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Abstract: Process manufacturing industries are complex and dynamic systems composed of several
processes, subject to many operations and unexpected events that can compromise overall system
performance. Therefore, the use of technologies and methods that can transform traditional process
industries into smart factories is necessary. In this paper, a smart industrial process based on
intelligent software agents is presented with the aim of providing a technological solution to the
specific needs of the process industry. An event-driven agent-based simulation model composed
of eight reactive agents was designed to simulate and control the operations of a generic industrial
process. The agents were modeled using the actor approach and the communication mechanism
was based on the publish–subscribe paradigm. The overall system was tested in different scenarios,
such as faults, changing operating conditions and off-spec productions. The proposed agent-based
simulation model proved to be very efficient in promptly reacting to different dynamic scenarios
and in suitably handling different situations. Furthermore, the usability and the practicality of the
proposed software tool facilitate its deployment and customization to different production chains,
and provide a practical example of the use of multi-agent systems and artificial intelligence in the
context of industry 4.0.

Keywords: smart factory; industry 4.0; process industry; multi-agent systems; agent-based simulation;
event-driven approach; web application

1. Introduction

The terms “process manufacturing industry” or “process industry” usually refer to the industrial
sector, which transform primary raw materials into products that might afterwards be further processed
and transformed by other industries in order to deliver complex assembled products [1]. It includes,
for instance, the metallurgical, chemical, glass, pulp and paper and food industries. Each manufacturing
process contains several steps, starting from storage, transportation and preparation of primary raw
materials, melting and/or transformation into chemical reactors, refining, shaping (e.g., casting, hot
and cold rolling) and eventually, coating. All these sub-processes are closely correlated and often
seamlessly connected. In effect, many of these production cycles are at least partly continuous, i.e.,
the production runs 24/7.

During the different stages, unexpected events may happen causing e.g., delays, waste of materials
and off-spec products, thus, the overall engineering system must rapidly and efficiently react in order
to mitigate the effects of such events. With the paradigm of Industry 4.0, all the industrial sectors
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are keen to implement the concept of a “smart factory”, that is a context-sensitive manufacturing
environment that can handle turbulences in real-time production using decentralized information and
communication structures for an optimum management of production processes [2].

A paradigm very suited for addressing smart and distributed systems acting in complex and
dynamic environments like process industries is the agent-based approach. A Multi-Agent System
(MAS) consists of several computational entities capable of independent actions, called agents, which
communicate with each other, and have the ability to cooperate, coordinate, and negotiate [3]. The research
on agent-based approaches continues to provide technological solutions in a wide variety of domains [4],
especially the use of agent abstraction for modeling and simulating systems. In reference [5], for instance,
a multi-agent simulation was used to evaluate the traders’ behavior in perishable goods markets under
several market conditions, whereas an agent-based model for the management of traffic flows in a
network under distinctive congestion scenarios was presented in reference [6].

Concerning manufacturing applications, the potential of MAS is very promising and the
agent-based paradigm for modeling and simulation has receiving ever increasing attention during
the last two decades. The leading role of MAS as fundamental technology for industrial production
management and optimization in light of current and future developments of the digitalization of
industrial production cycles is highlighted in reference [7]. A survey of agent applications in the
manufacturing domain, ranging from engineering design to life-cycle management, was presented
in reference [8], whereas a discussion of the advantages of using agent-based modeling tools to
support the development of agent-based manufacturing control systems was presented in reference [9].
In reference [10], agent-based modeling and simulation were used for the design and verification of
an automatic manufacturing execution system with the aim of evaluating emerging behaviors and
macroscopic dynamics in a multiproduct batch plant. An agent-based assembly system simulation
was presented in reference [11] that shows how agents handle a production plan dynamically using
communication and negotiation. In reference [12], one of the first examples of application of MAS in
the steel sector was proposed, which targets the dynamic reallocation of products. MAS were also
successfully applied in electric steelworks for dynamic energy management [13,14]. More recently,
in reference [15], an on-line and distributed scheduling system based on multi-agent systems was
proposed in order to manage both the scheduling of machines and the automated guided vehicles of
a manufacturing system. A MAS approach for modeling and self-optimizing the production of flat
steel products was presented in reference [16], where the decentralized optimization of the production
scheduling is carried out by intelligent agents exploiting product and process knowledge. An exemplar
application of MAS in the chemical sector for production scheduling optimization is provided in
reference [17]. An interesting review on the application of MAS for complex networks management in
the context of process systems engineering is provided in reference [18].

This paper proposes an event-driven agent-based model for simulating the operations of an
industrial process subject to unexpected and uncertain events, such as faults, off-spec productions,
and overloading of the production lines. In order to handle unforeseen events, a combination of
reactive agents and a communication mechanism for timely information dissemination were adopted.
Differently from most of existing models, the proposed tool targets the specific needs of the process
industry and combines the potential and the flexibility of the agent-based approach with usability
and practicality in order to facilitate its deployment and customization to different production chains
which are typically found e.g., in the metallurgical sector.

The paper is organized as follows: Section 2 describes a generic industrial process used as
prototype of the application. Section 3 presents the agent-based model with the main actors involved
in the system. A summary of the interactions among agents and the used communication mechanism
are also presented here. The software architecture is presented in Section 4, while simulation results
and discussions are presented in Section 5. Finally, the conclusions are given in Section 6.
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2. Process Model

The industrial process model described in the present paper must be considered as a generic
continuous process belonging to any industrial sector. A raw or semi-manufactured product must
be further processed by several production lines in order to be sent to the market as a finished
product. The production lines are organized in series, one after the other. These series represent
the considered production process steps. Sometimes, one production step is developed by several
equivalent production lines connected in parallel, i.e., performing the same working operations, namely,
a product might be worked by any of these lines. For each production step, the plant provides a
warehouse where products are stored before being worked. The above-described generic production
process is schematically depicted in Figure 1.

Figure 1. Production process scheme.

The exemplar production site depicted in Figure 1 is composed of three production steps, four
production lines (two of them are equivalent) and four warehouses. The last step concerns the
packaging and the products’ delivery. Each warehouse has a limited storage capacity. A product
might be moved inside a warehouse before being processed by a production line. Each production
line is composed of different machines, each one with a limited buffer that represents the queue of the
machine. In the current model, it is assumed that each production line is composed, at most, by one
machine with a buffer maximum capacity of two products. A product, in order to be accepted and
processed by a machine, needs firstly to be added to its production scheduling. This operation is
usually performed at the beginning of the process, i.e., when the production scheduling is defined
according to the production orders information, the available input materials, and the status of each
machine. Nevertheless, the scheduling of a machine can change over time due to unexpected events
such as faults, maintenance operations or machine overloading. Once the product has been accepted,
it must be loaded into the machine’s buffer, and then, it is ready to be worked. When the production
line finishes processing the semi-finished product, it will be transported into the next warehouse and
this scheme is repeated until the product reaches the delivery zone, where the product is loaded on a
truck and shipped. In summary, a product undergoes the following steps during the process chain:

A. Assigning the product to a machine’s scheduling.
B. Moving the product within a warehouse.
C. Loading the product into a machine’s buffer.
D. Working the product on a machine.
E. Stocking the product into a warehouse after processing.
F. <Repeat phases C, D and E until the last warehouse is reached>

G. Loading the product to a truck to be shipped.
H. Delivering the product.

As an example, Table 1 shows all the operations of the production process schematically depicted
in Figure 1, together with the affected processes and the corresponding code assigned to the operations.
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In the depicted exemplar case, only six main operations were defined, but it is clearly possible to
extend the number of operations by adding new and specific ones.

Table 1. Process operations.

Operation Operation Code Affected Process

Assigning a product to a machine scheduling 1 M1, M2, M3, M4

Moving a product within a warehouse 2 WH1, WH2, WH3, WH4

Loading a product into a machine’s buffer 3 WH1, WH2, WH3, WH4, M1, M2, M3, M4

Working a product on a machine 1 4 M1, M2, M3, M4

Loading a product to a delivery truck 5 WH4, D

Delivering a product 6 D
1 Stocking a semi-finished product into the subsequent warehouse is an operation accomplished automatically after
finishing the processing.

3. Agent-Based Model

The overall aim of the developed MAS is to support and facilitate the transformation of traditional
process systems, following the scheme reported in Figure 1, into smart factories, which are capable of
handling real-time unexpected changes of the production by exploiting communication and intelligent
behaviors. The following objectives were considered:

• To transform the product into an intelligent module, able to store and handle its state with updated
real-time information.

• To exchange information between machines, products, warehouses, and the other actors of
the system.

• To provide intelligent routing of the products by optimizing the use of the production machines
and maintaining high levels of product quality.

• To automatically reallocate products that lose compliancy with their original target specifications,
by, thus, improving productivity and reducing waste of material as well as completion time of all
customer orders.

• To promptly react to abrupt changes in the production process, such as machines faults.

The developed MAS is based on an event-driven approach in order to efficiently react and respond
to on-line events. For this reason, the architectural model used for the implementation of the agents is
inspired by the actor model [19], a computational entity with reactive behavior that allows immediate
action in response to a message. According to this model, the agents can modify their states but
cannot affect the states of the other agents directly—only through messages exchange. Furthermore,
the communication is asynchronous.

Within the adopted model, an agent receives both messages from other agents and external signals
from the environment. The external signals are the operations of the production process (according to
the synthetic description provided in Section 2) that are turned into messages. The following main
agents are involved in the MAS (see Figure 2):

• Product Agents are responsible for storing and handling all the information related to the products
along the entire production chain, such as current process parameters and production steps.

• Process/Machine Agents handle the production lines of the plant. They manage the information
related to the machines’ settings, the number of the products to be processed, the scheduling of
the products, etc. They can also suspend and reactivate the products whenever the production
lines are full.

• Warehouse Agents manage the warehouses of the plant by moving products from one place to
another within the warehouses and towards the machines.
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• Virtual Product Allocator (VPA) Agent is a supervisor that acts like a broker agent but with an
enhanced knowledge. The aim of the VPA is to manage the rerouting of the products if one of the
production machines suffers a fault or is subject to maintenance operations. Another feature of the
VPA is the reallocation of products that are no more compliant with a customer order, i.e., products
that no longer satisfy all the requirements of the customer they were originally devoted to.

• Delivery Agent handles the dispatching of the products. Its aim is to load products on trucks and
to ship them to customers.

• Customer Order Agents are responsible for the information about production orders. They interact
with Product Agents whenever these latter need to check their quality target parameters.

Figure 2. Multi-Agent System main actors.

3.1. Agents Communication

In order to deal with the event-driven system and the asynchronous messaging of the actor model,
the communication mechanism adopted for the agents is based on the distributed event-based system,
also called the Publish–Subscribe model [20]. This is an indirect communication method among
distributed entities that communicate through a Dispatcher or Broker without any direct connection
between the sender and the receiver. The Publish–Subscribe system supports cooperative work where
a number of participants need to be informed on shared interest events. Moreover, it is used in several
applications such as financial systems, Feed RSS, network monitoring, etc., [21,22]. An example of a
Publish–Subscribe communication scheme is reported in Figure 3.

For instance, when a product X is ready to be loaded into the buffer of the machine Y (i.e., operation
code 3), then Product Agent X, Machine Agent Y and Warehouse Agent Z are informed. In this
specific case, the Machine Agent Y can check if is able to process the product X, Warehouse Agent
Z can check where the product X is located and Product Agent X can control its own status. At the
same time, other actions can be performed by the agents. Another example concerns the situation in
which product X needs to know its own quality target parameters after being worked. The Product
Agent X publishes a message requiring the necessary information so that the Customer Order Agent
responsible for the product X is notified. The previous two examples are two situations depicting how
the Publish–Subscribe mechanism is used to deal with both production operations events and message
exchange among agents.
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Figure 3. Publish–Subscribe communication scheme.

3.2. Agents Behavior

The agents’ high-level behavior as well as the decision rules that manage the operations and the
interactions of the agents are described by using the Business Process Models and Notation (BPMN).
Even though the behavior of agents in ABS models can be expressed in other modeling languages
such as Petri Nets or through the Agent Unified Model Language (AUML), a requirement under
the project for which the presented MAS was developed concerned the adoption of a user friendly
representation for business users. BPMN represents a powerful tool in this context, as it is easy to
understand and supports several diagrams, such as process and collaboration diagrams. The use
of BPMN for modeling agents’ behavior was presented in different papers [23,24]. Considering the
formalism proposed in reference [23], the general behavior of an agent can be represented as shown
in Figure 4. In particular, the “Activate Agent” sub-process encapsulates the main body of the agent.
Once the agent is activated, it is ready to perform different actions. The “Internal Function” is used to
maintain, up to date, the internal state of the agent until the simulation ends, whereas the “External
Function” is used to handle external events such as the operations coming from the plant and the
messages coming from the other agents. A description of the interaction among agents in case of
unexpected events such as faults, products reallocation, and machine overload are reported in the
next subsections.

Figure 4. Agent behavior scheme.

3.2.1. Product Suspension

The interaction between Machine Agent and Product Agent as well as their behavior when the
loading event (i.e., operation code 3) occurs is depicted in Figure 5.
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Figure 5. Interaction between Machine Agent and Product Agent when the operation 003 occurs.

The Machine Agent, before loading a new product in its entry buffer, checks if the status of the
machine is good; otherwise, it sends a fault management request to the VPA Agent. If everything is
satisfactory, then the machine controls whether the scheduling contains the coming product and if
the entry buffer is free to allocate a new incoming product. If at least one of the previous controls
is not satisfied, then the Machine Agent sends a suspension request to the Product Agent, which
suspends the product waiting to be worked. The suspension state of the Product Agent is not always
the same, but depends on the type of suspension request received, which includes a code that specifies
the type of suspension. Therefore, a suspension for a full buffer is different from a suspension for
incorrect scheduling.

3.2.2. Product Reactivation

The interaction between Machine Agent and Product Agent as well as their behavior when the
working event (i.e., operation code 4) occurs is depicted in Figure 6. The Machine Agent, after working
the product, checks if the process terminates correctly. If some problem occurred during the processing,
it sends a fault request to the VPA Agent that will handle the event, otherwise the Machine Agent
removes the product and will send three messages:

• An update message to the Product Agent that handles the semi-finished product. The update
message contains information about the processing parameters.

• An awake request message to the Product Agents suspended.
• A stocking request message to the Warehouse Agent that is in charge of finding a location for the

semi-finished product and to stock it into the warehouse.

The Product Agent shown in Figure 6 handles the reactivation of the product. When the Product
Agent receives an awake request from the Agent Machine, it removes the suspension and makes the
product ready to be loaded by the machine again.
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Figure 6. Interaction between Machine Agent and Product Agent when operation 004 occurs.

3.2.3. Fault Management

The interaction between Machine Agent and VPA Agent as well as their behavior when a fault
occurs is depicted in Figure 7.

Figure 7. Interaction between Machine Agent and VPA Agent when a fault occurs.

As already mentioned, a machine might have one or more equivalent machines that perform
exactly the same kind of operations with different or equal processing speed. In this way, it is possible to



Appl. Sci. 2020, 10, 4343 9 of 20

reallocate the products, which are already assigned to a machine, to its equivalent one, in case of faults.
When the VPA Agent receives a fault management request by a faulty machine, it checks if there is
another equivalent machine. If the VPA Agent finds an equivalent machine, it sends both a scheduling
request to the Machine Agent and an update message to the Product Agents. The Machine Agent
adds the new products to be processed to its current scheduling and the Product Agents are notified
with the new scheduling of the products. On the other hand, if the equivalent machine is not found,
the VPA Agent does not perform any operation, leaving the schedule for the faulty machine unaltered.

3.2.4. Product Reallocation

The interaction between Product Agent, Customer Order Agent and VPA Agent as well as their
behavior when a reallocation occurs is depicted in Figure 8.

Figure 8. Interaction between Product Agent, Customer Order Agent and VPA Agent when a product
reallocation is requested.

After being processed by a machine, a Product Agent receives the updated processing parameters
by the Machine Agent, as shown in Figure 6. The Product Agent is able to compare the new parameters
with those ones required by the customer. Therefore, the Product Agent sends a request to the
Customer Order Agent in order to know the quality target parameters. After receiving the response
from the Customer Order Agent, the Product Agent checks if the new processing parameters respect
all the quality target constraints. If the constraints are not satisfied, then the Product Agent sends a
customer reallocation request to the VPA Agents. The VPA Agent will try to find a new customer
order for the product and if a new one is found, the VPA Agent will inform the Product Agent. In this
way, the product is reallocated to a new customer and the Product Agent can update its customer
information, whereas if a new customer is not found, the VPA Agent sends a suspension request to the
Product Agent and it becomes available for a new reallocation in the future.
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4. Software Architecture

A MAS may be implemented by using any kind of programming language. In particular,
object-oriented programming (OOP) languages represent a good solution, as they share some properties
with the agents’ concepts, but they are also used for implementing agent frameworks and development
toolkits. C# (C-Sharp) was selected among the different OOP languages in combination with Microsoft
Visual Studio environment and NET Framework platform, whose components represent a standard [25].
Basically, C# offers several advantages compared to other languages, as it integrates a “garbage
collection” system, it is supported by several standard libraries and frameworks, it has a simple
implementation of properties and events, it is an elegant option for “embedded systems” for the
integration in industrial plants and it is also a multiplatform language.

The Publish–Subscribe mechanism is implemented through the Event and Delegate pattern of
C#. A delegate is like a pointer to a function, while an event is nothing but an encapsulated delegate.
An example of the Publish–Subscribe pattern in C# is shown in Figure 9.

Figure 9. Publish–Subscribe pattern in C#.

In order to simulate the agent-based model, a web-based application was implemented through
ASP.NET toolkit of .NET Frameworks 4.0 that allows the creating of classical web-apps, REST API,
real-time web-apps and micro-services. The SignalR library included in the ASP.NET allows for the
realizing of web applications with real-time bidirectional communication between client and server,
suitable for monitoring applications that require continuous and constant updates at high frequency
from the server. SignalR supports techniques for managing real-time communication (e.g., WebSocket
objects, events sent by the servers and long polling) and automatically selects the best transport method
within both server and client functionality. SignalR uses Hubs for the communication between clients
and server. A Hub allows performing of a Remote Procedure Call (RPC) from a server to connected
clients and vice versa.

Concerning data access, a relational Data Base (DB) with Microsoft SQL Server and two patterns of
access to data DAO (Data Access Object) and DTO (Data Transfer Object) have been created. The first
one encapsulates the logic for accessing, recovering and saving data on the database. The second
one, instead, is mainly used to transfer data between the different objects within the application.
A schematic representation of the software architecture is provided in Figure 10. The designed software
architecture is modular and flexible and can be deployed to the existing IT systems in the company.
A possible solution in order to integrate the proposed software into the IT system of a company
consists of exploiting a technical integration strategy, such as reported in reference [26]. For instance,
a data integration approach can be implemented, which integrates the Enterprise Resource Planning
(ERP) data with the agent-based system, since the ERP systems can be considered technologically and
operationally ready for the factory of the future [27]. Another approach that can be used is presented in
reference [28], where a technical integration strategy for the deployment of a CPPS platform according
to the ISA 95 automation standard is described.
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Figure 10. Software Architecture Scheme.

The simulator graphical user interface (GUI) is shown in Figure 11. On the right side, a schematic
view of the production process described in Section 2 is proposed. It is possible to interact with the
graphical objects such as warehouses and machines and check the list of products inside them.

Figure 11. Simulator GUI.

There are also three tables: the table at the top shows the events occurring during the simulation,
the table in the center summarizes products information such as their status, their identification number
and their location and, finally, the table at the bottom shows the status of the production orders with
the production demand and the products already delivered. On the left side, there is the control panel
by which the user can manage the simulation, a status bar and a console where detailed information
about the simulation are printed.

The simulation can be easily followed by the end-user, using the graphical representation and
it can be also possible to stop, resume and halt the simulation through the control panel. Moreover,
the simulation speed can be altered, so that every operation can be analyzed and checked in an easy
way. Furthermore, it is possible to simulate faults and maintenance operations in machines as well as
restore their normal conditions.

The simulator can be used in two different modes and each of them is related to a different type
of simulation:
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• Manual Mode: all the events are generated according to an a priori list of events.
• Random Mode: all the events are generated randomly.

An event models a change in the system and can be a scheduled operation already described in
Table 1, a fault or a message received by an agent. Each event is associated to a start time and the
duration of an event depends on the processes occurring in the system. Every time a new event is
published, the agents react by accomplishing one or more actions according to their behavior.

5. Simulation Experiments and Results

In this section, a description of the scenarios used to test the developed agent-based simulation
model is provided. One undisturbed scenario and three dynamic scenarios were simulated to show how
the agent-based system can adapt its behavior within different situations. During the dynamic scenarios,
the system must react to unforeseen events such as faults, off-spec productions and overloading of
the machines.

5.1. Undisturbed Scenario

In the undisturbed scenario, the system must process six products with different characteristics.
The products are characterized by physical and quality parameters like weight, thickness, width, length,
and quality type, and they were ordered by some customers with specific requirements. A detail of
the products information is reported in Table 2. The information about the production orders are
summarized in Table 3, where the quality target parameters with their tolerances are reported. Initially,
the first three products in Table 2 are located in Warehouse WH1, whereas the last three products are
located in Warehouse WH2. The expected scheduling of the machines was set as reported in Table 4,
whereas the events generated sequentially by the simulator are summarized in Table 5.

Table 2. Product information.

ProductID Length Width Thickness Quality Weight OrderID

115678 1000 100 3 A 10,000 11913427
115679 1000 100 2 A 20,000 11913428
115680 1000 100 3 B 20,000 11923427
215678 1000 100 3 A 10,000 11913427
215679 1000 100 3 B 20,000 11923427
225680 1000 100 2 A 20,000 11913428

Table 3. Production order information.

OrderID Quantity
Ordered

Residual
Quantity Length Width Thickness Width

Tolerance
Thickness
Tolerance Quality

11913427 20,000 20,000 1000 100 3 10 0.5 A
11913428 40,000 40,000 1000 100 2 10 0.5 A
11923427 40,000 40,000 1000 100 3 10 0.5 B

Table 4. Machines scheduling in the undisturbed scenario.

Machine Scheduling (Products Sequence)

M1
115678
115679
115680

M2 215678
215679

M3 225680

M4 215678
215679
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Table 5. Production operations of the undisturbed scenario.

Operation Operation Code Process Involved

Assigning product 115678 to M1 scheduling 1 M1
Assigning product 115679 to M1 scheduling 1 M1
Assigning product 115680 to M1 scheduling 1 M1

Loading product 115678 into M1 buffer 3 WH1, M1
Loading product 115679 into M1 buffer 3 WH1, M1

Moving product 115680 within WH1 2 WH1
Assigning product 215678 to M2 scheduling 1 M2
Assigning product 215679 to M2 scheduling 1 M2

Working product 115678 on M1 4 M1
Working product 115679 on M1 4 M1

Loading product 115680 into M1 buffer 3 WH1, M1
Assigning product 225680 to M3 scheduling 1 M3

Loading product 215678 into M2 buffer 3 WH2, M2
Loading product 225680 into M3 buffer 3 WH2, M3
Loading product 215679 into M2 buffer 3 WH2, M2

Working product 215678 on M2 4 M2
Working product 225680 on M3 4 M3
Working product 215679 on M2 4 M2

Moving product 215678 within WH3 2 WH3
Assigning product 215678 to M4 scheduling 1 M4

Loading product 215678 into M4 buffer 3 WH3, M4
Working product 215678 on M4 4 M4
Working product 115680 on M1 4 M1

Assigning product 215679 to M4 scheduling 1 M4
Loading product 215679 into M4 buffer 3 WH3, M4

Working product 215679 on M4 4 M4
Loading product 215678 to delivery truck 5 WH4, D
Loading product 215679 to delivery truck 5 WH4, D

Delivering product 215678 and 215679 6 D

The operations in Table 4 are arranged to process and deliver products 215678 and 215679, while
the processing of the other products remains uncompleted. A representation of the plant at the end of
the simulation is shown in Figure 12. The simulation ends as expected without unforeseen events and
the MAS orchestrates the system, accomplishing all the designed operations. During the simulation,
the machine scheduling is fixed, but the Machine Agents might be rescheduling the products in a
different manner, e.g., by minimizing product tardiness.

Figure 12. Undisturbed scenario at the end of the simulation.
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5.2. Machine Overloading Scenario

In this scenario, a product was deliberately loaded on the Machine M1, even if the buffer capacity
of the machine does not support three products at a time but only two. The modified events are
reported in Table 6, where the unexpected operation is highlighted in bold and framed. In this case,
when the unexpected event is executed, Machine Agent M1 sends a suspension request to the Product
Agent 115680 that suspends the product, such as described in Section 3.

Table 6. Production operations in case of machine overloading.

Operation Operation Code Process Involved

Assigning product 115678 to M1 scheduling 1 M1
Assigning product 115679 to M1 scheduling 1 M1
Assigning product 115680 to M1 scheduling 1 M1

Loading product 115678 into M1 buffer 3 WH1, M1
Loading product 115679 into M1 buffer 3 WH1, M1

Moving product 115680 within WH1 2 WH1
Loading product 115680 into M1 buffer 3 WH1, M1

Assigning product 215678 to M2 scheduling 1 M2
Assigning product 215679 to M2 scheduling 1 M2

Working product 115678 on M1 4 M1
Working product 115679 on M1 4 M1

Loading product 115680 into M1 buffer 3 WH1, M1
Assigning product 225680 to M3 scheduling 1 M3

Loading product 215678 into M2 buffer 3 WH2, M2
Loading product 225680 into M3 buffer 3 WH2, M3
Loading product 215679 into M2 buffer 3 WH2, M2

Working product 215678 on M2 4 M2
Working product 225680 on M3 4 M3
Working product 215679 on M2 4 M2

Moving product 215678 within WH3 2 WH3
Assigning product 215678 to M4 scheduling 1 M4

Loading product 215678 into M4 buffer 3 WH3, M4
Working product 215678 on M4 4 M4
Working product 115680 on M1 4 M1

Assigning product 215679 to M4 scheduling 1 M4
Loading product 215679 into M4 buffer 3 WH3, M4

Working product 215679 on M4 4 M4
Loading product 215678 to delivery truck 5 WH4, D
Loading product 215679 to delivery truck 5 WH4, D

Delivering product 215678 and 215679 6 D

An extraction of the simulation log is reported in Table 7, where it is possible to see the messages
exchanged between the Machine Agent and the Product Agent. Despite the suspension, product
115680 is reactivated as soon as the buffer of machine M1 is free. A representation of the plant at
the end of the simulation is shown in Figure 13, where the simulation correctly terminates with the
processing of product 115680. Even in this case, the MAS orchestrates the system and is able to handle
the unforeseen event. Even if the scenario described here rarely happens in a system that is manually
managed, it can occur in an automated system. Therefore, a good management of product loading is
necessary. The reactivation of the products could be managed directly by the Product Agents, by asking
to be reprocessed after a while, but this is not efficient as the products do not know exactly when a
machine is ready, thus, the reactivation is handled by the Machine Agents.
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Table 7. Extract of simulation log with the messages of the agents related to the Machine
Overloading Scenario.

. . .

55 PRODUCT EXEC: 115680—Tracking Updated
56 PRODUCT EXEC: 115680—Product Moved
57 EVENT EXEC: 3—Loading Product 115680 into M1 Buffer
58 MACHINE EXEC: M1—Suspension Request for Product ID: 115680
59 PRODUCT EXEC: 115680—Product Suspended
60 EVENT EXEC: 1—Assign Product 215678 to M2 Scheduling
61 MACHINE EXEC: M2—Product ID: 215678 added to Scheduling
62 PRODUCT EXEC: 215678—Product Scheduled
63 EVENT EXEC: 1–Assign Product 215679 to M2 Scheduling
64 MACHINE EXEC: M2—Product ID: 215679 added to Scheduling
65 PRODUCT EXEC: 215679—Product Scheduled
. . .

Figure 13. Machine overloading scenario at the end of the simulation.

5.3. Machine Fault Scenario

In this scenario, a fault is generated on machine M2 during the simulation, and therefore,
the products scheduled on M2 are rescheduled to machine M3. The events generated sequentially by
the simulator are those of the undisturbed scenario, but after three operations, a fault was generated
by clicking on the “Simulate Fault” button over the control panel. In this case, when the loading event
(i.e., operation code 3) is published by the simulator, then Machine Agent M2 checks its status and
sends a fault management request to the VPA Agent that will handle the request by sending, in turn,
a scheduling request to Machine Agent M3.

An extraction of the simulation log is reported in Table 8, where it is possible to see the messages
exchanged between the Machine Agents and the VPA Agent. Despite the fault, the products 215678
and 215679 are successfully processed and delivered. A photograph of the plant at the beginning of
the simulation is shown in Figure 14a, while Figure 14b reports a snapshot of the end of the simulation,
where the correct completion of the simulation is shown. Even in this case, the MAS orchestrates the
system and is able to handle the unforeseen event. Regarding Machine Agent M2’s behavior in case
of faults, it could send a fault request directly to Machine Agent M3 without the intercession of the
VPA Agent. In this case, the number of exchanged messages can be reduced, but Machine Agent M3
should subscribe to fault management requests coming from Machine Agent M2 by augmenting its
knowledge of the system.
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Table 8. Extract of simulation log with the messages of the agents related to the Machine Fault Scenario.

. . .

91 EVENT EXEC: 3–Loading Product 215678 into M2 Buffer
92 MACHINE EXEC: M2–Fault Management Request for VPA
93 VPA EXEC: Scheduling Request for Machine ID: 3
94 MACHINE EXEC: M3–Set Scheduling
95 EVENT EXEC: 3-Loading Product 225680 into M3 Buffer
96 MACHINE EXEC: 3-M3—Loading Request for Warehouse ID: 2
97 WAREHOUSE EXEC: WH2-Removed Product ID: 225680 —> WRowID: 3, WBoxID: 1, WLayerID: 1
98 MACHINE EXEC: 3-M3-Added Product ID: 225680
99 PRODUCT EXEC: 225680-Tracking Updated
100 PRODUCT EXEC: 225680—Product Loaded
. . .

Figure 14. (a) Machine fault scenario at the beginning of the simulation; (b) Machine fault scenario at
the end of the simulation.
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5.4. Customer Reallocation Scenario

In this scenario, a customer reallocation is simulated by altering the quality requirements of a
customer order. The order 11913428 is modified, as highlighted in bold in Table 9, and also a new
customer order, i.e., 11933429, is added at the end of the table. A photograph of the plant at the
beginning of the simulation is shown in Figure 15, where the table on the bottom contains the new
production orders information. As already explained in Section 3, Product Agents 115679 and 225680
check their parameters after being worked and if the parameters violate some of the quality target
constraints, they send a customer reallocation request to the VPA Agent. In this case, the VPA Agent
is able to reallocate both products to customer order 11933429 because the new parameters of the
products are compliant with those of the customer order.

Table 9. Production order information.

OrderID Quantity
Ordered

Residual
Quantity Length Width Thickness Width

Tolerance
Thickness
Tolerance Quality

11913427 20,000 20,000 1000 100 3 10 0.5 A

11913428 40,000 40,000 1000 100 2 10 0.01 A

11923427 40,000 40,000 1000 100 3 10 0.5 B
11933429 60,000 60,000 1000 100 2 10 0.5 A

Figure 15. Customer reallocation scenario simulation.

An extraction of the simulation log is reported in Table 10, where it is possible to see the messages
exchanged between the Product Agents and the VPA Agent. Even in this case, the MAS orchestrates
the system and is able to handle the unforeseen events. Regarding the reallocation process performed
by VPA, some improvement can be considered by looking at some performance parameters to
optimize. For instance, the allocation process can be performed by minimizing the customer quality
requirements’ deviation. The Product Agents could also start the Contract Net Protocol (CNP) with the
Customer Orders Agents by solving the customer reallocation task without the intercession of the VPA
Agent. As a result, the MAS structure is more decentralized, but the number of exchanged messages
is increased.
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Table 10. Extract of the simulation log with the messages of the agents.

. . .

72 PRODUCT EXEC: 115679—Tracking Updated
73 PRODUCT EXEC: 115679—Routing Updated
74 PRODUCT EXEC: 115679—Product Worked
75 PRODUCT EXEC: 115679—Parameter Request to Customer Order
76 CUSTOMER ORDER EXEC: 11913428—Inform Product ID: 115679
77 PRODUCT EXEC: 115679—Customer Reallocation Request
78 VPA EXEC: Inform Product ID: 115679—Customer Found
79 EVENT EXEC: 3—Loading Product 115680 into M2 Buffer
. . .
123 PRODUCT EXEC: 225680—Product Worked
124 PRODUCT EXEC: 225680—Parameter Request to Customer Order
125 CUSTOMER ORDER EXEC: 11913428—Inform Product ID: 225680
126 PRODUCT EXEC: 225680—Customer Reallocation Request
127 VPA EXEC: Inform Product ID: 225680–Customer Found
. . .

6. Conclusions

Process manufacturing industries are complex and dynamic systems composed of several processes
and subject to many operations. Industry 4.0 makes use of technologies that pave the way for the
transformation of a traditional process industry into a smart factory, a paradigm that affects not only
the technologies used to be more productive, but it means a system that will be fully connected, flexible
and intelligent and will be capable of generating new business models. In this scenario, the innovation
process beyond the smart factory affects also the traditional managerial chain, where the speed into the
decision-making process is a valuable skill. In this context, the ability of coping with an unforeseen
event is of utmost importance and a multi-agent system is certainly the most suitable candidate for the
design of distributed and intelligent applications in a complex and dynamic environment.

This paper presents an event-driven agent-based simulation model for simulating and controlling
the operations of a general industrial process. The developed MAS is composed of eight reactive
agents modeled by means of the actor approach and using the publish–subscribe paradigm in order to
allow the agents to communicate with each other. The agents’ high-level behavior of the proposed
MAS was described by using the BPMN formalism and the interaction among the agents in different
situations such as fault management, products reallocation and suspension was reported in detail.
A web-based application was implemented through the ASP.NET toolkit of .NET Frameworks 4.0 to
simulate the agent-based model. The GUI of the application allows the user to control the simulation
and interact with it, showing also how the system process evolves over time.

Different scenarios were simulated to show how the agent-based model can handle unexpected
dynamic events such as off-spec products, machine faults or overloading on a single machine. Even if
the considered scenarios represent a simplified version of real plant situations and the performance of
the production process is far from optimal, the simulations show the potential and the advantages of
the designed MAS approach and highlight that this paradigm can be transferred within an industrial
environment in order to promptly react to different dynamic scenarios and to handle different unforeseen
situations. The proposed agent-based model architecture is a hybrid due to the presence of VPA Agent,
which inhibits the complete decentralization of the MAS structure but provides a high-level view of
the plant and reduces the number of exchanged messages. The adopted communication model is fast
and efficient and can be a suitable point of strength to considerably reduce the delay related to the
information transfer among the involved actors by increasing the availability of useful information to
feed the decision-making process. Furthermore, the developed modular system architecture is flexible
and integrable with the existing IT systems of a company.
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Future work will deal with the improvement of the agent-based system by exploiting optimization
algorithms to predict faults, optimize the machine scheduling and the allocation of the production
orders in order to improve the overall performance of the production system. Furthermore, more
complex scenarios will be considered, tests on real data will be performed to assess the goodness of the
agent-based simulation model, and the final deployment of the solution on a real industrial plant will
be carried out.
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