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Featured Application: An original software measurement system has been developed as a digital
tool supporting the training of physicians during post-graduate courses in dermatology and
corresponding clinical activity in order to increase the diagnostic performance (mainly in terms
of sensitivity) regarding the early detection of cutaneous melanoma when suspicious pigmented
lesions are to be examined. To pursue this goal the system is able to automatically process the ELM
images of melanocytic lesions (acquired through digital dermoscopy) according to a well-known
diagnostic method. As an outlook, in order to boost massive screening campaigns, the results of
the automatic image processing could be adopted as a dermoscopic triage carried out in suitable
tele-medicine projects involving general practitioners and/or pharmacists (for real-time image
acquisition) and young dermatologists (for off-line lesion classification).

Abstract: Software systems have been long introduced as support to the early detection of melanoma
through the automatic analysis of suspicious skin lesions. Nevertheless, their behavior is not yet
similar to the performance exhibited by expert dermatologists in terms of diagnostic accuracy.
Instead, a software system should be adopted by non-experienced dermatologists in order to improve
the measurement and detection results for skin atypical patterns and the accuracy of the corresponding
second opinion. This paper describes an image-based measurement and classification system able to
score pigmented skin lesions according to the Seven-Point Check-list diagnostic method. Focus is
devoted to the measurement procedure of biological structures more closely related to the atypical
character of the nevus. Moreover, the performances of the measurement system are evaluated by
considering the support to dermatologists with different experiences during the clinical activity.

Keywords: image-based measurement system; early diagnosis of melanoma; medical decision-making;
artificial intelligent system

1. Introduction

One of the leading cancers around the world is represented by the malignant melanoma, whose
dramatic number of diagnoses seems to be also influenced by both the change in recreational behavior
and increasing ultraviolet radiation. According to the World Health Organization (WHO), there are
more new cases of skin cancer than the combined incidence of cancers of the breast, prostate, lung,
and colon [1]. In detail, melanoma is characterized by a biphasic growth which, at the beginning,
evolves “horizontally”, forming a stratified lesion above the basement membrane (intra-epidermal
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phase, without metastatic potential), and in a second time, increases “vertically” by penetrating deep
into the dermis (invasive phase with high metastatic risk).

Retrospective epidemiological studies have shown that if the melanoma is diagnosed early,
with a thickness less than 1 millimeter (thin melanoma), the survival rate approaches 100% of cases
(investigations have shown that the curability rate of thin melanomas is between 91.8% and 98.1% [2]).
For this reason, preventive and screening campaigns for increasing public awareness and improving
the early diagnosis of melanoma by identifying its precursors and early warning signs are today
becoming more important [3].

One of the most useful diagnostic tools in the identification of atypical melanocytic lesions is
dermoscopy (also known as epiluminescence microscopy (ELM) [4]. In detail, dermoscopy is a noninvasive
technique that allows the morphological features of skin layers to be identified by suitable magnification and
lighting systems [5,6]. With respect to the clinical inspection by the naked eye, the adoption of dermoscopy
allows the diagnosis accuracy of pigmented skin lesions to be improved from 10% to 27% [7]. The images
seen through a dermatoscope are, therefore, very different from both the clinical and the histopathological
images. Dermoscopy is an ideal interface between these two areas. The major limitation of this method is
its dependence on the experience of the observer [8]. The sensitivity of diagnostic accuracy of dermoscopy
is closely related to the specific experience of the investigator and may be significantly lower in observers
who are not formally trained. Not surprisingly, Binder et al. [9] have shown that the patterns of analysis
of dermoscopic images on one hand improves the diagnostic performance of experienced dermatologists,
but on the other, worsens that of non-expert ones. These data were largely confirmed by a more recent
review [10]. In order to overcome this problem, new diagnostic strategies have been proposed with the aim
to ensure greater “objectivity” in the early detection of suspicious melanocytic lesions, especially for
dermatologists not so experienced in dermoscopy. Among these, the introduction of digital systems
for the acquisition and analysis of images represents an additional useful tool for the early diagnosis of
melanoma. With these methods, it is possible to analyze images using defined algorithms that process
the dermoscopic images, identifying features that can discriminate melanoma from other pigmented
skin lesions. Dermatologists expert in dermoscopy have a greater diagnostic sensitivity and specificity
compared to non-expert ones [11].

This is a very promising field of non-invasive diagnostics, although not without its difficulties,
especially arising from the complexity of design and application in daily clinical practice. Several studies
have evaluated and demonstrated the possibility to reach, with these systems, diagnostic accuracy
levels similar to those of experienced dermatologists [12]. Until now, the data obtained in these
studies, based on clinical diagnoses made in experimental conditions, should be interpreted with
caution and, in our opinion, are not sufficient to demonstrate the ability of any automated diagnostic
system to replace the diagnostic capacity of the specialist’s eye. Instead, they are a valuable support
to the diagnosis, based on validated and widely accepted dermoscopic algorithms. In the studies
published to date, different dermoscopic algorithms have been used, but no automated system capable
of detecting the parameters of the Seven-Point Checklist has so far been devised.

The aim of the present study includes:

1. Design and training of a new measurement system able to identify, in dermoscopic images,
the seven parameters of the Seven-Point Checklist;

2. Evaluation of the diagnostic reliability guaranteed by the developed system, compared to
the reliability of the expert dermatologists (DE) and the non-expert (NED) groups;

3. Evaluation of the capability by the automated system to improve the diagnostic confidence of
NED, when used for the analysis of dermoscopic images (“semi-automatic” diagnosis).

The paper organization is the following: An overview of the automated system proposed in
scientific literature is provided in Section 2. Then, the developed measurement and classification
system is described with details about the proposed image processing techniques. The experimental
results are disclosed in Section 4. The final section reports the concluding remarks of the study.
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2. Materials and Methods

The automatic system depicted in Figure 1 has been developed by the authors to identify all
the Seven-Point Checklist criteria in digital dermoscopic images.

The measurement and classification software include the most outstanding literature results,
as well as the authors’ proposal [13–19] regarding the adoption of feature extraction techniques,
classification methods, and statistical analysis of suspicious skin lesions.
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Figure 1. The software system for automatic diagnosis of melanoma.

Regarding the training and testing of the automatic system, the dermoscopic image set counting
more than 600 skin lesions was adopted; it includes both items randomly extracted by the reference
atlas [20] and cases examined and recorded during the clinical activity at the Department of Clinical
Medicine and Surgery, University of Naples Federico II. As a result, the main biological structures
(corresponding to the dermoscopic criteria included in the 7-Point Checklist) are highlighted by
applying to each lesion the image processing techniques briefly reported in Tables 1 and 2. As a further
step, a statistical analysis is performed with the aim of providing the measurement information about
the reliability of the adopted procedure for each criterion detection. Thus, a label (low, medium, or high)
is assigned to each dermoscopic structure detected according to different ranges for the corresponding
metric value, which is introduced for qualifying the processing algorithm. In the following section,
the ad-hoc classification algorithms are briefly reported for all the dermoscopic criteria, as well as
the statistical analysis proposed to evaluate the reliability of the automatic detection.

Table 1. The automatic system based on Seven-Point Checklist: Definition and detection methods of
major dermoscopic criteria.

ELM
Criterion Atypical Pigment Network Blue-Whitish

Veil Atypical Vascular Pattern

Score 2

Definition Prominent (hyperpigmented and
broad) and irregular network

Irregular, confluent, gray-blue to
whitish-blue pigmentation not

associated with red-blue lacunes
or maple leaf pigmentation

Linear, dotted, or globular
red structures irregularly
distributed outside areas

of regression

Histological correlates Hyperpigmented or broadened ridges
with irregular shape or distribution

Pigmented melanophages or
melanocytes of mid-reticular

dermis location

Neovascularization or
vascularized nets of

amelanotic cells

Main features Texture Color Structures/color

Feature extraction Structural analysis Principal component analysis
2D thresholding

SRM
structural analysis

Feature classification Logistic model tree Logistic model tree Statistical analysis
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Table 2. The automatic system based on Seven-Point Checklist: Definition and detection methods of
minor dermoscopic criteria.

ELM
Criterion

Irregular
Streaks Regression Structures Irregular Pigmentation Irregular

Dots/Globules

Score 1

Definition

Radially and
asymmetrically arranged
linear or extensions at the

edge of the lesion

White and gray-blue areas,
peppering, multiple

blue-gray dots associated

Brown, gray, and black
areas of diffuse

pigmentation with
irregular shape or

disruption and abrupt end

Black, brown, or blue
round structures

irregularly
distributed within

the lesion

Histological correlates Confluent radial junctional
nests of melanocytes

Areas of loss of
pigmentation and

fibroplasias, with scattered
melanophages

Hyperpigmentation
throughout all levels of

epidermis or upper dermis

Aggregates of
pigment of stratum
corneum, junctional,
or dermis location

Main features Structures Color Color Structures

Feature extraction Structural analysis
SRM SRM SRM SRM

structural analysis

Feature classification Statistical analysis Logistic model tree Logistic model tree Statistical analysis

2.1. Color-Based Detection of Dermoscopic Criteria

The automatic measurement and classification of the dermoscopic structures most dependent
on the chromatic distribution of the image pixels (i.e., blue-whitish veil, regression, and irregular
pigmentation) is performed through the adoption of suitable logistic model trees (LMTs) [21]. In detail,
the machine learning technique is adopted to classify the lesion map, i.e., the set of the chromatically
homogeneous regions (low-level structures) resulting from segmentation performed through either
principal component analysis (PCA) [15] or statistical region merging (SRM) [22]. The vector x of
the feature descriptors for each region includes the red, green, and blue (RGB), hue, saturation,
and intensity (HSI), and CIELUV components of the corresponding pixels; in addition, the percentage
ratio of the regional pixels with respect to the total number of the lesion map pixels is considered.

The result of the LMT training is depicted in Figure 2a regarding the automatic detection of
the blue-whitish veil criterion: According to different ranges for the hue mean value of the region to be
analyzed, three patterns (blue, red, or polychromatic) are highlighted by the corresponding logistic
regression models.Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 16 
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Figure 2. Detection of the blue-whitish veil: (a) Logistic model tree with regression models Fi(x) (with i = 1,
blue-veil region, and i = 2, no blue-veil region); (b) lesion map (feature extraction); (c) regions classified
as blue-whitish veil.



Appl. Sci. 2020, 10, 4351 5 of 15

On the basis of the mean and standard deviation for the hue (σH), saturation (µS, σS), and intensity
(µI, σI) components, the functions Fi(x) are adopted to compute the probability Pi that each segment
of the lesion map (see Figure 2b) belongs to an area characterized by the blue-whitish veil according to:

Pi =
eFi(x)∑2

j=1 eF j(x)
(1)

where the classes i = 1 and i = 2 correspond respectively to presence and absence of the dermoscopic
criterion. An example of detection result is depicted in Figure 2c.

The segments of the lesion map not associated with the blue-whitish veil are then classified by
further LMT models as area of either regression (see Figure 3) or irregular pigmentation.
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The former model computes the corresponding probability for each chromatically homogeneous
region by adopting the following simple logistic regression:

F1(x) = 2.5 ∗ [l] + 0.1 ∗ [id] + 0.2 ∗ [sd] − 0.4 ∗ [A%] − 1.9 (2)

which takes into account only the mean value (l) for the L component, the neighbor difference for
intensity (id) and saturation (sd) components, and the area percentage A% as truly significant attributes.

In detail, irregular pigmentation is detected (see Figure 4) if P1 > 0.5 for (at least) one segment of
the lesion map (that is classified as irregular); then, the reliability of the automatic detection is evaluated
by considering the probability P1,Sirr associated with the widest irregular segment Sirr according to
the following ranges:

Low i f 0.5 < P1,Sirr < 0.65

Medium i f 0.65 ≤ P1,Sirr < 0.85

High i f 0.85 ≤ P1,Sirr ≤ 1

(3)

Analogous computation and thresholds concerned with the probability P1 associated with the widest
color segment have been adopted to provide the reliability of the automatic detection for the blue-whitish
veil and the regression.
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2.2. Texture-Based Detection of Dermoscopic Criterion

A vector x of 69 structural, geometric, and chromatic features was extracted to describe the lesion
texture of interest by adopting the graph-based approach (introduced in [23]) and the iterative loop
counting algorithm suggested in [24]. As an example, Figure 5 highlights the darker mesh of the pigmented
network (the “net”) and the lighter colored areas (the “holes”) surrounded by the net.
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Figure 5. Detection of atypical pigmented network: (a) Lesion and superimposed contour; (b) result of
the graph-based approach; (c) highlight of the atypical pigmented network (with high probability).

Thus, the automatic detection of the dermoscopic criterion appears as a three-class problem
(absent/typical/atypical classification). Again, the logistic model tree approach is adopted as the solution to
compute the probabilities Pi for the pigmented network according to the generalization of Equation (1)
with i = 1, 2, and 3 corresponding respectively to the atypical, typical, and absent classes.

The atypical pigmented network is detected if:

arg max
i

Pi = 1 (4)

whereas, the detection reliability is estimated by considering the following labels:

Low i f 0.34 < P1 < 0.65

Medium i f 0.65 ≤ P1 < 0.85

High i f 0.85 ≤ P1 ≤ 1

(5)

2.3. Atypical Vascular Pattern(AVP)

Automatic detection of the dermoscopic criterion integrates structural analysis and chromatic
measurement of the lesion: The main linear/globular structures are selected through image enhancing
as the tubularness filter response [25], and matched with the red segments resulting from the application
of the statistical region merging at a fine level (Q = 256) to the inner area (see Figure 6).
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The spatial distribution of the candidate low-level features is then evaluated with respect to
the main symmetry axes of the lesion. Indeed, the binomial distribution is expected when the red
linear/globular structures are randomly scattered in each of 4 quadrants (resulting from drawing
the major and minor axis of the ellipse characterized by the same normalized second central moments
as the lesion). Thus, the analysis of the atypical vascular pattern is carried out by performing a binomial
test for the N-highlighted linear/globular objects. If, in any quadrant and/or couple of quadrants,
the paucity or plenty (with respect to expected value) of the low-level features are measured, the null
hypothesis (i.e., the casual distribution of N linear/globular objects) may be refused with the accepted
risk α of Type I Error and the atypical vascular pattern detected.

Moreover, the reliability of the classification procedure can be labeled according to the following scheme:

Low i f N < 15

Medium i f 15 ≤ N < 30

High i f N ≥ 30

(6)

2.4. Irregular Dots and Globules

Automatic detection of small dark areas within the lesion is provided through the analysis
of the chromatic and morphological measurement about the segments highlighted, as previously
introduced, by the statistical region merging at fine level. In detail, the chromatically uniform regions
(low-level features) are ordered according to the (increasing) value of the intensity value, within a suitable
range for the hue component. Then, based on the experimental testing and tuning activity, thresholding
operation is performed with respect to the morphological feature descriptors represented by the region
percentage area A% and eccentricity e, in order to select N significant rounded objects inside the lesion.
Again, the casual (spatial) distribution of the observed items is analyzed with respect to the main
symmetry axes of the lesion. If the number of the dark round objects in each quadrant is out of the
expected range from the binomial distribution, the null hypothesis of the uniform distribution is refused,
and the corresponding low-level features are classified as irregular dots and globules.

The reliability of the automatic detection is estimated as follows:

Low i f N < 20

Medium i f 20 ≤ N < 50

High i f N ≥ 50

(7)

2.5. Irregular Streaks

Two approaches, both based on the adoption of color segmentation and structural analysis,
are provided for the automatic detection of linear or bulbous extensions asymmetrically arranged at
the edge of the lesion.



Appl. Sci. 2020, 10, 4351 8 of 15

The former approach (depicted in Figure 7) is able to: (i) Detect the black/brown pigmentation
localized along the lesion periphery (through the statistical region merging, see Figure 7b); and (ii)
track the finger-like contour of the highlighted structure (which is split into 10 equal-length segments).
Finally, a morphological irregularity index is determined as the ratio of the number of pixels constituting
the lesion contour and the shortest path (i.e., the set of points belonging to the line that connects
the farther contour pixels in the region, see Figure 7c) and compared with a suitable threshold
(experimentally estimated during the training phase) to determine the set SIRR of candidate segments
with streaks.
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According to the latter approach, the flux analysis of the streaks’ principle curvature vectors [26]
is performed by adopting the Frangi filter [25]. In detail, the parallel and perpendicular flow for
the streak vector field are measured over the equal-length segments of the lesion border. The candidate
segments with streaks are included in an SFRANGI set by comparing the corresponding mean values
and variances of the measured flows with experimentally tuned thresholds.

The presence of irregular streaks and the reliability of the corresponding procedure are provided
by combining the introduced approaches according to the following scheme:

Low i f 0 = dim{ SFRANGI } < dim{ SIRR } = 1

Medium i f dim{ SFRANGI ∩ SIRR } = 1

High i f dim{ SFRANGI ∩ SIRR } > 1

(8)

2.6. Lesion Classification

A weighted version of the 7-Point Checklist scoring system is suggested for the automatic
lesion classification, which takes into account the detection algorithms previously described and
the corresponding reliability. In detail, 3 constants have been associated experimentally to the reliability
of the detection procedures (0.2, 0.5, and 1.0, corresponding to the low, medium, and high labels,
respectively) and are adopted to weight the partial scores according to the detection uncertainty.
Finally, the total score for the skin lesion is achieved by summing up the seven weighted scores,
and the clinical decision is provided for the following-up or excision tasks, as briefly reported in Table 3.
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Table 3. Automatic classification according to the weighted scoring system.

Weighted TOTAL Score Lesion Classification Clinical Decision

TS,w < 1.5 Benign nevus No excision
1.5 ≤ TS,w < 2.0 Suspicious atypical nevus 6-month follow-up
2.0 ≤ TS,w < 3.0 Atypical nevus Excision

TS,w > 3.0 Melanoma Excision

The application of the authors’ proposal to an example of a dermoscopic image is depicted in Figure 8.
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3. Results

A database including 270 ELM images of skin lesions and corresponding information (such as patient
age and sex, lesion position, histology after excision) was collected during the continuous screening
campaign by the Section of Dermatology, University Federico II of Naples, Italy, under the two-year
tele-medicine project, “Di che segno è il tuo neo?” (2018–2019), which involved more than 200 patients
and 25 local general practitioners. On the basis of a-posteriori analysis (biopsy) the dermoscopic
database includes:

• 107 benign nevi;
• 99 atypical nevi (73 suspicious nevi);
• 64 melanomas.

The corresponding digital images were acquired through iPhone 6/7 smartphones furnished with
two dermoscope models (DermLite DL1 and MetaOptima Molescope I): Dimensions of the JPEG color
images range from 700 × 447 to 2272 × 1520 pixels.

Aiming to estimate the performance of the proposed measurement and classification system,
two groups of physicians were selected:

• The expert dermatologists (ED) group including 3 physicians (B.B., S.C., M.A.) with clinical activity
<10 years;

• The non-expert dermatologists (NED) group including 3 physicians (C.C., A.M., F.C.) with less
than 3 years’ experience in dermoscopy;

and the diagnosis, as well as the application of the Seven-Point Checklist method to each record of the
database, were requested to the single dermatologist.

In detail, both the diagnostic and clinical accuracy have been evaluated by weighting the corresponding
computation according to different class dimensions:
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• The former performance represents the weighted mean of sensitivity (i.e., the ratio of the correct
detection of melanoma and the corresponding class dimension, 64) and specificity (i.e., the ratio
of the correct detection of the benign/atypical nevi and the number of lesions not classified as
melanoma, 206);

• The latter performance takes into account the correct decision of both excisions (with respect to
the group of lesions including melanomas and strongly atypical nevi) and of following-up/ignoring
(with respect to the group of benign and suspicious nevi).

The automatic measurement and classification system (MS) has been implemented as Matlab
routines at the different stages (image pre-processing, contour extraction, measurement of low-level
feature, detection of dermoscopic structures, lesion classification) and executed as distributed code
(jobs with multiple parallel tasks) on 64-bit Microsoft Windows computer, featured with Intel Core i7
CPU at 2.67 GHz and 6 GB RAM.

To evaluate the quality of the developed automatic system, the reference detection for the dermoscopic
structures of each image was achieved by matching the biopsy results with the Seven-Point Checklist
filed by the expert dermatologist (S.C.) who exhibited the best diagnostic and clinical accuracy. In detail,
every dermoscopic structure should be detected if the corresponding lesion belongs to either a melanoma
or strongly atypical nevus group.

The authors first evaluated the diagnostic concordance between the two dermatologist groups with
different degrees of dermoscopy experience and the MS. Then, they considered the same parameters to
evaluate the diagnostic performance of NED when helped by the MS during the dermoscopic diagnosis.
In detail, after three months, the NED group was asked to re-examine the database which also included
both the detection results (images highlighting the dermoscopic structures) corresponding to the single
criterion and the overall lesion classification provided by the MS.

Tables 4–6 report, respectively, the Seven-Point Checklist scores and the diagnostic/clinical accuracy
achieved by the dermatologist groups and the automatic measurement system.

Table 4. Comparison of detection results by expert (ED)/non-expert (NED) dermatologist groups and
automatic measurement system (MS).

EXAMINER
Dermoscopic Criterion

ED NED MS Biopsy/
ReferenceS.C. B.B. M.A. C.C. A.M. F.C. MS

Atypical pigment network 86 71 85 93 89 106 92 72

Blue-whitish veil 54 32 47 105 74 35 58 53

Atypical vascular pattern 15 28 12 19 37 18 28 18

Irregular streaks 24 11 16 18 19 23 32 23

Regression structures 74 15 76 66 35 91 87 68

Irregular pigmentation 74 53 56 122 114 103 46 65

Irregular dots/globules 60 51 55 70 71 63 80 53

Table 5. Comparison of lesion classification results by expert (ED)/non-expert (NED) dermatologist
groups and automatic measurement system (MS).

EXAMINER
Performance Index

ED NED MS Biopsy/
ReferenceS.C. B.B. M.A. C.C. A.M. F.C. MS

Correct (/classified)
melanoma (MN) 59/69 55/68 54/67 46/67 42/61 45/66 55/109 64

Correct (/classified)
atypical nevus (AN) 64/67 65/70 63/68 53/63 55/64 53/61 46/52 73

Correct (/classified)
suspicious nevus (SN) 25/26 21/25 23/27 25/30 26/35 25/33 22/24 26

Correct (/classified)
benign nevus (BN) 107/108 107/107 107/108 107/110 106/110 107/110 84/85 107
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Table 6. Performance of comparison of lesion classification results by expert (ED)/non-expert (NED)
dermatologist groups and automatic measurement system (MS).

EXAMINER Performance Index
ED NED MS Biopsy/

ReferenceS.C. B.B. M.A. C.C. A.M. F.C. MS

Sensitivity %
[MNcorr_classif/MNReference] 92 86 84 72 66 70 86 -

Specificity %
[(AN + SN + BN)corr_classif/(data −MNReference)] 96 94 94 90 91 90 74 -

Diagnostic Accuracy % 95 92 92 86 85 85 77 -

Clinical Accuracy % 94 92 91 86 85 85 77 -

4. Discussion

The different levels of experience are evident in the great amount of atypical dermoscopic structures
detected by the NED group that did not lead to high diagnostic performance. Indeed, the results showed
that in terms of the mean sensitivity (>87%), specificity (>92%), and therefore diagnostic accuracy
(>92%), ED was the most reliable, forming the “ideal” reference. NED’s diagnostic performance
gap compared with that of ED is much more important than the mean value of diagnostic accuracy
(less than 7% compared to ED). This can be easily understood by observing the mean value of NED’s
specificity (90%), which was maintained at a significantly lower sensitivity price (69% compared to
87% of ED), resulting in more lost melanomas.

It is interesting to note that the behavior of the automatic measurement system was similar,
but specular to that of NED: Diagnostic accuracy was almost overlapping, but in this case, its value
was guaranteed by good performance in terms of sensitivity (90%) with a significant loss of specificity
(surplus excisions), with a value of 74% over 90% of the ED. The low specificity observed for the MS
was in agreement with the literature data that identifies, like the main limit of the automated systems,
the trend of excessive false positives, confirming, in our opinion, the impossibility to use any software
system as a totally autonomous and independent diagnostic tool.

This limitation, however, was considerably reduced by the semi-automatic approach (see performance
reported in Tables 7 and 8), as a result of the effect of reciprocal compensation between sensitivity (better in
MS vs. NED) and specificity (better in NED than MS). This compensation was also favored by the interaction
of the diagnostic decision process, guaranteed by the fact that the MS underlined to the NED, for each
identified parameter, the areas of the lesion in which each of the seven parameters of the Seven-Point
Checklist had been recognized, meaning the dermatologist was able to agree or not with the obtained
final score. This explains why, when assisted by MS, NED greatly improved its diagnostic sensitivity,
without compromising its specificity and resulting in gain in diagnostic accuracy. The latter went from
85% for NED to 88% for NED + MS, reaching a value of only 4 percentage points less than the accuracy
of ED.

Similar improvements also hold for clinical accuracy. Cohen’s Kappa test allowed us to verify
the statistical validity of this data, excluding that the variation of diagnostic accuracy between NED and
NED + MS had been purely random. It is important to point out that the MS was, from the beginning,
designed with the aim of assisting and not replacing the clinician in the diagnosis of suspected
pigmented lesions.

On the basis of the data in the literature, we concluded that an automated system cannot be
considered as a totally independent diagnostic tool, but that a non-expert clinician could improve their
own diagnostic performance if supported by a system that can overcome its limits, especially in terms
of sensitivity.

Since its introduction in dermatology in 1950, dermatoscopy has spread widely in clinical practice,
thanks to its non-invasiveness and easy accessibility. Numerous studies have shown that dermoscopy
is able to improve the diagnostic performance of an expert dermatologist “like a bridge” between
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the clinic and histopathology [27,28]. The definition of dermoscopic criteria has led to the establishment
of a real “dermoscopic semeiotic” in which each ELM criteria correlates to specific morphological and
histopathological parameters. However, it has been shown that dermoscopy is a counter-productive
tool for diagnostic accuracy when used by a NED [10,11]. In fact, dermatoscopy remains a highly
operator-dependent method, despite the various dermoscopic algorithms (ABCD, Menzies method,
Seven-Point Checklist, Three-Point Checklist) developed in order to simplify and standardize the diagnostic
procedures to follow during a dermoscopic examination.

Table 7. Comparison of lesion classification by non-expert (NED) dermatologist group and
semi-automatic approach (NED + MS).

EXAMINER
Performance Index

NED NED + MS MS Biopsy/
ReferenceC.C. A.M. F.C. C.C. A.M. F.C. MS

Correct (/classified)
melanoma (MN) 46/67 42/61 45/66 55/77 53/75 54/76 55/109 64

Correct (/classified)
atypical nevus (AN) 53/63 55/64 53/61 52/58 55/58 53/57 46/52 73

Correct (/classified)
suspicious nevus (SN) 25/30 26/35 25/33 24/27 26/31 24/30 22/24 26

Correct (/classified)
benign nevus (BN) 107/110 106/110 107/110 107/108 106/106 106/107 84/85 107

Table 8. Performance comparison of lesion classification by non-expert (NED) dermatologist group
and semi-automatic approach (NED + MS).

EXAMINER
Performance Index

NED NED + MS MS Biopsy/
ReferenceC.C. A.M. F.C. C.C. A.M. F.C. MS

Sensitivity %
[MNcorr_classif/MNReference ] 72 66 70 86 83 84 86 -

Specificity %
[(AN + SN + BN)corr_classif/(data −MNReference)] 90 91 90 89 91 89 74 -

Diagnostic Accuracy % 86 85 85 88 89 88 77 -

Clinical Accuracy % 86 85 85 88 89 88 77 -

For this reason, in the last twenty years, an increasing interest in automated analysis of dermoscopic
images of pigmented skin lesions has been developed to discriminate between melanoma and other
pigmented skin lesions [29].

Several research groups have dedicated time to develop automated diagnostic systems capable of
identifying dermoscopic criteria indicating malignancy [30]. Many of these systems are based on the ABCD
algorithm. For example, Umbaugh et al. [31] developed an automated color segmentation algorithm
used to identify the characteristics of cutaneous tumors. In 1999, Schmid and Schmid-Saugeon [32,33]
proposed a pattern-based color segmentation without extraction. Two years later, Ganster and co. [34]
developed an automated recognition system for melanoma, in which 21 different parameters were
extracted from the images. More recently, Grana and colleagues [35] introduced a new algorithm
based on the comparison by a gray scale of points extracted from the ELM images of pigmented
lesions. In [12], an algorithm was described to diagnose pigmented lesions, by taking into account
64 analytical parameters, while a software for automatically evaluating 50 objective parameters of
skin lesions (divided into 3 categories: Geometry, texture, and pigmented areas) was proposed in [29].
More than 400 further studies about automated diagnostic systems have been published since 2002:
The review in [36] shows that computerized diagnosis systems have more diagnostic sensitivity than
diagnostic specificity, which is less than classical dermoscopy practiced by experienced dermatologists,
with a total diagnostic performance that can be overlapped. Other reviews about the automated melanoma



Appl. Sci. 2020, 10, 4351 13 of 15

diagnosis were published in 2011 and 2012 [37,38], and confirmed the high diagnostic accuracy and
remarkable potential application of them in the clinical field. No previously published study has analyzed
the application of automated systems to the Seven-Point Checklist diagnostic algorithm. The Seven-Point
Checklist is still one of the most widely used algorithms in the clinical field [39] for the early detection of
melanoma. We preferred using the classic Seven-Point Checklist to the revised one, for higher sensitivity.
Thus, the classic Seven-Point Checklist would be more suitable processed by an automated software,
which by itself tends to over-detect.

5. Conclusions

An image-based measurement system is proposed for the automatic detection of melanomas
according to a well-known diagnostic method as support to the dermatologist activity. It adopts
advanced statistical techniques to perform the main tasks (automatic recognition of the skin lesion
within the dermoscopic image, measurement of morphological and chromatic parameters, detection
of the dermoscopic structures included in the Seven-Point Checklist method, overall classification of
the lesion) necessary for providing a second opinion about the clinical decision.

Main research efforts were addressed both to provide the reliability measurement about
the intermediate results (in order to improve the lesion classification capability) and to validate
the performance of the measurement system during clinical practice in dermatology departments.
As a result, the automatic measurement system was not able to outperform the expert dermatologist
group in terms of the diagnostic capabilities. However, it allowed the dermatologists with low
dermoscopic experience (<3 years) to improve the sensitivity and overall diagnostic accuracy.

Although further studies are needed to confirm the validity of the preliminary results, the measurement
system that we designed could be a valid support tool for the diagnostic process of dermatologists with
low dermoscopy experience, increasing their diagnostic accuracy to that of an experienced dermatologist,
resulting in a significant reduction in the number of melanomas left in place, especially in situ melanomas,
with ambiguous and often misleading dermoscopic features, especially for non-expert dermatologists.

To further improve the automatic application of the Seven-Point Checklist, the next research will
deeply investigate the dermoscopic structures’ correlations among the different classes of skin lesions,
and take into account the measurement uncertainty associated with the multi-scale application of the
proposed techniques for measuring low-level features. Moreover, the newly introduced convolutional
neural networks (CNNs) will be also investigated to reduce the classification uncertainty associated
with the dermoscopic criteria included in the 7-Point Checklist [40,41] and consequently improve
the specificity of the measurement system.
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