. Condition Indicators

The analysis of signals can be done with several techniques and the use of signals on different domains
can be useful to enrich the information obtained from a signal, leading us to a better understanding of its
nature. If we are interested in quantifying some signal properties, we can use mathematics, statistics-based
values or condition indicators to measure the different signal characteristics; this can help revealing the
hidden information inside the signal. These condition indicators (CIs) are often called features. In the
present work, the approach used in this feature extraction phase is a combination of different features
computed from the signal in both time and frequency domains.

In case of time domain, we used 30 statistical indicators resulting from a mixture of common features
mainly used in fault diagnosis and features coming from the Electromyography (EMG) field, such as
described in [9]. Additionally, we used frequency-based CIs due to the fact that the frequency domain can
reveal valuable information about the change in the monitored system condition in a different shape.

The frequency spectrum X(k) of a discrete-time signal x(i) can be computed by using the Fast Fourier
Transform (FFT). The spectral analysis shows all the harmonic components of a signal, leading to a better
understanding of the underlying phenomenon behavior. Another common approach to search signal
characteristics in the frequency domain is the Power Spectral Density (PSD). The power spectrum of a
signal P(k) is given by

P(k) =
( 1

K

)
|X(k)|2 (1)

where X(k) is a previously obtained frequency spectrum and K denotes the number of points in the power
spectrum. The PSD measures the average power of a signal in terms of the frequency, and it also shows
periodicities [22,23]. The knowledge about the power distribution among the frequency components
contained in a signal is also useful to understand the signal nature.

In frequency domain, we have used 24 condition indicators: 15 of them computed over the frequency
spectrum and nine over the power spectrum. These 24 condition indicators are presented in Table 1; here,
fk is the frequency value of the spectrum in the corresponding frequency bin k, whereas K denotes the
total number of samples in the frequency and power spectrum.
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Table 1. Features.

Mean of spectrum F1 = ∑K
k=1 X(k)

K

Variance of spectrum F2 = ∑K
k=1 (X(k)−F1)2

K−1

Skewness of spectrum (Skewnessf) F3 = ∑K
k=1

(X(k)−F1)3 K(
√

F2)3

Kurtosis of spectrum F4 = ∑K
k=1 (X(k)−F1)4

K(F2)4

Central Frequency F5 = ∑K
k=1 fk X(k)

∑K
k=1 X(k)

STD of spectrum F6 =

√
∑K

k=1
( fk−F5)2X(k)∑K

k=1 X(k)

RMS of spectrum F7 =

√
∑K

k=1 f 2
k X(k)

X(k)

CP1 F8 = ∑K
k=1 ( fk−F5)3X(k)

K(F6)3

CP2 F9 = F6
F5

CP3 F10 = ∑K
k=1 ( fk−F5)

1
2 X(k)

K
√

F6

CP4 F11 = ∑K
k=1 ( fk−F5)3X(k)

F62K

CP5 F12 =

√
∑K

k=1 f 4
k X(k)

∑K
k=1 f 2

k X(k)

Centroid of Spectrum F13 = ∑K
k=1 kX(k)

∑K
k=1 X(k)

Spectrum Spread F14 =

√
∑K

k=1 (k−F13)2X(k)
∑K

k=1 X(k)

Entropy of spectrum F15 = −∑K−1
k=1 Pn(k)log2[Pn(k)]

where Pn is the normalized total spectral energy
Pn(k) =

X(k)
∑K

k=1 X(k)

Total power F16 = ∑K
k=1 P(k)

Median Frequency (MDF) F17 = 1
2 ∑K

k=1 P(k)

Peak frequency (PKF) F18 = max(P(k)), k = 1, ...K.

First Spectral Moment F19 = ∑K
k=1 P(k) fk

Second Spectral Moment F20 = ∑K
k=1 P(k) f 2

k

Third Spectral Moment F21 = ∑K
k=1 P(k) f 3

k

Fourth Spectral Moment (SM4) F22 = ∑K
k=1 P(k) f 4

k

Spectral moment ratio (VCF) F23 = F20
F16 − ( F19

F16 )
2

Frequency ratio (FR) F24 = ∑
ULC= fmax/2
LLC= fmin

P(k)/ ∑
UHC= fmax

LHC= fmax
2 +1

P(k)

2.2. Random Forest for Feature Selection

Random Forest (RF) is a machine learning algorithm designed by Breiman in 2001 [24] for classification
and regression. RF uses multiple decision trees to classify a sample; each decision tree is built by using
bootstrap sampling with a random feature selection implementation. Their predictions are used in a voting
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system where, from all trees, a majority class is calculated. The out-of-bag (OOB) error is mostly used to
compute the expected model generalization performance [25].

In Random Forest, two methods defined by Breiman can be used for feature selection through of
a feature ranking (feature importance): Mean Decrease Impurity (MDI) and Mean Decrease Accuracy
(MDA). In this work, MDA is used for feature selection because if a feature does not impact the model,
the method permutes the features values, such that the prediction accuracy should not decrease over the
OBB observations.

Feature Selection by MDA

Given a data set Dn = {(X1, Y1), . . . , (Xn, Yn)} of n samples and p independent variables with
Xi = (X(1)

i , . . . , X(p)
i )(i ∈ 1, . . . , n) being a training sample, the importance of the j-th feature X(j) =

X(j)
1 , . . . , X(j)

n (j ∈ 1, . . . , p), is calculated averaging the OBB errors of all permutations of trees [25].

Denote Dl,n the out-of-bag data set of the l − th tree and Dj
l,n the same data set, where the values of

X(j) have been randomly permuted. Keeping in mind that the mn(·; Θl) represents the l-th tree estimate
and where Θ1, ..., ΘM are independent random variable used to resample the training set before the growth
of individual trees, MDA takes the form

MDA(X(j)) =
1
M

M

∑
l=1

{
Rn[mn(·; Θl), Dj

l,n]− Rn[mn(·; Θl), Dl,n]
}

(2)

where Rn is defined for D = Dl,n or D = Dj
l,n by

Rn [mn(·; Θl), D] =
1
|D| ∑

i:(Xi ,Yi)∈D
[Yi −mn(Xi; Θl)]

2 (3)

2.3. k-Nearest Neighbor Classifier

The K-Nearest Neighbor classifier (KNN) is a popular algorithm directly based on the training
samples and commonly used in pattern classification [26].

To classify an unknown sample, two steps are followed. First, KNN calculates the distance between
the unknown point q and points xi in the training data, according to a distance metric d(q, xi). Generally,
d(·, ·) can be Euclidean, Manhattan, Minkowski, Cosine, Chebychev Euclidean, Mahalanobis Standardized
Euclidean, Hassana, or Chi-Square distance [27,28], just to mention a few distance metrics. Second, the k
nearest neighbors are used to determine the class of q. The specified distance rule for classification of a
new sample was Simple Voting. Then, an approach where new observation is assigned to the class of the
majority of the k nearest points was used [29].

3. Experimental Set-Up

3.1. Bogie Test Bench

The bogie test bench was designed and manufactured by Danobat Railway Systems. It allows
simulating different faults in the elements of the bogie. Figure 1 shows the main parts of the bogie, which
is composed by the fixed wheels set (1) resting on the structure anchored to the floor (3). Wheels are
connected by the fixed shaft (2), whereas the set of rotating wheels (6) are connected by the rotary axis (7);
here is where the faults are simulated. The rotating wheels are driven by the rollers (10), and the speed
is controlled by the roll driver (4), which is operated manually. The load is simulated by two hydraulic
cylinders (9), and transmitted through a chain that pushes a beam (12) against the bogie structure (5).
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Three accelerometers are located on the left side (11) and right side (8) to measure acceleration in all three
directions on each side.

1

4

2

3

(a)

1

1

10

5

7

6

8

9

11

12

(b)

Figure 1. Components of the bed test. (a) Back view of the test bed. (b) Front view of the test bed.

3.2. Signal Acquisition and Experimental Conditions

A pair of bearings is included inside each axle box, supporting the rotating wheels. Three uni-axial
accelerometers were placed at each axle box of the wheelset as indicated in Figure 2a, three on the right
side (RS) and three on the left side (LS) oriented in three directions: left vertical (LV) accelerometer,
left longitudinal (LL) accelerometer, and left axial (LA) accelerometer; right vertical (RV) accelerometer,
right longitudinal (RL) accelerometer, and right axial (RA) accelerometer, as presented in Figure 2b.
The accelerometer model is CMSS-RAIL-9100 with sensitivity of 100 mV/g, frequency range 0.52 Hz–8 kHz
and resonance frequency 25 kHz, the accelerometer is coupled to the conditioner system SKF Multilog
IMX-R, that was connected to a computer with the software SKF @ptitude Observer. This conditioner
system is for industrial use and reduces the possibility of the signals having noise or interference. The
sampling frequency was 12.8 kHz for a time of 1.2 s. The experimental conditions for load, speed,
the rotation direction, and crack depths in the railway axle (see Figure 2) are presented in Table 2 for
the four experimental conditions; at least 60 samples were acquired for each condition. We named the
data obtained from each accelerometer: right-hand accelerometer data set (RD), and for the left and
accelerometer data set (LD). Crack faults were artificially generated by an abrasive grinding process.
Further details of the experimental conditions can be found in [7].

Table 2. Experimental conditions.

3 loads - 4, 10, y 16 tons

2 speeds conditions
- 20 km/h
- 50 km/h

6 vibration measurement placements

- Left vertical (LV) accelerometer, left longitudinal (LL) accelerometer,
left axial (LA) accelerometer
- Right vertical (RV) accelerometer, right longitudinal (RL) accelerometer,
right axial (RA) accelerometer

Rotational directions - Clockwise and counterclockwise

4 fault conditions, see Figure 2

- Healthy (Normal)
- Crack level 1 (e = 5.7 mm)
- Crack level 2 (e = 10.9 mm)
- Crack level 3 (e = 15 mm)
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7

e

(a)

Right Vertical (RV)

accelerometer

Rigth Axial (RA)

accelerometer

Right Longitudinal

(RL) accelerometer

Left Vertical (LV)

accelerometer

Left Longitudinal

(LL) accelerometer

Left Axial (LA) 

accelerometer

Placement of  the three 

accelerometers in the axle box

e
Crack location

(b)

Figure 2. Location of accelerometers and crack fault. (a) Location of the crack in the railway axle.
(b) Location of accelerometers and crack fault.

4. The Proposed Approachs

This work proposes evaluating CIs for crack detection in railway axles. Two approaches are developed:
the first approach evaluates the CIs of two accelerometers in the time domain, frequency domain,
and combining them, the second approach evaluates the fusion of the CIs of all six accelerometers.

4.1. Proposed Approach 1

This approach evaluates condition indicators extracted from the vibration signal in time domain,
frequency domain, and a combination of both called time + frequency domain for crack detection in railway
axles. In this approach, we analyze the two accelerometers located along the longitudinal direction: on the
right side (RL) and another on the left side (LL). According to the work developed by Lucero et al. [12],
these accelerometers and their orientation offer the best information.

Figure 3a shows the workflow of the first approach. It has four stages: (1) Data Acquisition, (2) Feature
Extraction, (3) Feature Selection, and (4) Classification. Each stage includes the following tasks:

1. Data acquisition: two sets of signals are acquired, from the left accelerometer (LL) along the
longitudinal direction and from the right accelerometer (RL) along the same direction under different
fault, load, and speed conditions, as explained in Section 3.2.

2. Feature extraction: the feature extraction was applied as explained in Section 3.2. Figure 4 shows
examples of vibration signals in time domain, and signals in the frequency domain using FFT and
PSD from both the left and right accelerometers, for normal (healthy) condition and fault level 1.
For each signal, different CIs were obtained according to three domains: (i) 30 CIs for time domain
(CI_T), (ii) 24 CIs for frequency domain (CI_F), and (iii) 54 CIs from time + frequency domain
(CI_TF). Therefore, six data sets were completed. Three data sets were obtained with the left-side
accelerometer along the longitudinal direction (LL): the first CI_TL contains CIs extracted from the
left side accelerometer and in time domain, the second CI_FL contains the CIs in frequency domain
for the same accelerometer, and finally, the third CI_TFL has CIs in the time + frequency domain,
also with the same accelerometer. Similarly, with the right-side accelerometer along the longitudinal
direction (RL), we obtained other three data sets: CI_TR, CI_FR, and CI_TFR on time, frequency and
time + frequency domain, respectively.
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3. Feature selection: this process starts by removing correlated features. Correlation coefficient value on
0.8–1 between two CIs suggests these two features are highly correlated [30]. In this study, a threshold
value equal to or greater than 0.95 (95%) was selected to identify two highly-correlated features,
in all data sets. This threshold was stated after obtaining good performance in classification. Next,
a normalization process was applied by scaling characteristics between −1 and 1. Normalization
can be applied to Normal distributed data, as well as to data with another type of distribution.
This process helps KNN to give equal importance to all CIs. After the preprocessing step, a Random
Forest model was implemented with 40 trees as the main parameter. MDA metric was used to select
the ten most important CIs, and then, the selection of the ten best-ranked features from each dataset.

4. Classification: each dataset is organized in a matrix of samples in the rows and CIs in the columns.
Each pre-selected dataset (built from 10 ranked CIs) in stage 3 is classified using KNN (a value of
k = 3 was chosen as the main parameter after testing different number of neighbors) and the cosine
distance metric was used.

Usually, when using k-folds cross-validation, values of k = 5 or k = 10 are chosen due to the good
results obtained empirically [31]. In our work, the best results were obtained for k = 5. Therefore,
a five-fold cross-validation strategy was carried out; the average accuracy and standard deviation
(std) on the cross-validation process were calculated from 5 runs.

Finally, many classifications were performed; these starts by using the first feature for a classification,
next, the two first features are used for a new classification, and so on, until reaching the ten first
features. The purpose is to analyze the contribution of each ranked feature.
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(b)

Figure 3. Flowcharts of the proposed approaches. (a) Flowchart approach 1 (b) Flowchart approach 2.
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Figure 4. Sample vibration signal. Left and right longitudinal accelerometers with load of 4 tons, speed
of 20 km/h, and crack level 1. (a) Time Signal left Accelerometer; (b) Time Signal right Accelerometer;
(c) Frequency Spectrum left Accelerometer; (d) Frequency Spectrum right Accelerometer; (e) Power Density
Spectrum left Accelerometer; (f) Power Density Spectrum right Accelerometer.
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4.2. Proposed Approach 2

The second approach evaluates the signals from the six accelerometers using data fusion at the
indicator level. Figure 3b shows the workflow of this approach. It has five stages: (1) Data acquisition,
(2) Feature extraction, (3) Data-fusion, (4) Feature selection, and (5) Classification. Each of the stages is
explained below.

1. Data acquisition: the six vibration signals, three accelerometers mounted on the left side LV, LL, LA,
and three accelerometers placed on the right side RV, RL, RA, were acquired under different faults,
load and velocity conditions.

2. Feature extraction: for each signal, different condition indicators were obtained according to two
domains: (i) 30 CIs in time domain and (ii) 24 CIs in the frequency domain. All those condition
indicators are combined, so, for each vibration signal, 54 CIs are obtained. Therefore, six data sets
were used, three different sets of CIs per each accelerometer.

3. Data-Fusion: from the six data sets of CIs obtained in the feature extraction stage, data fusion is
performed at the indicator level. Three new sets of indicators are obtained: (i) The sets of CIs extracted
from signals of the three accelerometers on the left side (LV, LA, LL) are fused, obtaining the first set
of fused CIs called CI_DFL; (ii) the CIs of the three accelerometers on the right side (RV, RA, RL) are
fused, obtaining a fused data set called CI_DFR; and finally (iii) the CIs of the six accelerometers are
fused, obtaining the third set of fused CIs called CI_DFRL.

4. Feature selection and classification: from the three data sets fused in stage 3, the next stages 4
(feature selection) and 5 (classification) were carried out by following the same procedures,
experimental conditions, and CIs analysis of the stages Feature Selection and Classification of the
approach 1 detailed in Section 4.1 and presented in Figure 3a.

5. Results and Discussion

5.1. Results of Approach 1

Tables 3–8 show the approaches to the results of approach 1. The top 10 CIs and their averaged
accuracies for each data set are shown in Tables 3, 5 and 7. Tables 4, 6 and 8 show the accuracies per class
for CI_TL, CI_FL and CI_TFL, respectively.

In Table 3, the best accuracy of 92.89%, was obtained by using CI_TL with 7 CIs. Otherwise, to CI_TR
a maximum accuracy of 95.17% was obtained with 8 CIs. Per-class accuracy values for CI_TL are presented
in Table 4. The best performance with 10 attributes shows that class 1 has the highest classification accuracy
over 98% followed by class 2 with accuracy over 93%. Classes 3 and 4 have similar classification accuracy
over 86%. Class 3 does not reach accuracy over 89% in any case. Class 4 can reach accuracy over 92%
opposite to the accuracy of classes 1 and 2. Regarding the top 10 of time domain CIs presented in the
Table 3, nine of the 10 are common: zero crossing, wave length, SSC, WAMP, kurtosis, energy operator,
CPT3, shape factor, and skewness.

In Table 5, the best accuracy of 91.29% was obtained using CI_FL with 7 CIs. By contrast, to CI_FR a
maximum accuracy of 94.36% was obtained with 9 CIs. Per-class accuracy values for CI_FL are presented
in Table 6. The best performance with 10 attributes shows that class 4 has the highest classification accuracy
over 98% followed by class 2 with accuracy over 89%. Classes 1 and 3 have similar classification accuracy
over 85%. Classes 1, 2 and 3 do not reach accuracy over 89% in any case. Regarding the top 10 frequency
domain CIs presented in the Table 5, seven of the 10 are common PKF, CP2, FR, skewnessf, centroid of
spectrum, VCF, and spectrum spread.

In Table 7, the best accuracy of 96.62% due to its low std 0.59, was obtained using CI_TFL with 10 CIs.
By contrast, to CI_TFR a maximum accuracy of 97.14% was obtained with also 10 CIs. Per-class values for
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CI_TFL are presented in Table 8. The best performance with 10 attributes shows that classes 1 and 4 have
similar high classification accuracy over 97%. Classes 2 and 3 have also similar classification accuracy over
95%. From the use of seven attributes, all the classes reach classification accuracy over 90%. Regarding the
top 10 time + frequency domain CIs presented in the Table 7, six of the 10 are common; four belong to the
frequency domain: PKF, CP2, FR, SM4; and two to the time domain: zero crossing and SCC. This result
shows that the use of combined features from time and frequency domains can improve the classification
accuracy for each class.

Table 3. Top 10 CIs and accuracies average over time domain.

CI_TL CL_RT

# CIs Accuracy (%) Std # CIs Accuracy (%) Std

1 Zero crossing 25.6 0.20 1 SSC 25.85 0.26

2 Wave length 60.45 3.26 2 SRAV 54.74 3.63

3 Kurtosis 76.63 2.04 3 Wave length 85.43 3.15

4 WAMP 85.07 1.29 4 WAMP 87.21 1.32

5 SSC 86.93 1.50 5 Shape factor 89.27 1.83

6 CPT4 89.69 1.12 6 Skewness 90.43 1.85

7 Skewness 92.89 1.45 7 Zero crossing 93.65 2.46

8 Shape factor 92.89 1.18 8 Kurtosis 95.17 1.30

9 CPT3 92 1.61 9 Energy operator 94.64 0.93

10 Energy operator 91.64 0.74 10 CPT3 94.36 1.38

Table 4. Accuracy per class to CI_TL (time domain).

# CIs Classes (Accuracy%)

1 2 3 4

1 Zero crossing 100 0 0 0

2 Wave length 65.95 55.44 48.58 71.92

3 Kurtosis 86.47 74.04 71.58 74.06

4 WAMP 89.23 84.56 83.09 83.21

5 SSC 90.97 84.56 86.34 85.76

6 CPT4 94.45 88.77 84.55 90.9

7 Skewness 97.57 92.63 88.84 92.32

8 Shape factor 98.25 94.04 87.75 91.23

9 CPT3 97.57 93.68 88.15 88.32

10 Energy operator 98.26 93.68 86.33 87.95

To evaluate the CIs in time, frequency and time + frequency domain, we compare the accuracy of
each ranked feature set. Figure 5 shows the accuracy results for each data set. Here, the X-axis represents
the number of k first CIs most important selected by RF. The Y-axis represents the average accuracy of the
k first CIs.
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In order to illustrate the importance of feature selection, a scatter plot obtained from the best case,
related to the CI_FL set, is presented in Figure 6, where the class 1 is the red color, class 2 is the green
color, class 3 is the cyan color, and class 4 is the violet color. This set provides the high accuracy and low
std using 3 attributes. The formation of small clusters can be observed for each of the classes in different
locations in the three-dimensional space, and no perfect boundaries are exhibited. However, these three
attributes can provide over 80% of accuracy, according to Figure 5.

Table 5. Top 10 features and accuracies average over frequency domain.

CI_FL CI_FR

# CIs Accuracy (%) Std # CIs Accuracy (%) Std

1 PKF 25.6 0.15 1 Skewnessf 25.85 0.17
2 CP2 56.8 2.93 2 Spectrum spread 41.77 2.44
3 SM4 85.51 1.35 3 PKF 71.38 2.65
4 FR 72 2.54 4 CP2 82.75 3.13
5 Skewnessf 79.03 2.57 5 MDF 83.99 2.48
6 Spectrum spread 87.21 2.43 6 FR 89.36 1.58
7 VCF 91.29 2.92 7 CP3 94.01 1.16
8 Centroid of Spectrum 90.4 2.82 8 SM1 93.47 1.32
9 Kurtosisf 90.13 1.08 9 VCF 94.36 0.93

10 Entropy of spectrum 90.23 1.97 10 Centroid of Spectrum 94.27 1.70

Table 6. Accuracy per class to CI_FL (frequency domain).

# CIs Classes (Accuracy%)

1 2 3 4

1 PKF 100 0 0 0
2 CP2 53.8 65.61 56.14 51.47
3 SM4 78.14 85.96 84.53 93.8
4 FR 71.86 68.77 68.33 79.16
5 Skewnessf 81.98 77.89 74.79 81.41
6 Spectrum spread 85.4 83.86 84.18 95.62
7 VCF 89.24 89.82 87.77 98.54
8 Centroid of Spectrum 87.86 89.82 86.32 97.81
9 Kurtosisf 87.15 90.88 84.86 97.81
10 Entropy of spectrum 87.85 89.47 85.63 98.17

Table 7. Top 10 CIs and accuracies average over time and frequency domain.

CI_TFL CI_TFR

# CIs Domain Accuracy (%) Std # CIs Domain Accuracy (%) Std

1 Zero crossing Time 25.6 0.15 1 SSC Time 25.85 0.17
2 PKF Freq 52.8 1.33 2 FR Freq 50.81 1.77
3 WAMP Time 73.43 3.37 3 SM1 Freq 71.56 1.86
4 CP2 Freq 78.85 1.91 4 Skewnessf Freq 88.56 1.88
5 SSC Time 82.49 1.89 5 Spectrum spread Freq 93.83 1.67
6 Shape factor Time 92.62 1.70 6 Zero crossing Time 95.26 1.19
7 Skewness Time 93.69 2.08 7 SM4 Freq 94.63 1.15
8 Kurtosis Time 94.49 0.89 8 CP3 Freq 96.87 0.55
9 SM4 Freq 94.4 2.35 9 CP2 Freq 96.6 2.46

10 FR Freq 96.62 0.59 10 PKF Freq 97.14 1.29
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Table 8. Accuracy per class to CI_TFL (time and frequency domain).

# CIs Domain Classes (Accuracy%)

1 2 3 4

1 Zero crossing Time 100 0 0 0
2 PKF Freq 63.91 43.51 41.36 62.4
3 WAMP Time 79.89 64.21 61.16 88.69
4 CP2 Freq 77.11 75.09 72.64 90.88
5 SSC Time 84.06 79.3 76.63 90.15
6 Shape factor Time 93.04 89.47 92.79 95.25
7 Skewness Time 96.19 90.88 96.77 90.86
8 Kurtosis Time 96.88 92.28 96.39 92.32
9 SM4 Freq 96.88 91.58 97.48 91.59
10 FR Freq 97.21 95.09 96.4 97.81

5.2. Results of Approach 2

The top 10 CIs and their accuracies are presented in Tables 9 and 10 by using a Data Fusion approach,
for all three data sets. The set of fused CIs from the left-side accelerometers (LV, LA, and LL) named CI_DFL,
the set of fused CIs from the right-side accelerometers (RV, RA, and RL) named CI_DFR as presented in
Table 9, and the third set of fused CIs from all six accelerometers named CI_DFRL as presented in Table 10.
Figure 5 shows the accuracy results for each data set. Here, the X-axis represents the number of k first CIs
most important selected by RF. The Y-axis represents the average accuracy of the k first CIs. Regarding
the 10 top CIs presented in the Tables 9 and 10, five of the 10 are common, four belong to the frequency
domain, i.e., PKF, FSK, VCF, skewnessf, and one to the time domain, i.e. SCC.

The highest accuracy (acc) using 10 condition indicators in CI_DFL was 97.56% with a std of 0.88,
for CI_DFR was 98.01% with std of 0.88, and for CI_DFRL was 98.37% with std of 0.76. Of the latter, its
accuracy by class is presented in the Table 11, where the class with the highest accuracy was number 4
obtaining 100% accuracy with 9 CIs.

In order to illustrate the importance of feature selection and data fusion in the approach 2, a scatter
plot obtained from the best case, related to the CI_DFRL set, is presented in Figure 7. This set provides the
highest accuracy (98.37%) and lowest std (0.76) using 3 CIs. Best small clusters can be observed for each
class in contrast to Figure 6. The accuracy using 3 CIs was of 88.24%. These features were MDF-Freq-LV,
VCF-Freq-RL, and CP2-Freq-RA.

Table 9. Top 10 features and accuracies average over time and frequency domain using left and right sensors.

CI_DFL CI_DFR

# CIs - Domain Sensor Acc(%) Std # CIs - Domain Sensor Acc(%) Std

1 CPT6 - Time LL 25.5 0.13 1 SSC - Time RA 25.5 0.17
2 PKF - Freq LA 62.21 3.45 2 Skewnessf - Freq RV 46.11 1.45
3 FR -Freq LV 84.72 1.72 3 SSC - Time RL 69.43 2.58
4 MDF - Freq LV 93.67 0.85 4 Skewnessf - Freq RL 87.16 1.2
5 PKF - Freq LV 94.75 0.69 5 CP2 - Freq RL 93.67 1.85
6 Kurtosis - Time LL 96.38 1.4 6 PKF - Freq RV 93.76 1.55
7 Skewnessf - Freq LV 96.47 1.26 7 ShapeFactor - TIime RA 96.48 1.78
8 SSC - Time LV 96.56 1.59 8 MDF - Freq RL 96.65 1.22
9 SM4 - Freq LA 97.2 0.92 9 VCF - Freq RL 97.92 1.05
10 VCF - Freq LV 97.56 0.88 10 ZC - Time RL 98.01 0.88



Appl. Sci. 2020, 10, 4367 14 of 19

Table 10. Top 10 features and accuracies average over time and frequency domain using all sensors,
CI_DFRL.

CI_DFRL

# CIs Domain Sensor Accuracy (%) Std

1 MDF Freq LV 25.5 0.19
2 VCF Freq RL 63.47 3.96
3 CP2 Freq RA 88.24 1.12
4 SSC Time LV 92.68 1.67
5 CP2 Freq LL 94.21 1.87
6 PKF Freq LV 96.38 1.24
7 PKF Freq RL 97.02 0.82
8 CP2 Freq RL 97.2 1.14
9 ZC Time LL 97.38 0.38
10 Skewnessf Freq LV 98.37 0.76

Table 11. Accuracy per class to CI_DFRL.

# CIs Domain Sensor Classes (Accuracy%)

1 2 3 4

1 MDF Freq LV 100 0 0 0
2 VCF Freq RL 70.94 46.94 25.82 39.88
3 CP2 Freq RA 84.4 64.75 66.18 61.97
4 SSC Time LV 90.76 84.72 79.64 93.65
5 CP2 Freq LL 96.46 94.29 85.82 98.13
6 PKF Freq LV 96.8 93.93 86.55 97.77
7 PKF Freq RL 97.53 96.44 93.09 98.88
8 CP2 Freq RL 96.83 96.09 94.18 99.62
9 ZC Time LL 97.88 97.51 96.36 100
10 Skewnessf Freq LV 98.58 97.86 96.73 98.88

5.3. Discussion

The proposed approaches provide the most efficient CIs to be evaluated for crack detection. The results
in Tables 3, 5, 7, 9 and 10 show the approach 1 achieves an accuracy rate of more than 91% from the seventh
CI for all data sets while approach 2 achieves a rate of more than 93% from the fifth CI. Furthermore,
the std obtained by each K-fold is presented in these tables where it can be seen that new CIs help reducing
the std of the cross-validation process. This result indicates the classifier becomes more robust to new
features. Note that using the std metric from the cross-validation process is a more useful, unlike the
typical single train/test experiment.

In Figure 5, the trend of the curves indicates a fast growth of the accuracy up to the seven CIs, later
the value of the accuracy flattens, i.e. the classifier will not significantly improve the accuracy after adding
more CIs. It is important to note that all trends present a continuous increment in the accuracy as CIs
increases except for CI_FL, for which the fourth CI decreases its performance.

Figure 8 shows the maximum classification accuracy of each data set and the number of indicators for
which it was obtained. Approach 1, which employs a single accelerometer, achieves the best results by
combining the CIs of time + frequency domain for both the left and right side accelerometers. Slightly
better classification results are achieved with approach 2; however, data fusion by using six-accelerometers
may involve greater challenges to perform the system diagnostic. For the three domains analyzed, better
results are achieved with the right-side accelerometers, which may be due to the fact that the drive is not
on this side and the signal information is less noisy.



Appl. Sci. 2020, 10, 4367 15 of 19

Regarding the other works in this same case, Lucero et al. [12] reached a maximum accuracy of
96.43% and Gomez et al. [7] achieved the overall probability of detection at 95%, with 32 features (energy
computed on WPT). In this work, the maximum accuracy is 97.14% with the approach 1, and 98.37% with
the approach 2.

The ZC and SCC condition indicators of time domain and PKF, CP2 in frequency domain, are the
common CIs among the top 10 CIs in both approach 1 and 2.

One of the main benefits of approach 1 is the possibility of classifying cracks in railway axles with a
few CIs of time + frequency domain extracted from signals of a single accelerometer. In this way, we can
reduce the number of machine sensors to detect a crack. On the other hand, eliminating non-informative
indicators improves the performance of the classification algorithm. In addition, the use of few features
reduces the computational cost of data processing.
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Figure 6. Scatter plot using 3 best CIs of CI_FL.
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Figure 7. Scatter plot using 3 best CIs of CI_DFRL.
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6. Conclusions

In this work, it was possible to develop a practical and straightforward methodology to evaluate the
performance of condition indicators (CIs) in time and frequency domains. Its application was tested for
crack detection in railway axles, by using vibration signals measured with accelerometers located on the
right and left side of the railway axles, along the vertical, axial, and longitudinal directions. This test bed is
made of real components and has been used in previous works for testing other approaches of vibration
analysis.

Two approaches were proposed. Approach 1 only analyzes the CIs extracted from the vibrations
signals measured with the accelerometers placed along the longitudinal direction, on the right and left
sides of the axles, as an extension for comparing to previous works analyzing this case. Approach 2 uses a
data fusion analysis, by combining the CIs extracted from all the six accelerometers.
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In approach 1, CIs extracted from the accelerometer on the right side in the different domains show
slightly better results of classification accuracy than the condition indicators from the accelerometer on
the left side. The right side accelerometer time + frequency domain data set (CI_TFR) had the highest
performance, with classification accuracy over 97.14%, which is better than the results obtained in previous
works. This fact may be due because the drive motor is placed on the right side, and the driven motor is
on the left side which provides movement to the rotating wheels.

In approach 2, the best performance was achieved with CIs in the data set CI_DFRL which combines
all the indicators extracted from the six accelerometers. Classification accuracy was over 98.38%, and this
result is better than those one by using approach 1, showing that Data Fusion is a good approach to
improve accuracy in fault classification.

The best results in terms of classification accuracy were achieved by using a combination of indicators
extracted from time and frequency domains. The CIs named ZC and SCC in the time domain and PKF,
skewnessf, CP2 in the frequency domain, are the common CIs among the top 10 CIs in both approach 1
and approach 2.

The main advantage of this methodology is that it supports the identification of the relevant CIs for
fault detection in different domains of the vibration signal. This allows identifying which CIs should be
monitored on-line, mainly the CIs of time domain as they have low computational cost regarding the
signal processing.

As future work, the contribution of each single attribute to improving the accuracy values regarding
the crack detection in railway axles will be analyzed. Moreover, the analysis of CIs coming from other
application domains will be developed. Additionally, it is expected to have a repository of discriminating
and independent features to develop effective data-driven classification algorithms.
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